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Abstract 

Maximum simulated likelihood is the preferred estimator of most researchers who deal with 

discrete choice. It allows estimation of models such as mixed multinomial logit (MXL), generalized 

multinomial logit, or hybrid choice models, which have now become the state-of-practice in the 

microeconometric analysis of discrete choice data. All these models require simulation-based 

solving of multidimensional integrals, which can lead to several numerical problems. In this study, 

we focus on one of these problems – utilizing from 100 to 1,000,000 draws, we investigate the 

extent of the simulation bias resulting from using several different types of draws: (1) pseudo 

random numbers, (2) modified Latin hypercube sampling, (3) randomized scrambled Halton 

sequence, and (4) randomized scrambled Sobol sequence. Each estimation is repeated up to 1,000 

times. The simulations use several artificial datasets based on an MXL data generating process with 

different numbers of individuals (400, 800, 1200), different numbers of choice tasks per respondent 

(4, 8, 12), different number of attributes (5, 10), and different experimental designs (D-optimal, D-

efficient for the MNL and D-efficient for the MXL model). Our large-scale simulation study allows 

for comparisons and drawing conclusions with respect to (1) how efficient different types of quasi 

Monte Carlo simulation methods are and (2) how many draws one should use to make sure the 

results are of “satisfying” quality – under different experimental conditions. Our study is the first 

to date to offer such a comprehensive comparison. Overall, we find that the number of the best-

performing Sobol draws required for the desired precision exceeds 2,000 in some of the 5-attribute 

settings, and 20,000 in the case of some 10-attribute settings considered.  
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Highlights 

- Simulation error for the maximum simulated likelihood estimation of discrete choice 

models is investigated 

- We use from 100 to 1,000,000 draws for 400, 800, and 1200 individuals, 4, 8 and 12 choice 

tasks per individual, 5 or 10 attributes, and 3 different experimental designs 

- Pseudo random numbers, modified Latin hypercube sampling, randomized scrambled 

Halton sequence, and randomized scrambled Sobol sequence are compared. Each 

estimation is repeated up to 1,000 times.  

- We find that Sobol draws perform the best in these simulations. 

- We find that in the case of 5-attribute designs over 2,000 Sobol draws were needed, while 

in the case of 10 attributes over 20,000 draws were needed to attain desired levels of 

precision. 
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1. Introduction 1 

Discrete choice models are widely used in many applications, with modelling of consumers’ 2 

preferences probably being the most prominent (Ben-Akiva and Lerman, 1985; Train, 2009). Mixed 3 

logit (Revelt and Train, 1998) is the model of choice for most of these applications, and arguably 4 

also the state-of-the-art, considering its ability to approximate any random utility based choice 5 

model to any degree of accuracy (McFadden and Train, 2000). 6 

Most applications estimate the model using the simulated maximum likelihood method, as it is 7 

relatively straightforward and readily implemented in most statistical software packages. Simulating 8 

the value of the log-likelihood function is necessarily associated with the simulation error that 9 

depends on the number and type of draws used. By using a different set of draws or even changing 10 

the order of explanatory variables, a researcher will arrive at somewhat different estimation results, 11 

in terms of the value of the log-likelihood function, parameter estimates, and their estimated 12 

standard errors (and hence the associated z-statistics).  13 

Several studies have demonstrated the advantages of using quasi Monte Carlo (QMC) methods in 14 

terms of reducing simulation-driven variation of the results (e.g., using Halton rather than pseudo-15 

random draws), and this has led to their wide proliferation. Unfortunately, examples of 100 Halton 16 

draws leading to smaller bias than 1,000 pseudo-random draws (e.g., Bhat, 2001) have led some to 17 

actually use very few draws for simulations, when in fact not much is known about the extent of 18 

the possible bias resulting from using different numbers of different types of draws in various 19 

conditions (datasets). Our study aims at filling this gap.  20 

In what follows, we present the results of a systematic comparison of pseudo-random, modified 21 

Latin hypercube sampling, Halton, and Sobol draws under a wide set of experimental conditions 22 

in terms of experimental designs, the number of individuals (400-1,200), the number of choice 23 

tasks per individual (4-12), and the number of attributes (5, 10). Based on a Monte Carlo simulation, 24 

we demonstrate the extent of the simulation error resulting from using 100 up to 1,000,000 draws.1 25 

This allows us to offer recommendations in terms of the QMC method: which performs best and 26 

its relative efficiency. 27 

Using more draws is always better than using fewer – not only will the estimates become more 28 

precise (lower simulation error) but this can also lead to uncovering identification problems. 29 

                                                 

1 Throughout the paper, the number of draws refers to the number of draws per individual and per random parameter. 
In total, each model utilizes [number of individuals · number of draws] x [number of random variables] draws.  
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However, we propose guidelines regarding how many draws are “enough” for a required precision 1 

level. Our measure is based on limiting the probability of making an error (to, e.g., 5%) when 2 

comparing otherwise identical models that can differ in simulated values only.  3 

Overall, we find that the scrambled Sobol sequence performs the best in these simulations. As 4 

expected, scrambled Halton draws and modified Latin hypercube sampling also perform 5 

substantially better than pseudo-random draws. Importantly, our results indicate that, for common 6 

setups, thousands or, in some cases, tens of thousands of draws are required to attain desired levels 7 

of precision. While this result suggests more draws than have been common in previous 8 

applications, advances in computer speed now permit far more draws with the same runtimes as 9 

previously. 10 

The rest of the paper is structured as follows. Section 2 provides an overview of earlier studies 11 

devoted to measuring simulation error and comparing the performance of various QMC methods. 12 

Section 3 presents the set-up of our Monte Carlo study. Section 4 introduces the methodology of 13 

comparisons and describes the framework used for recommending a “sufficient” number of draws. 14 

Results are presented in section 5 – we first compare the performance of various QMC simulation 15 

methods and then address the question of how many draws are “enough.” The last section offers 16 

discussion and conclusions.  17 

 18 

2. Earlier studies 19 

Quasi Monte Carlo (QMC) methods gained considerable attention as a way of reducing 20 

computation burden or simulation error. Several alternatives to the pseudo-random Monte Carlo 21 

method (i.e., drawing pseudo-random numbers and using them for simulations) were proposed, 22 

including using modified Latin hypercube sampling, Halton and Sobol sequences. The rationale 23 

and the description of the algorithms used for generating each of these types of “draws”2 are 24 

presented in Online Supplement A; in what follows we focus on critically reviewing existing studies 25 

which aimed at comparing the performance of these methods in simulated maximum likelihood 26 

estimation of discrete choice models.  27 

The most popular QMC method used in this context is the Halton sequence, introduced by Bhat 28 

(2001) and followed by Train (2000). Both of these papers provided an early indication that Halton 29 

                                                 

2 Technically, they are not draws, because the generated numbers follow a pre-defined sequence. We choose to call 
them draws, however, because in estimation they are used as if they were draws from the target distribution.  
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draws greatly outperform pseudo-random methods, illustrating this with examples of 100 Halton 1 

draws leading to smaller bias and standard deviation of parameter estimates than 1,000 pseudo-2 

random draws, or in some cases even 2,000 pseudo-random draws (Bhat, 2001). Although most of 3 

the later comparisons showed that the differences in performance between pseudo-random and 4 

QMC methods are not as substantial, Halton sequences were consistently found to outperform 5 

pseudo-random draws, and became a new standard for most modelers.  6 

One problem with using the Halton sequence is that, by definition, it is purely deterministic, and 7 

therefore it is not possible to evaluate the error by applying variance analysis, as in classical Monte 8 

Carlo simulations.3 Another problem is its poor performance in higher dimensions, because the 9 

sequences generated using high prime numbers as bases tend to be highly correlated (see Online 10 

Supplement B for illustration). To address these problems, researchers suggested using scrambling 11 

or shuffling the sequence or proposed other QMC methods.  12 

Bhat (2003) compared the performance of pseudo-random draws with a randomized Halton 13 

sequence and randomized scrambled Halton sequence using a mixed probit setting with 10 random 14 

parameters. He reports that scrambling improved performance – 150 scrambled Halton draws 15 

performed better than 1,000 pseudo-random draws. In a similar study Hess, Polak and Daly (2003) 16 

and Hess, Polak and Daly (2003) compared pseudo-random draws with scrambled Halton and 17 

shuffled Halton sequences, and found that shuffling is a valid alternative for scrambling in the case 18 

of breaking the correlation for high dimensional problems. The authors conclude that the 19 

differences in performance between pseudo-random and QMC methods are not as large as 20 

indicated in the initial studies. Wang and Kockelman (2008) also compared scrambled and shuffled 21 

Halton sequences, concluding that although scrambling seems to perform better, the difference is 22 

relatively small.  23 

Other QMC methods that were proposed typically used the Halton and pseudo-random draws as 24 

a benchmark. Sándor and Train (2004) used four types of randomized (t,m,s)-nets; two of them 25 

outperformed the randomized Halton.4 Garrido (2003) showed that using Sobol sequences 26 

generally results in better performance than Halton and PMC, especially in higher (10+) 27 

                                                 

3 Train (2000) tried to work around this problem by estimating every model 5 times, each time generating Halton 
sequences using different combinations of prime numbers. This approach still does not guarantee valid estimates of 
variance, however. 
4 As noted by our reviewer, there are types of (t,m,s)-nets that have even better "coverage" (defined by number theory) 
than Sobol draws and can be expected to perform better. Specifically, Neiderreiter nets in base 2 have better coverage 
that Sobol draws, and Neiderreiter-Xing nets in base 2 have better coverage than Neiderreiter nets in base 2 (Sándor 
and Train, 2004). For a software implementation of Neiderreiter-Xing nets in base 2 see Pirsic (2002). 
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dimensional problems, where it leads to 58% lower standard deviations of parameter estimates in 1 

comparison with using 150 draws. Sivakumar, Bhat and Ökten (2005) use mixed logit setting with 2 

5 or 10 random variables to compare Latin hypercube sampling with Halton and Faure sequences 3 

(with and without scrambling). Their results, based on 20 repetitions and the comparisons of the 4 

simulation error resulting from using 25, 100, 125 and 625 draws with the results obtained using 5 

20,000 draws, indicate that scrambled Faure sequence performs best. Hess, Train and Polak (2006) 6 

proposed modified Latin hypercube sampling and showed that they can perform better than 7 

Halton and pseudo-random draws. Munger et al. (2012) compared pseudo-random, randomized 8 

Halton, Sobol, and lattice rules and analyzed variance and bias of the simulated likelihood in the 9 

case of the mixed logit model. They found that randomized lattice rules and randomized Sobol 10 

nets outperformed pseudo-random and Halton draws. Sidharthan and Srinivasan (2010) proposed 11 

using generalized antithetic draws with double base shuffling to a Halton sequence and showed 12 

that this can improve the model’s abilities to recover true parameters.5,6  13 

Although it seems like a lot has been done, existing studies can hardly be considered a systematic 14 

comparison that would allow for drawing conclusions with respect to which approach is best or 15 

how many draws are “enough.” This is because many of these comparisons use a relatively low 16 

number of QMC draws (e.g., Train (2000), Bhat (2001), Bhat (2003), Hess, Polak and Daly (2003) 17 

and Sándor and Train (2004) do not use more than 200 QMC draws in their comparisons). In 18 

addition, most earlier studies use deterministic QMC sequences or a very low number of repetitions 19 

for each type and number of draws (e.g., Bhat (2003), Sándor and Train (2004), Garrido (2003) or 20 

Hess, Train and Polak (2006) used no more than 10 repetitions). This makes it hard to judge if the 21 

conclusions are sound, or the result is only obtained for a particular set of draws and data. Finally, 22 

the results likely depend on the number of observations. As noted by Sándor and Train (2004): 23 

“large sampling variance means that the log-likelihood function is fairly flat near the maximum; and when the 24 

likelihood function is fairly flat near its maximum, errors induced by simulation can move the maximum 25 

considerably.” As a result, smaller datasets with fewer observations per individual (larger standard 26 

errors of parameter estimates) are likely to result in different performance of QMC vs. pseudo-27 

random draws.  28 

                                                 

5 In another context, Bliemer, Rose and Hess (2008) compared the performance of pseudo-random, Halton, Sobol, 
and Gaussian quadrature methods in simulating experimental design efficiency when using normally distributed priors 
(simulating Bayesian D-efficiency of experimental designs).  
6 A somewhat similar stream of literature deals with the question of how many bootstrap draws should be used (e.g., 
Davidson and MacKinnon, 2000). 
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Last, even if using x  QMC draws indeed performs just as good as 1,000 pseudo-random draws, it 1 

is not clear if 1,000 is sufficient for a desirably small simulation error. Chiou and Walker (2007) 2 

show that using too few draws can lead to spurious convergence of models that are theoretically 3 

or empirically unidentified. In the examples provided, even 1,000 Halton draws (which seems to 4 

be the state-of-practice in most applied studies) was not sufficient to uncover the problems. Similar 5 

conclusions are drawn by Andersen (2014) who shows that even using over 1,000 antithetic Halton 6 

draws can lead to differences in log likelihood which can interfere with the likelihood ratio based 7 

inference.  8 

 9 

3. Design of our simulation study 10 

We designed and executed a simulation study that is free of the shortcomings of earlier analyses of 11 

the performance of QMC methods in maximum likelihood estimation of discrete choice models. 12 

We compared four types of draws: pseudo-random, modified Latin hypercube sampling (MLHS), 13 

randomized scrambled Halton sequence (Halton), and randomized scrambled Sobol sequence 14 

(Sobol).7  15 

The comparison was made using datasets created using a mixed logit (MXL)8 data generating 16 

process. We assumed the following utility function specification: individual i ’s utility from 17 

choosing an alternative j  in choice task k  is: 18 

 ,ijk ijk i ijkU ε= +X β   19 

where ijkX  is a vector of alternative-specific attributes, iβ  is a vector of individual-specific random 20 

parameters, assumed to follow independent normal distributions and ijkε  is the extreme value type 21 

I distributed random term (McFadden, 1974).  22 

The datasets were designed to mimic typical discrete choice modelling problems, such as 23 

encountered in stated or revealed preference studies (e.g., Carson and Czajkowski, 2014; Hanley 24 

and Czajkowski, 2017). Each choice task consisted of three alternatives, characterized using either 25 

five or ten attributes: one alternative specific constant, one discrete variable valued one to four, 26 

and three or eight dummy variables. This setting can be thought of as representing a choice between 27 

                                                 

7 In what follows, we use italicized names of the types of draws to refer to the specific settings described here (e.g., 
randomized scrambled Halton or Sobol sequences).  
8 Random parameters (conditional) multinomial logit model (Revelt and Train, 1998; Greene, 2011).  
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a status quo (or opt-out) alternative (associated with the alternative specific constant and serving 1 

as a 0-valued reference for all other attribute levels) and two “improvement” alternatives (e.g., new 2 

policies to be implemented), characterized by a discrete variable (e.g., representing the costs 3 

associated with the alternatives) and three or eight dummy variables (e.g., changes in various 4 

characteristics of a good in relation to the status quo).  5 

The estimated models have five or ten uncorrelated random parameters.9 We assumed mean values 6 

of these parameters are 1.0 for the dummy variables and -1.0 for the alternative specific constant 7 

and the “cost.” Standard deviations of random parameters for all these attributes were assumed to 8 

equal 0.5. Table 1 summarizes the choice task setting and the explanatory variables. 9 

Table 1. Summary of the choice task setting and explanatory variables 10 

Explanatory variables  
(choice attributes) 

Assumed 
parameter 

distribution 

Possible values of the explanatory variables 
Alternative 1  

(status quo / opt-out) Alternative 2 Alternative 3 

1X  (alternative specific constant) ( )1.0,0.5N −  1 1X =  1 0X =  1 0X =  

2X  (discrete) ( )1.0,0.5N −  2 0X =  { }2 1,2,3,4X ∈  { }2 1,2,3,4X ∈  

3..10X  (dummy) ( )1.0,0.5N  3..10 0X =  { }3..10 0,1X ∈  { }3..10 0,1X ∈  

 11 

The datasets used for comparisons varied with respect to the number of choice tasks per individual 12 

(4, 8, or 12), and with respect to the number of simulated individuals (400, 800, or 1,200). The 13 

choice tasks (combinations of attribute levels) were generated following three common methods 14 

encountered in the literature. They either used the so-called orthogonal optimal in the difference 15 

fractional factorial design (OOD-design; Street, Burgess and Louviere, 2005; Street and Burgess, 16 

2007), or the so-called efficient fractional factorial design (Scarpa and Rose, 2008), optimized for 17 

the MNL model (MNL-design) or for the MXL model (MXL-design).10,11,12 Overall, the 18 

                                                 

9 As an aside, we find no support for the requirement of having at least one parameter non-random for identification 
of the MXL model (cf. Chiou and Walker, 2007). 
10 The designs were generated in NGENE (ChoiceMetrics, Pty Ltd). Efficient designs were optimized for D-error 
(minimized the determinant of an asymptotic variance-covariance matrix, using the true parameter values as fixed 
priors). 
11 Even though our data generating process is MXL, MNL-designs are much more common in the literature, possibly 
because there is some evidence (Bliemer and Rose, 2010) indicating that the loss of efficiency from using them for a 
different model is relatively low. Czajkowski and Budziński (2016) show that this is not necessarily the case, particularly 
for NGENE generated designs using blocking.  
12 For the case of ten attributes we analyze the MXL-design only.   
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comparison was done using 3 3 3 27⋅ ⋅ =  datasets in the case of five attributes, and 3 3 9⋅ =  datasets 1 

in the case of ten attributes..  2 

For each dataset, we estimated panel-data versions of MXL models using 100, 200, 500, 1,000, 3 

2,000, 5,000 and 10,000 pseudo-random, MLHS, Halton and Sobol draws. Additionally, for MXL-4 

design and Sobol draws we estimated the models using 20,000, 50,000, 100,000 draws, and, in the 5 

case of MXL-design with five attributes, we additionally estimated the models using 200,000, 6 

500,000 and 1,000,000 Sobol draws. The models for each setting were estimated 1,000 times (or 100 7 

times in the case of additional MXL and Sobol specifications), each time using a new set of draws13, 8 

enabling us to conduct variance analysis of the log-likelihood at convergence, estimated 9 

coefficients, standard errors, and z-statistics. Each model used data generating process parameter 10 

values as the starting point, to facilitate convergence and avoid local maxima problems.14 Table 2 11 

summarizes the design of our simulation study. 12 

Table 2. Summary of the design of the simulation study 13 

Repetitions 

Draws Datasets 

Types of draws Number of 
draws 

Number 
of 

attributes 

Number 
of choice 
tasks per 
individual 

Number of 
individuals 

Experimental 
designs 

1,000 

pseudo-random 
MLHS 
Halton 
Sobol 

100 
200 
500 

1,000 
2,000 
5,000 
10,000 
20,000* 
50,000* 
100,000* 
200,000* 
500,000* 

1,000,000* 

5 
10** 

 

4 
8 
12 

400 
800 

1,200 

OOD-design 
MNL-design 
MXL-design 

*Selected settings only. 14 
** MXL-design only. 15 

  16 

                                                 

13 Pseudo-random draws were generated using different random generator seeds; MLHS, Halton and Sobol draws differed 
in each repetition because of the random shift. Overall, this allows us to perform a proper analysis of variance 
associated with using a different number and type of draws (simulation error).  
14 The software codes for estimating the MXL model were developed in Matlab and are available at 
http://github.com/czaj/DCE under Creative Commons BY 4.0 license. The code and data for estimating the models 
presented in this paper are available from http://czaj.org/research/supplementary-materials. 

http://github.com/czaj/DCE
http://czaj.org/research/supplementary-materials
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4. Methodology of the comparisons 1 

To compare the estimates resulting from using different QMC methods, we will need a method 2 

that not only looks at their expected values, but also penalizes them for high variance. Consider 3 

the case where one tests if two random variables 1ω  and 2ω  have equal means (e.g., using the 4 

standard t-test). The larger the variance associated with 1ω  or 2ω , the more difficult it is to reject 5 

the equality hypothesis. As a result, inferior simulation methods (resulting in lots of variation) could 6 

not be rejected in favor of better ones.  7 

To address this problem we base our comparisons on equivalence tests (Hauck and Anderson, 8 

1984; Kristofersson and Navrud, 2005). Equivalence tests reverse the null hypothesis and the 9 

alternative hypothesis – instead of testing if 1ω  is equal to 2ω , we test if the absolute difference 10 

between them is higher than an a priori defined “acceptable” level. Czajkowski and Ščasný (2010) 11 

and Czajkowski et al. (2017) operationalize equivalence tests by proposing to search for a Minimum 12 

Tolerance level ( MTL ), i.e., the minimum “acceptable” difference that allows the conclusion that 13 

two values are equivalent at the required level of statistical significance.  14 

Formally, for two random variables 1ω , 2ω  MTL  is defined as the minimum 0θ ≥  that satisfies:  15 

 ( )1 2P ω ω θ α− > = ,  (1) 16 

where α  is the required significance level (e.g., 0.05). In our case, the probability can be evaluated 17 

using two one-sided convolutions tests (TOSC; Poe, Giraud and Loomis, 2005)15, while MTL  can 18 

be found as  19 

 
[ )

{ }
1 2

1, 2,
0, 1 11 2

1
argmin

N N

i j
i j

MTL
N Nα

θ
ω ω θ α

∈ +∞ = =

  = − > − 
  

∑∑1 ,  (2) 20 

where 1,iω  and 2, jω  are realizations of random variables, 1N  and 2N  are numbers of these 21 

realizations and {}⋅1  is an indicator function equal to 1 if the condition in brackets is fulfilled.16  22 

Re-estimating the model using a different set of random draws (e.g., a different seed for pseudo-23 

random draws) is likely to result in a somewhat different value of the log-likelihood function. If 24 

one were to use these two values of the log-likelihood function for inference (e.g., conduct a 25 

likelihood-ratio test to compare two model specifications), it is important to note that they are 26 

                                                 

15 Our ω  are not necessarily normally distributed. If they were, one could use two one-sided t-tests (TOST).  
16 A collection of Matlab functions useful for calculating MTL is available from https://github.com/czaj/BTtools. 

https://github.com/czaj/BTtools
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known with uncertainty (simulation error). As a result, it is possible to conclude that, for example, 1 

one model specification is superior to another only because one was more “lucky” with the draws. 2 

By using the MTL  approach, with 1ω  and 2ω  representing the random (known with uncertainty) 3 

values of the log-likelihood function for a given type and number of draws, we can say what the 4 

probability of such an outcome is. Assuming the usual significance level ( 0.05α = ), the 5 

interpretation of the 0.05MTL  is that, with 95% probability, using a different sets of draws (of the 6 

same number and type) would not cause the difference to be more than 0.05MTL . Conversely, one 7 

can provide recommendations regarding the minimum number of draws (of a particular type) that 8 

results in the MTL  being lower than the required level (e.g., a critical value of the LR-test), so that 9 

the probability of erroneously concluding that one model is preferred to another (because of 10 

simulation error) is lower than a desired significance level, e.g., 0.05. In a similar way, variation of 11 

the estimates of coefficients, standard errors, and z-statistics can be compared.  12 

5. Results 13 

We now turn to presenting the results of the simulations. We first investigate the question of which 14 

type of draw performs best (and what is the relative performance of different QMC methods), and 15 

then attempt to provide recommendations with respect to how many draws are “enough” for a 16 

required precision level.  17 

5.1. What type of draw performs best? 18 

All the simulation methods considered result in unbiased estimates, and using more draws reduces 19 

simulation error. However, it is possible to compare the variation of the results of different 20 

simulation methods for the same number of draws, and this way conclude that using some of them 21 

results in more precise estimates than others.  22 

Consider the variation of the values of the log-likelihood function at convergence (LL) first. It is 23 

an important measure, because LL is often used for comparing different model specifications by 24 

applying the likelihood ratio test, and hence high variation in LL values between models could lead 25 

to erroneous conclusions.  26 

We calculated the 0.05MTL  for the models estimated using a different number and type of draws. 27 

The general pattern was very evident and consistent. Irrespective of the experimental design, the 28 

number of choice tasks per individual and the number of individuals, using Sobol draws resulted in 29 

the lowest MTL (simulation error). Figure 1 provides an illustration for the case of an MXL-design 30 
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with 5 attributes, four choice tasks per individual and 400 individuals. As expected, increasing the 1 

number of draws results in decreasing MTL  but Sobol draws always perform best, followed by 2 

Halton, MLHS and pseudo-random.  3 

Figure 1. 0.05MTL  for the values of the log-likelihood function simulated using a different 4 

number of draws of each type (MXL-design with 5 attributes, 4 choice tasks per individual, 5 

400 individuals) 6 

 7 

 8 

The pattern illustrated in Figure 1 is not unique to this dataset. To show this, Online Supplement 9 

C presents the detailed results – the percentage of cases where each type of draw performed the 10 

best, in terms of the lowest 0.05MTL  for each number of draws. In the overwhelming majority of 11 

cases, Sobol draws were the best – they resulted in the lowest variation of the log-likelihood function 12 

value, parameter estimates, and z-statistics of estimated models.  13 

Overall, we find that using Sobol draws results in the lowest simulation error of all the simulation 14 

methods compared in the majority of the considered cases, irrespective of whether one compares 15 

the variation in the value of log-likelihood function at convergence, parameter estimates, or their 16 

z-statistics. Although Halton draws are a close second, using them nonetheless results in a higher 17 

simulation error; apparently using draws designed for the best coverage in a multi-variate case 18 

(Sobol) outperforms draws designed for best coverage on a line only (Halton), despite state-of-the-19 

art shuffling techniques. 20 
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To compare the relative performance of Sobol with other types of draws, we estimated regressions 1 

explaining logarithms of MTL for log-likelihood function values, parameter estimates, and z-2 

statistics using various characteristics of experimental settings, such as the type of draws and 3 

logarithm of the number of draws. The results are provided in Table 3.  4 

Table 3. Variation of the simulation results ( ( )0.05log MTL ) explained using characteristics of 5 

experimental settings 6 

Dependent variables 
 

Explanatory variables 

 MTL for  
log-likelihood 

MTL for 
parameter 
estimates 

MTL for 
z-statistics 

Constant  2.7026***     
(0.0773) 

-0.9256***     
(0.0373) 

0.6553***     
(0.0317) 

Number of attributes is 10  0.0135       
(0.1278) 

0.3898***     
(0.0497) 

0.0946**      
(0.0422) 

Pseudo-random draws 
(Sobol used as a reference) (5 attributes) 1.4568***     

(0.0362) 
0.8770***     
(0.0177) 

0.8360***     
(0.0150) 

MLHS draws 
(Sobol used as a reference) (5 attributes) 0.9017***     

(0.0379) 
0.6495***     
(0.0185) 

0.6142***     
(0.0157) 

Halton draws 
(Sobol used as a reference) (5 attributes) 0.3212***     

(0.0379) 
0.2173***     
(0.0185) 

0.2207***     
(0.0157) 

Pseudo-random draws 
(Sobol used as a reference) (10 attributes) 0.5613***     

(0.0639) 
0.2573***     
(0.0221) 

0.3061***     
(0.0188) 

MLHS draws 
(Sobol used as a reference) (10 attributes) 0.2666***     

(0.0639) 
0.1715***     
(0.0221) 

0.1960***     
(0.0188) 

Halton draws 
(Sobol used as a reference) (10 attributes) -0.0027       

(0.0639) 
-0.0123       
(0.0221) 

0.0372**      
(0.0188) 

log(number of draws) (5 attributes) -0.6330***     
(0.0074) 

-0.5786***     
(0.0036) 

-0.5635***     
(0.0031) 

log(number of draws) (10 attributes) -0.4828***     
(0.0127) 

-0.4385***     
(0.0044) 

-0.4517***     
(0.0037) 

Number of choice tasks  0.1356***     
(0.0035) 

-0.0502***     
(0.0015) 

0.0332***     
(0.0013) 

Number of individuals 
(in thousands)  0.8306***     

(0.0350) 
-0.5914***     

(0.0153) 
0.2653***     
(0.0130) 

OOD-design  
(MXL-design used as a reference)  -0.1273***     

(0.0326) 
0.3125***     
(0.0159) 

0.2446***     
(0.0136) 

MNL-design  
(MXL-design used as a reference)  -0.1501***     

(0.0326) 
0.3224***     
(0.0159) 

0.3556***     
(0.0136) 

Standard deviations  
(Means used as a reference)  

 
1.3094***     
(0.0100) 

1.3688***     
(0.0085) 

1X  (alternative specific constant)  
 

0.6016***     
(0.0141) 

0.2992***     
(0.0120) 

2X  (discrete variable)  
 

-0.7445***     
(0.0141) 

0.0856***     
(0.0120) 

R2  0.9291 0.8471 0.8669 

n (observations)  1095 13740 13740 

 7 
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We found that the log-log relationship between MTL  and the number of draws was close to linear 1 

and resulted in the best fit of the model (with the R2 of approximately 0.9). The results show that, 2 

as expected, increasing the number of draws significantly reduces the simulation error for all 3 

analyzed measures (log-likelihood, parameter estimates, z-statistics).  4 

Using Halton, MLHS, or pseudo-random draws results in increasingly higher variation in the results 5 

than using Sobol draws, as indicated by significantly positive and increasing coefficients associated 6 

with these types of draws, respectively. This is in line with the result presented above (see Figure 1 7 

and Online Supplement C). In the case of ten attributes, the differences between types of draws 8 

are smaller and the difference between Halton and Sobol draws is no longer statistically significant.17 9 

The effect of increasing the number of draws is also weaker in the case of ten attributes. This means 10 

that more draws are needed to decrease the simulation error by the same percentage as in the five 11 

attributes case.  12 

Next, we find that increasing the number of observations, in terms of the number of choice tasks 13 

per individual and the number of individuals, leads to increasing variation of the log-likelihood 14 

function, ceteris paribus. Again, this is in line with the requirement of the number of draws 15 

increasing faster than the square root of the number of observations for the maximum simulated 16 

likelihood estimator to be consistent, efficient, and asymptotically equivalent to maximum 17 

likelihood (Train, 2009). On the other hand, increasing the number of observations reduces the 18 

variation of parameter estimates – with more observations parameter estimates are more stable, 19 

irrespective of the number of draws used. The variation of parameter estimates is the lowest for 20 

discrete variable ( 2X ), for which a few levels are observed, followed by dummy coded variables 21 

( )2 4 2 10 or X X X X− − , and the highest for alternative specific constant ( )1X . Similarly, we find that 22 

the means of the random parameters are typically more precisely estimated than their standard 23 

deviations, which require using more draws for the same precision level. Finally, we observed that 24 

using the MXL-designs optimized for D-efficiency (i.e., minimizing the determinant of the 25 

asymptotic variance-covariance matrix) results in more precise estimates of parameter estimates 26 

and z-statistics, but not necessarily log-likelihood values, for which simulation error is lower if 27 

MNL-design or OOD-design is used. 28 

                                                 

17 This was contrary to expectations, as Sobol draws are designed to deliver better coverage in the multi-dimension 
case while Halton draws are not. However, we note that both Halton and Sobol draws were scrambled, which improves 
their performance in the case of more dimensions.  
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Using the regression results allows us to estimate the relative increase in number of draws required 1 

to compensate for using pseudo-random, MLHS or Halton draws instead of Sobol draws. As a result 2 

of using the log-log relationship, this relative increase does not depend on the number of draws or 3 

other characteristics of the experimental setting. Specifically, we are looking for the number of 4 

draws, *D , which renders the MTL that is equal to that resulting from a model estimated with D  5 

Sobol draws. This can be done by solving the following equation: 6 

 ( )( ) ( )( )*exp log exp logij j jD Dα β β+ + = +V V ,  (3) 7 

where ijα  is a coefficient associated with i-th type of draw (see Table 3) and j attributes ( ){5,10}j∈  8 

, and V collects all other effects from the regression. By substituting ( )* 1D Dλ= +  we can solve (3) 9 

for λ : 10 

 exp 1ij

j

α
λ

β
 

= − −  
 

.  (4) 11 

The results are presented in Table 4, separately for five and ten attributes. The interpretation is 12 

straightforward – for example, achieving the same precision level of the log-likelihood function 13 

value, in the case of five attributes, as when using 1,000 Sobol draws requires using approximately 14 

1,661 Halton draws, 4,155 MLHS draws or 9,987 pseudo-random draws. In the case of ten attributes, 15 

the percentage differences are lower. However, as we are about to show in the next section, this 16 

case requires using a larger number of draws for the desired precision, so the lower relative 17 

differences translate to large additional numbers of draws required when using pseudo-random or 18 

MLHS draws (the difference between Sobol and Halton draws is no longer statistically significant).  19 

  20 
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Table 4. The relative increase in the number of draws required to achieve the same 1 

simulation error as when using Sobol draws (95% confidence intervals in [] brackets) 2 

 Log-likelihood Parameter estimates z-statistics 

5 attributes    

Pseudo-random 898.73%       
  [783.67%-1028.95%] 

355.25%        
[327.86%-384.74%] 

340.89%        
[318.07%-366.29%] 

MLHS 315.53%        
 [266.10%-370.33%] 

207.24%        
[187.36%-228.33%] 

197.44%        
[181.03%-215.00%] 

Halton 66.09%       
  [47.52%-86.99%] 

45.57%      
   [36.67%-55.21%] 

47.95%       
  [40.11%-56.36%] 

10 attributes    

Pseudo-random 219.87%        
 [144.18%-324.35%] 

79.81%        
 [62.61%-98.97%] 

96.94%      
   [80.92%-114.19%] 

MLHS 73.72%        
 [33.54%-127.22%] 

47.86%         
[33.56%-63.36%] 

54.33%     
    [41.88%-67.70%] 

Halton -0.56%        
 [-23.10%-29.79%] 

-2.77%        
 [-11.81%-7.14%] 

8.59%      
   [0.17%-17.82%] 

 3 

5.2. How many draws are “enough”? 4 

Let us start by stating the obvious: using more draws is always better than using fewer draws. Not 5 

only will the estimates become more precise (lower simulation error) but as Chiou and Walker 6 

(2007) note, using too few draws can mask identification problems. An illustration of this effect is 7 

provided in Figure 2 – increasing the number of draws used for simulation can result in a substantial 8 

change in the percentage of cases where parameter estimates are statistically significant (i.e., their 9 

z-statistics exceed 1.96). Interestingly, too few draws can lead to erroneously concluding that an 10 

insignificant parameter is significant (panel A) or that a significant parameter appears insignificant 11 

(panel B). In the presented cases, Sobol draws are always the first to pick this up.  12 

  13 
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Figure 2. Percentage of times z-statistics exceed 1.96, corresponding to the usual 5% 1 

threshold for classifying a parameter as statistically significant (Panel A: the parameter for 2 

standard deviation of a binary variable ( )2X , MNL-design with 5 attributes, 4 choice tasks 3 

per individual, 1,200 individuals – more draws avoids spurious significance; Panel B: the 4 

parameter for standard deviation of a binary variable ( )3X , MXL-design with 5 attributes, 5 

4 choice tasks per individual, 1,200 individuals – more draws avoids spurious 6 

insignificance) 7 

 8 

 9 

  10 
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The question of how many draws are “enough” depends on the required precision level. In the 1 

case of log-likelihood, we propose to use the measure based on the critical value of the likelihood 2 

ratio test that corresponds to comparing equivalent models estimated using a different set of draws. 3 

Even if the two models are the same, simulation error may make the values of the log-likelihood 4 

function at convergence differ.18 If the difference in log-likelihoods exceeds 1.9207, which is ½ of 5 

the critical value of the likelihood ratio test with 1 degree of freedom, one would conclude that one 6 

model is statistically better than the other.19 We therefore propose a measure of the number of 7 

draws required for a desired level of confidence (e.g., 95%) that such an erroneous conclusion is 8 

not reached for equivalent models (i.e., exactly the same models estimated with a different set of 9 

draws). This is exactly what the 0.05MTL  can be used for – because MTL  depends on the number of 10 

draws of each type, it is possible to find the number of draws that makes 1.9207MTL≤ . 11 

Table 5 presents the estimated minimum number of draws required for the desired precision level 12 

– limiting the probability of simulation-driven error in the likelihood ratio test to 5% and limiting 13 

the simulation-driven differences between parameter estimates to 5%.20 We focus on the analysis 14 

for Sobol draws because, as shown above, Sobol draws ensure the lowest simulation error of the 15 

QMC methods compared.21, 22 In line with the regression results presented in Table 3, we find that 16 

as the number of observations increases, so do the absolute levels of log-likelihood, and the 17 

minimum number of draws for a required precision level. Conversely, in the case of parameter 18 

estimates, the reverse relationship is observed – increasing the number of observations reduces the 19 

number of draws required for a given precision level.23 This is because with more observations 20 

(individuals and choice tasks per individual) parameter estimates generally become more precise 21 

                                                 

18 Such a situation could arise because of, for example, using a new seed for quasi-random draws, different primes for 
generating Halton draws, or simply changing the order of random variables (and hence their association with generated 
draws).  
19 Note that comparing the results of the same model estimated using a different set of draws cannot formally be done 
using the likelihood ratio test, as these models are not nested and do not differ with respect to the number of 
parameters. Nonetheless, we use the critical value of the test with 1 degree of freedom as a natural reference. In 
practice, the difference between models compared using the likelihood ratio test would arise due to both the simulation 
error and the imposed restrictions.  
20 There is no absolute reference level of differences that could be considered acceptable, as in the case of the critical 
value of the likelihood ratio test for log-likelihoods. Instead we use the 5% differences in parameter estimates. 

21 The results of regressions for 
0.05

MTL  limited to Sobol draws only are presented in Online Supplement D.  

22 In the case of ten attributes, Sobol and Halton tied for the lowest simulation error.  
23 Note that the minimum numbers of draws estimated here refer to all parameters in the model. In line with regression 
results presented in Table 3, precise estimates of the means require fewer draws than the estimates of standard 
deviations and estimates of discretely-valued variables require fewer draws than estimates of alternative specific 
constants. 
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(their variability decreases). As a result, although precise log-likelihood estimates require more 1 

draws for large datasets, precise parameter estimates require more draws when the dataset is small. 2 

Overall, for the experimental conditions used here, limiting the simulation-driven variation to the 3 

desired precision required up to 2,100 Sobol draws in the case of five attributes and up to 27,300 4 

draws in the case of ten attributes. This is clearly much more than commonly used in empirical 5 

studies.  6 

Finally, to verify the robustness of these results, we have repeated the analysis presented here, 7 

comparing the variation of log-likelihoods and parameter estimates associated with different 8 

numbers of Sobol draws to that resulting from using 100,000 Sobol draws. For example, instead of 9 

investigating how often the log-likelihoods of two models estimated using n draws can lead to 10 

erroneous conclusions in the likelihood ratio tests, we investigated how often log-likelihood of a 11 

model estimated using n draws can lead to erroneous conclusions in the likelihood ratio tests when 12 

compared with log-likelihood resulting from using 100,000 draws; this seemed like a number that 13 

greatly exceeds what is usually done in empirical studies. The results, presented in Online 14 

Supplement E, show that the minimum numbers of draws implied by the alternative approach are 15 

of similar magnitude to the ones presented here. 16 
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Table 5. Minimum number of Sobol draws required for desired level of log-likelihood and parameter estimates precision (95% confidence 

intervals in [] brackets)26, 27 

Choice tasks per individual 4 4 4 8 8 8 12 12 12 

Individuals 400 800 1,200 400 800 1,200 400 800 1,200 

5 attributes          
≤5% probability of simulation-driven 
error in the LR test for 5 attributes28 

148                
[125-174] 

230                
[199-265] 

357                
[307-415] 

363                
[316-414] 

563                
[504-629] 

874                
[774-989] 

889                
[775-1,018] 

1,380                
[1,226-1,554] 

2,142                
[1,878-2,454] 

≤5% probability that parameter 
estimates differ by ≥5% from true 
values for 5 attributes 29 

1,170                           
[1,061-1,288] 

862                           
[786-946] 

636                           
[575-702] 

1,051                           
[959-1,150] 

775                           
[710-844] 

571                           
[520-627] 

944                           
[856-1,039] 

696                           
[634-764] 

513                           
[464-566] 

Minimum recommended number 
of draws 

1,170                           
[1,061-1,288] 

862                           
[786-946] 

636                           
[575-702] 

1,051                           
[959-1,150] 

775                           
[710-844] 

874                
[774-989] 

889                
[775-1,018] 

1,380                
[1,226-1,554] 

2,142                
[1,878-2,454] 

10 attributes          
≤5% probability of simulation-driven 
error in the LR test for 10 attributes24 

263                
[193-346] 

563                
[439-708] 

1,209                
[945-1,528] 

1,246                
[1,003-1,529] 

2,675                
[2,257-3,160] 

5,742                
[4,698-7,101] 

5,918                
[4,667-7,509] 

12,702                
[10,191-16,052] 

27,264                
[20,889-36,562] 

≤5% probability that parameter 
estimates differ by ≥5% from true 
values for 10 attributes27  

25,294                           
[21,531-29,864] 

15,251                           
[13,131-17,736] 

9,196                           
[7,866-10,766] 

21,174                           
[18,232-24,777] 

12,767                           
[11,123-14,674] 

7,698                           
[6674-8913] 

17,725                           
[15,140-20,819] 

10,688                           
[9,249-12,388] 

6,444                           
[5,556-7,497] 

Minimum recommended number 
of draws 

25,294                           
[21,531-29,864] 

15,251                           
[13,131-17,736] 

9,196                           
[7,866-10,766] 

21,174                           
[18,232-24,777] 

12,767                           
[11,123-14,674] 

7,698                           
[6674-8913] 

17,725                           
[15,140-20,819] 

12,702                
[10,191-16,052] 

27,264                
[20,889-36,562] 

 

                                                 

26 Regression results presented in Online Supplement D.  
27 Online supplement F presents the results for other critical values of the log-likelihood test (corresponding to 0.01 and 0.1 significance levels), other acceptable differences in 
parameter estimates (1%, 10%), and other probability levels underlying the MTL (1%). 

28 At 0.05 significance level ( 0.05 1.9207LLMTL ≤ ).  

29 0.05 0.05MTLβ β≤ .  
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6. Summary and conclusions 1 

In this study, we investigate the issue of simulation error resulting from using the simulated 2 

maximum likelihood method to estimate discrete choice models. We show that the simulation bias 3 

is not negligible, and the number of draws used by many empirical applications is too low for 4 

reliable inference.  5 

We compare the performance of pseudo-random draws with three quasi Monte Carlo methods 6 

(Halton, Sobol and modified Latin hypercube sampling) under 27 experimental conditions that differ with 7 

respect to experimental design, number of individuals and number of choice tasks per individual. 8 

Based on a Monte Carlo simulation using 100 to 1,000,000 draws, we can compare the relative 9 

efficiency of different types of draws. We consistently find that a scrambled Sobol sequence 10 

performs the best in terms of the lowest simulation error, while being matched by scrambled 11 

Halton draws in the case of 10 attributes.  12 

We propose a measure of sufficient simulation precision based on the likelihood that the results of 13 

different simulations in the same conditions will be statistically different. Our results show that, at 14 

the 95% confidence level, assuring that the simulation-driven errors in the likelihood ratio test do 15 

not take place and that average deviations of parameter estimates do not exceed 5% of their true 16 

values requires using over 2,000 Sobol draws in the case of 5-attribute design and over 25,000 Sobol 17 

draws in the case of 10-attribute design.30 In some cases, one can get away with using fewer draws; 18 

however, we note that as the number of draws required for the precision of log-likelihoods and the 19 

number of draws needed for the precision of parameter estimates are negatively correlated, and 20 

researchers are likely interested in satisfying both criteria, the maximum of the numbers required 21 

for satisfying both criteria (log-likelihood and parameter estimates precision) may be appropriate. 22 

In our experiments, the minimum number of draws required for “reliable” estimates was larger 23 

than those used in most empirical studies. 24 

Despite the common expectation, using thousands or tens of thousands of draws is not necessarily 25 

prohibitively time consuming. Our results show that with efficient code implementation (Matlab, 26 

https://github.com/czaj/dce)31 and using a regular modern desktop computer (Intel E5-2687W 27 

@ 3.00 GHz, no GPU support, 128 GB RAM @ 2800 MHz) the computation time of one iteration 28 

(evaluation of the log-likelihood function and gradient) was 1 second for 10,000 draws, 10 seconds 29 

                                                 

30 This number refer to the most demanding conditions in our experimental design; Table 5 provides more detailed 
results. 
31 In our simulation, similar implementation in R was approximately 5-10 times slower, Python Biogeme – 
approximately 20 times slower, NLOGIT – 60 times slower and Stata – over 100 times slower (see Czajkowski, 
Buczyński and Budziński (2018) for details).  

https://github.com/czaj/dce
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for 100,000, and 100 seconds for 1,000,000 draws.32 Given the advances in computing power, using 1 

10,000 draws today takes less computer time then using 100 draws took back when Bhat (2001) 2 

and Train (2000) did their analyses.33 As a result, 10,000 draws is not as onerous as it might at first 3 

seem. Even the most complicated models can be estimated in a reasonable amount of time using 4 

many more draws than are commonly used. 5 

Regarding other limitations of our study, we note that the results presented here are specific to the 6 

experimental setting we used – 400 to 1,200 individuals, 4 to 12 choice tasks per individual, five or 7 

ten normally distributed parameters, MXL model without correlations, and other conditions in the 8 

specific setting of the simulation.34 We expect that datasets with more observations require using 9 

more draws than found here for the precision of log-likelihoods, while datasets with fewer 10 

observations require more draws for the precision of parameter estimates. The results are also 11 

limited to the specific setting of the MXL model, such as parameter values assumed in the data 12 

generating process. Larger standard deviations relative to the means (wider distributions) would 13 

likely require more draws. Similarly, we expect that estimating MXL models that account for 14 

correlations, are estimated in WTP-space (Train and Weeks, 2005), use non-normal distributions 15 

(Train and Sonnier, 2005), or use random parameters in the latent class model (Greene and 16 

Hensher, 2012) or the hybrid choice model (Ben-Akiva et al., 2002) setting are likely to require 17 

more draws. Note that by using the data generating process coefficients as starting values we also 18 

avoided problems of convergence to local maxima. In practice, when less optimal starting values 19 

are used, the expected variation in simulated log-likelihood values and parameter estimates can be 20 

expected to be even larger.35 Lastly, our comparison did not include a few other potentially well-21 

performing types of draws, such as lattice, Faure, Gaussian quadrature, Neiderreiter, and 22 

Neiderreiter-Xing nets. 23 

Finally, we note that in parallel to the simulated maximum likelihood, other estimation methods 24 

have been developed. Examples include using a Bayesian framework (Train and Sonnier, 2005), 25 

                                                 

32 The times are given for the dataset with 400 individuals, four choice tasks per individual, 5 attributes.  
33 Bhat (2001) reports that his model with 5 random parameters and 100 Halton draws converged in approximately 48 
minutes (Intel Pentium II @ 300 MHz). Hess, Polak and Daly (2003) use a model with 4 random variables and the 
same number of draws which makes one iteration in approximately 1 second (Intel Pentium III @ 2.0 GHz).  
34 In addition, our analysis differs from a standard Monte Carlo experiment, in which the dataset would be regenerated 
by taking new draws from the error term and the parameters in each estimation. Instead, we generated datasets for 
each setting once, and estimated the models many times using different sets of draws. This way we hold sampling error 
constant and focus on investigating simulation error. However, we acknowledge that this also makes our experiment 
specific to the particular draws of the error term and parameter vector used to generate the datasets.  
35 There is some evidence indicating that increasing the number of draws smoothens the simulated log-likelihood 
function and hence facilitates convergence (Tuhkanen et al., 2016). 
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expectation-maximization algorithm (Train, 2007), Laplace approximation (Harding and Hausman, 1 

2007), or maximum approximate composite marginal likelihood (Bhat and Sidharthan, 2011). A yet 2 

another strand of literature approaches the problem from a different perspective, by trying to utilize 3 

non-parametric or semi-parametric approaches (instead of MXL) to model preference 4 

distributions. Examples include linear regression approximation (Bajari, Fox and Ryan, 2007), 5 

approximation of a density function based on Legendre polynomials (Fosgerau and Bierlaire, 2007), 6 

using B-splines to approximate the CDF function of the true distribution (Bastin, Cirillo and Toint, 7 

2010), using polynomials of draws taken from some chosen distribution (i.e., normal or log-normal) 8 

for approximating the true distribution (Fosgerau and Mabit, 2013), and most recently, the logit-9 

mixed logit model (Train, 2016). Some of these methods may avoid the necessity to simulate 10 

multidimensional integrals and thus avoid simulation error, possibly trading it for other 11 

approximation biases.  12 

There are three main takeaway messages from our study. The first is that Sobol draws outperformed 13 

Halton, modified Latin hypercube sampling, and pseudo-random draws in our experimental settings. 14 

Secondly, using too few draws can lead to substantial bias in log-likelihood values, parameter 15 

estimates, and standard errors (p-values). Third, while the number of Sobol draws required for the 16 

desired precision depends on the number of observations in the case of experimental designs with 17 

5 attributes, using over 2,000 Sobol draws resulted in 95% confidence that log-likelihoods do not 18 

lead to simulation-driven erroneous inference and that parameter estimates are within 5% of their 19 

true values for all experimental settings considered. In the case of 10 attributes, over 20,000 Sobol 20 

draws were needed to meet these targets in all considered settings.   21 
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Online Supplement A  1 

This supplement presents the rationale and the description of algorithms used by the quasi Monte 2 

Carlo methods compared in our study. 3 

Halton sequence 4 

The QMC method that is currently the most commonly used for simulating the log-likelihood 5 

function of discrete choice models uses the Halton sequence (Halton, 1960). Following Kocis and 6 

Whiten (1997), the n -th element of the Halton sequence generated with a base jb 36 is given by the 7 

so called radical inverse function ( )
jb nΦ  defined as follows: 8 

 ( ) ( ) 1

0

,
j

i
b i j

i

n j n bα
∞

− −

=

Φ =∑ , (5) 9 

where ( ) ), 0,i jj n bα ∈  and it is an integer obtained from digit expansion of n  in base jb : 10 

 ( )
0

, i
i j

i

n j n bα
∞

=

=∑ . (6) 11 

The K -dimensional Halton sequence is given simply by K  one-dimensional Halton sequences 12 

generated with different bases (most often K  first prime numbers): 13 

 ( ) ( )( )
1

, ,
Kn b bx n n= Φ Φ . (7) 14 

The drawback of the Halton sequence is a high correlation between sequences generated using 15 

high prime numbers (see Online Supplement B for illustration). This translates into poor 16 

performance in evaluating higher dimensional integrals. The way to address this problem is to use 17 

so called scrambling; in other words, apply a generalized radical inverse function: 18 

 ( ) ( )( ) 1

0

,
j

i
b i j

i

n j n bσ α
∞

− −

=

Φ =∑ , (8) 19 

where ( )σ ⋅  is an operator of permutations on ( ),i j nα . Different choices for σ  are proposed in 20 

the literature (e.g., Braaten and Weller, 1979). We applied the reverse Radix algorithm (Kocis and 21 

Whiten, 1997).  22 

                                                 

36 Most often jb  is some prime number. 
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The idea of the reverse Radix algorithm is as follows: given the representation of ( ),i j nα  in base 1 

2, the fixed number of its digits are reversed (this means that the Halton sequence in base 2 and 2 

scrambled Halton sequence in base 2 are the same). Values that are too large are removed from the 3 

sequence.  4 

The last thing to describe is randomization of the sequence. Proposed scrambling is still purely 5 

deterministic, so to include some randomness and be able to analyze the variance of the sequence, 6 

we applied the so-called random shift. When estimating mixed logit, N K⋅  sequences of length R  have 7 

to be generated.37 Instead, we generate only K  sequences of the length N R⋅  and divide it into N  8 

parts. Properties of the Halton sequence assure that these sub-sequences still have a good coverage 9 

on a unit cube. We apply the following random shifting: 10 

 { },jnk jnk nkx uε= +  (9) 11 

where jnkε  is an original scrambled Halton draw ( { }1, ,j R∈  , { }1, ,n N∈  , { }1, ,k K∈  ), nku  is a 12 

standard uniform draw and { }  is a fractional part function. We also tried a different type of 13 

random shifting of the following form:  14 

 { }jnk jnk kx uε= + , (10) 15 

which differs, as now uniform draws are the same for different individuals (but different for 16 

different attributes). Our initial simulation revealed that the shifting in (9) performed better, so we 17 

decided to use this type only.  18 

Sobol Sequence 19 

The Sobol sequence (Sobol, 1967) is a so-called (t,s)-sequence. To explain the idea behind (t,s)-20 

sequences, we are going to first introduce (t,m,s)-nets. While the Halton sequence aims at obtaining 21 

a uniform coverage of [ ]0,1 , and a multidimensional sequence is created by taking many such 22 

sequences generated with different bases, the (t,s)-sequences use only one base number and the 23 

multidimensional sequence is obtained by applying different generating matrices to different 24 

dimensions. Following Lemieux (2009) and Bratley and Fox (1988), let ( ),i j nα  from equation (6) 25 

be transformed in the following way for the k -th dimension: 26 

                                                 

37 N  is the number of respondents, K  is the number of random parameters, R  is the desired number of draws.  
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 ( ) ( )( ) ( ) ( )( )0 1 0 1, , , , , , , ,
T Tk k

kj n j n C j n j nα α α α= ⋅ 
  , (11) 1 

where kC  is what we call a generation matrix.38 Then the n -th element in the k -th dimension of 2 

this sequence is given by: 3 

 ( ) 1
1,

0

, 1 ,k i
n k i j

i

x j n bα
∞

− −
−

=

= −∑   (12) 4 

which is almost identical to the inverse radical function in (5). As can be seen, the choice of these 5 

generation matrices plays a key role. We describe the process of generating them below.  6 

Formally defining the (t,m,s)-nets requires one more definition. We are going to say that the point 7 

set of length m
jb  is ( )1 , , sq q -equidistributed in base jb , if every cell of the form: 8 

 ( )
1

1
,

k k

s
k k
q q

k j j

r r
J

b b=

 +
=   
∏r  (13) 9 

contains m q
jb −  points of this point set, where 1 sq q q= + + , and kr  are any integers such that 10 

0 kq
k jr b≤ < . Then (t,m,s)-nets in base jb  can be defined as a sequence of length m

jb  which is 11 

( )1 , , sq q -equidistributed whenever q m t≤ −  (Lemieux, 2009).  12 

For an illustration, consider a (0,2,2)-net in base 2, which is a 4-point sequence in two dimensional 13 

space. The choice of ( )1 2,q q  can be only ( )0,0 , ( )1,0 , ( )0,1  and ( )1,1 . For the ( )0,0  case ( )J r14 

can be only a unit square, so the ( )0,0 -equidistribution condition says that all four points of this 15 

sequence are in this square (which is true for any sequence). In the ( )1,0  case, ( )J r  can be 16 

[ ) [ )0,1 2 0,1×  or [ ) [ )1 2,1 0,1× , so this condition says that in every such horizontal rectangle, two 17 

points of sequence are placed. The condition of ( )1,1 -equidistribution indicates that in every interval 18 

of the form ( ) ) ( ) )2, 1 2 2, 1 2i i j j + ×  +   where { }, 0,1i j∈ , one point of the sequence is placed.39 19 

As a result, this sequence has the best coverage one can expect from a 4-point long sequence. 20 

Having the definition of (t,m,s)-nets we can simply define a (t,s)-sequence as a sequence for which 21 

every subsequence ( )1
, ,h h

j jl b l b⋅ + ⋅
x x  is a (t,h,s)-net. In particular, this means that the first h

jb  points 22 

of the (t,s)-sequence are (t,h,s)-net.  23 

                                                 

38 kC  elements 
jb∈ ; matrix multiplication on the righthand side is also in 

jb  

39 These intervals are just squares emerged from partitioning of a unit square in four parts.  
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As in case of the Halton, scrambling techniques can improve performance of the Sobol sequence. 1 

For (t,s)-sequences, it is a more difficult task, however, because we would like the scrambled 2 

sequence to possess the properties of the original sequence.  3 

One way of scrambling Sobol sequences is to apply a random linear scramble combined with a 4 

random digital shift (Matoušek, 1998). Random digital shift is like the random shift described for 5 

the Halton sequence. For a draw from the Sobol sequence k
nx , which can be presented in the form 6 

of a binary digit expansion 
0

2k i
n ii

x b −
=

= ⋅∑ , and a draw from a standard uniform distribution 7 

0
2k k i

ii
u u −

=
= ⋅∑ , also presented in binary form, the new draw is created by setting: 8 

 ( )
0

2k k i
n i i

i

x b u −

=

= + ⋅∑ , (14) 9 

where addition is done in 2 . 10 

The random linear scramble is done by using generation matrices of form k kR C⋅  instead of simple 11 

kC , where kR  is a lower-triangular non-singular matrix and matrix multiplication is done in 2 . 12 

This is called a linear scramble, as the n -th draw after scrambling is a linear function of n  first 13 

draws in original sequence. Both linear scrambling and a random linear digit shift keep ( )1 , , sq q14 

-equidistribution property of a sequence and, what is more, the scrambling can lower the t-value of a 15 

(t,s)-sequence.40 16 

The last thing described here is the process of generating the matrices to create sequences with the 17 

required properties. Sobol (1967) proposed to create the matrices with 2jb = , which we applied in 18 

our study. To create the k -th generation matrix, we need to first define a primitive polynomial in 19 

2 of form: 20 

 ( ) 1
,1 ,

k k

k

d d
k k k dp z z a z a−= + + +  (15) 21 

Second, we need kd  (which is a degree of ( )kp z ) direction numbers: 22 

 ,
, 2

k r
k r r

m
v = , (16) 23 

where ,k rm  is an odd integer 1,2 1r ∈ −   and ,k rv  are written in binary digit expansion. The 24 

generation matrix kC  is created by setting its columns to these direction numbers presented in 25 

                                                 

40 Which implies a better coverage. 
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vector forms.41 To obtain direction numbers with indices greater than kd , the following recursive 1 

procedure can be applied: 2 

 ( ), ,1 , 1 , , , 2 k

k k k

d
k r k k r k d k r d k r dv a v a v v− − −= ⊕ ⊕ ⊕ , (17) 3 

where ⊕  is an exclusive or logical function and ,k ia  are taken from ( )kp z  polynomials.  4 

Consider an example from Lemieux (2009): in order to generate 3C  we set ( ) 2
3 1p z z z= + +  and 5 

choose 3,1v , 3,2v  to be 0.5 and 0.75, respectively, which is 0.1 and 0.11 in binary expansion. 6 

According to (17) we have: 7 

 ( ) ( ) ( ) ( )3,3 1,1,0 1,0,0 0,0,1 0,1,1T T T Tv = ⊕ ⊕ = . (18) 8 

This way we obtained the first three columns of 3C . To obtain further columns, (17) has to be 9 

applied again.  10 

Presentation of a Sobol sequence with generation matrices is relatively intuitive, and shows a 11 

connection between the Sobol and Halton methods. Nevertheless, it is easier to implement the 12 

following representation of ( )1n+ -th element of a Sobol sequence in the k -th dimension: 13 

 ( ) ( )1 ,1 2 ,21, 1,k
n k kx n v n vα α= ⋅ ⊕ ⋅ ⊕  (19) 14 

Where ( )1,i nα  are defined as in equation (6) with 2jb = . Antonov and Saleev (1979) showed that 15 

this formula can be rewritten using Gray Code binary representation of n  resulting in: 16 

 ( ) ( )1 ,1 2 ,2
k
n k kx g n v g n v= ⋅ ⊕ ⋅ ⊕ . (20) 17 

One property of Grey Code representation is that the representation for n  and 1n+  differs in only 18 

one position. Using this property, the formula in (19) can be written as 19 

 1 ,k k
n n cx x v−= ⊕  (21) 20 

where c  is an index of right-most zero bits in binary representation of n  (Bratley and Fox, 1988), 21 

e.g., in 0.1 2c = , in 0.01 1c = , and in 0.11 3c = . 22 

In our simulation, we used primitive polynomials and direction numbers implemented in Matlab 23 

sobolset class.  24 

                                                 

41 I.e., if , 0.11k rv =  then its vector form is (1,1,0, )T
 . 
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Modified Latin Hypercube Sampling 1 

Modified Latin hypercube sampling (MLHS) was proposed by Hess, Train and Polak (2006) as a 2 

variation of Latin hypercube sampling (see, e.g., Stein, 1987). Assume that { }jkP p=  is a R K×  matrix 3 

of which every column contains an independent, random permutation of sequence  4 

{ }1,2,...,R . Additionally let { }kξΞ =  be a 1 K×  vector of independent, random uniform draws on 5 

[ ]0,1  interval. Matrix { }jkX x=  of MLHS draws is created by setting: 6 

 ( )( )1 1 1jk jk kx F R p ξ− −= + − , (22) 7 

where ( )F ⋅  is a cdf of the distribution one wants to draw from.  8 

MLHS is not a low-discrepancy sequence designed as the Halton or Sobol sequence, because 9 

generation of a longer sequence requires creating a new one. Nevertheless, it has good coverage 10 

properties and, because of the random element kξ  and permutations, its variance can be readily 11 

analyzed the same way as in the pseudo-random case. In our setting, K  is equal to number of 12 

random parameters multiplied by the number of respondents, and R  is a desired number of draws.  13 

  14 
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Online Supplement B 1 

Figure B1 Scatter plot matrix of 100 draws for 8 pseudo-random sequences 2 

 3 

Figure B2 Scatter plot matrix of 100 draws for 8 MLHS sequences 4 

 5 
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Figure B3 Scatter plot matrix of 100 draws for 8 Halton sequences  1 

 2 

Figure B4 Scatter plot matrix of 100 draws for 8 scrambled Halton sequences  3 

 4 

  5 
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Figure B5 Scatter plot matrix of 100 draws for 8 Sobol sequences  1 

 2 

Figure B6 Scatter plot matrix of 100 draws for 8 scrambled Sobol sequences  3 

  4 
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Online Supplement C 1 

Table C1 presents the percentage of times42 each type of draw performed the best, in terms of the 2 

lowest 0.05MTL  for each number of draws.43 In the overwhelming majority of cases, Sobol draws 3 

were the best – they resulted in the lowest variation of the log-likelihood function value of the 4 

estimated models.  5 

Table C1. Percentage of times each type of draw resulted in the lowest simulation error  6 

( 0.05MTL ) for the log-likelihood function value 7 

Number of draws used Pseudo-random MLHS Halton Sobol 

100 0.00% 0.00% 19.44% 80.56% 

200 0.00% 0.00% 25.00% 75.00% 

500 0.00% 0.00% 22.22% 77.78% 

1,000 0.00% 0.00% 25.00% 75.00% 

2,000 0.00% 0.00% 0.00% 100.00% 

5,000 0.00% 0.00% 19.44% 80.56% 

10,000 0.00% 0.00% 16.67% 83.33% 

  8 

The conclusions are similar when comparing simulation bias associated with parameter estimates.44 9 

Table C2 presents the percentage of times45 each type of draw performed the best, in terms of the 10 

lowest 0.05MTL  for each number of draws.46 In the majority of cases, Sobol draws were the best – 11 

they resulted in the lowest variation of parameter estimates. The relative advantage of using Sobol 12 

draws is less evident than in the case of LL values but still evident, especially for higher numbers 13 

of draws.  14 

Table C2. Percentage of times each type of draw resulted in the lowest simulation error  15 

( 0.05MTL ) for the parameter estimates  16 

                                                 

42 Each cell of Table C1 corresponds to 36 dataset cases. 

43 Using 0.01MTL  does not qualitatively change these results.  

44 It is worth noting, that in this case the absolute levels of parameter-specific MTL  differed considerably. As expected, 
the lowest MTL  were observed for the means of the discrete-valued variable ( 5X  or 10X ) , while the highest were for 

the standard deviation of the alternative specific constant ( )1X . Nevertheless, Sobol draws consistently performed the 
best in all cases.  
45 Each cell of Table C2 corresponds to 450 dataset and parameter cases. 

46 Using 0.01MTL  does not qualitatively change these results.  
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Number of draws used Pseudo-random MLHS Halton Sobol 

100 2.67% 6.89% 36.22% 54.22% 

200 1.11% 2.00% 30.67% 66.22% 

500 0.89% 0.67% 37.56% 60.89% 

1,000 0.22% 0.89% 28.44% 70.44% 

2,000 0.00% 0.22% 19.33% 80.44% 

5,000 0.00% 0.00% 36.67% 63.33% 

10,000 0.44% 0.44% 32.22% 66.89% 

 1 

Finally, Table C3 summarizes the performance of the different types of draws for the z-statistics 2 

of the estimated parameters; in other words, not only taking parameter estimates into account but 3 

also the associated standard errors. Z-statistics of parameters are important, because they usually 4 

provide a basis for judging if a parameter is statistically significant or not. Once again, using Sobol 5 

draws results in the lowest simulation error.  6 

Table C3. Percentage of times each type of draw resulted in the lowest simulation error  7 

( 0.05MTL ) for the z-statistics of the parameters  8 

Number of draws used Pseudo-Random MLHS Halton Sobol 

100 2.22% 8.44% 37.56% 51.78% 

200 1.56% 4.44% 33.78% 60.22% 

500 1.56% 5.11% 32.89% 60.44% 

1,000 1.11% 2.44% 26.00% 70.44% 

2,000 1.11% 3.33% 23.78% 71.78% 

5,000 2.44% 3.33% 29.78% 64.44% 

10,000 0.00% 0.00% 29.11% 70.89% 

 9 

 10 

 11 

  12 
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Online Supplement D 1 

Table D1. Variation of the simulation results ( ( )0.05log MTL ) explained using characteristics 2 

of experimental settings – Sobol draws only 3 

 
 Log-likelihood Parameter 

estimates z-statistics 

Constant  3.6256***     
(0.1398) 

-0.1041       
(0.0688) 

1.3792***     
(0.0606) 

Number of attributes is 10  -1.4554***     
(0.1902) 

-0.6920***     
(0.0790) 

-0.8217***     
(0.0697) 

log(number of draws) (5 attributes) -0.8118***     
(0.0133) 

-0.7254***     
(0.0067) 

-0.7064***     
(0.0059) 

log(number of draws) (10 attributes) -0.4671***     
(0.0180) 

-0.4372***     
(0.0064) 

-0.4621***     
(0.0056) 

Number of choice tasks  0.1819***     
(0.0066) 

-0.0194***     
(0.0029) 

0.0670***     
(0.0026) 

Number of individuals  
(in thousands) 

 0.8919***     
(0.0659) 

-0.5530***     
(0.0291) 

0.2916***     
(0.0256) 

OOD-design  
(MXL-design used as a 
reference) 

 -0.1334**      
(0.0642) 

0.3693***     
(0.0322) 

0.3560***     
(0.0284) 

MNL-design  
(MXL-design used as a 
reference) 

 -0.1626**      
(0.0642) 

0.3614***     
(0.0322) 

0.4507***     
(0.0284) 

Standard deviations  
(Means used as a reference) 

  1.2608***     
(0.0190) 

1.3205***     
(0.0168) 

1X  (alternative specific 
constant) 

  0.5778***     
(0.0271) 

0.3240***     
(0.0239) 

5X icrete variable)   -0.7411***     
(0.0271) 

0.1509***     
(0.0239) 

R2  0.9543 0.8757 0.8922 

n (observations)  309 3990 3990 

  4 
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Online Supplement E 1 

In this supplement, we provide a robustness check, in which we use a different measure of a 2 

simulation error. We still use MTL, as described in Section 4, but instead of measuring the 3 

difference between two models estimated with the same number of draws, we compare the 4 

difference between a model estimated with a given number of draws, and a model estimated with 5 

100,000 draws. In this analysis, we use only a subsample of our experiment, as models with 100,000 6 

draws were estimated only for the MXL design and Sobol draws. Table E1 presents analogous 7 

results to Table 5.   8 
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Table E1. Minimum number of Sobol draws required for desired level of log-likelihood and parameter estimates precision (95% confidence 1 

intervals in [] brackets) 2 

Choice tasks per individual 4 4 4 8 8 8 12 12 12 

Individuals 400 800 1,200 400 800 1,200 400 800 1,200 

5 attributes          
≤5% probability of simulation-driven 
error in the LR test for 5 attributes47 

103                
[87-120] 

154                
[133-176] 

230                
[198-265] 

308                
[271-348] 

461                
[418-506] 

690                
[617-768] 

924                
[817-1,045] 

1,382                
[1,250-1,524] 

2,068                
[1,835-2,327] 

≤5% probability that parameter 
estimates differ by ≥5% from true 
values for 5 attributes 48 

663                           
[597-734] 

523                           
[474-576] 

413                           
[371-458] 

695                           
[631-765] 

549                           
[500-600] 

433                           
[392-477] 

729                           
[659-806] 

575                           
[521-634] 

454                           
[408-505] 

Minimum recommended number 
of draws 

663                           
[597-734] 

523                           
[474-576] 

413                           
[371-458] 

695                           
[631-765] 

549                           
[500-600] 

690                
[617-768] 

924                
[817-1,045] 

1,382                
[1,250-1,524] 

2,068                
[1,835-2,327] 

10 attributes          

≤5% probability of simulation-driven 
error in the LR test for 10 attributes24 

171                
[131-220] 

334                
[271-407] 

655                
[526-807] 

1,065                
[899-1,260] 

2,087                
[1,840-2,368] 

4,087                
[3,439-4,866] 

6,652                
[5,429-8,240] 

13,027                
[10,745-16,019] 

25,514                
[19,895-33,141] 

≤5% probability that parameter 
estimates differ by ≥5% from true 
values for 10 attributes27  

9,750                           
[8,299-11,458] 

6,710                           
[5,787-7,782] 

4,618                           
[3,948-5,405] 

10,508                           
[9,040-12,259] 

7,232                           
[6,292-8,324] 

4,978                           
[4,293-5,776] 

11,325                           
[9,653-13,372] 

7,795                           
[6,727-9,071] 

5,365                           
[4,584-6,287] 

Minimum recommended number 
of draws 

9,750                           
[8,299-11,458] 

6,710                           
[5,787-7,782] 

4,618                           
[3,948-5,405] 

10,508                           
[9,040-12,259] 

7,232                           
[6,292-8,324] 

4,978                           
[4,293-5,776] 

11,325                           
[9,653-13,372] 

13,027                
[10,745-16,019] 

25,514                
[19,895-33,141] 

 3 

                                                 

47 At 0.05 significance level ( 0.05 1.9207LLMTL ≤ ).  

48 0.05 0.05MTLβ β≤ .  
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Online Supplement F 1 

Table F1. Minimum number of Sobol draws required for desired level of log-likelihood and parameter estimates precision (95% confidence 2 

intervals in [] brackets) 3 

Choice tasks per individual 4 4 4 8 8 8 12 12 12 

Individuals 400 800 1,200 400 800 1,200 400 800 1,200 

5 attributes / MTL0.05          

≤5% probability of simulation-driven error in the 

LR test ( )0.05
3.3174LL

MTL ≤   

76                 
[63-90] 

117                
[100-137] 

182                
[155-213] 

185                
[159-214] 

287                
[254-325] 

446                
[391-509] 

454                
[392-523] 

704                
[621-798] 

1,093                
[954-1,254] 

≤5% probability of simulation-driven error in the 

LR test ( )0.05
1.9207LL

MTL ≤  

148                
[125-174] 

230                
[199-265] 

357                
[307-415] 

363                
[316-414] 

563                
[504-629] 

874                
[774-989] 

889                
[775-1,018] 

1,380                
[1,226-1,554] 

2,142                
[1,878-2,454] 

≤5% probability of simulation-driven error in the 

LR test ( )0.05
1.3528LL

MTL ≤  

228                
[194-266] 

354                
[308-406] 

549                
[475-636] 

559                
[491-632] 

867                
[782-963] 

1,346                
[1,196-1,517] 

1,370                
[1,199-1,562] 

2,126                
[1,894-2,392] 

3,299                
[2,900-3,778] 

≤5% probability that parameter estimates differ 

by ≥10% from true values ( )0.05
0.1MTL

β
β≤  

450                           
[406-498] 

332                           
[300-366] 

245                           
[220-272] 

404                           
[367-445] 

298                           
[271-327] 

220                           
[198-243] 

363                           
[327-401] 

268                           
[242-295] 

197                           
[177-219] 

≤5% probability that parameter estimates differ 

by ≥10% from true values ( )0.05
0.05MTL

β
β≤  

1,170                           
[1,061-1,288] 

862                           
[786-946] 

636                           
[575-702] 

1,051                           
[959-1,150] 

775                           
[710-844] 

571                           
[520-627] 

944                           
[856-1,039] 

696                           
[634-764] 

513                           
[464-566] 

≤5% probability that parameter estimates differ 

by ≥10% from true values ( )0.05
0.01MTL

β
β≤   

10,759                           
[9,781-11,842] 

7,931                           
[7,254-8,676] 

5,847                           
[5,322-6,425] 

9,666                           
[8,830-10,575] 

7,125                           
[6,562-7,750] 

5,253                           
[4,810-5,737] 

8,684                           
[7,888-9,552] 

6,401                           
[5,855-6,996] 

4,719                           
[4,295-5,181] 

5 attributes / MTL0.01          

≤1% probability of simulation-driven error in the 

LR test ( )0.01
3.3174LL

MTL ≤   

104                
[88-123] 

162                
[140-188] 

252                
[217-293] 

255                
[222-292] 

397                
[355-444] 

618                
[547-699] 

625                
[545-715] 

973                
[864-1,095] 

1,512                
[1,328-1,726] 

≤1% probability of simulation-driven error in the 

LR test ( )0.01
1.9207LL

MTL ≤  

205                
[175-238] 

319                
[278-364] 

495                
[430-572] 

501                
[442-566] 

780                
[705-864] 

1,213                
[1,081-1,362] 

1,228                
[1,078-1,395] 

1,909                
[1,707-2,140] 

2,969                
[2,621-3,386] 

≤1% probability of simulation-driven error in the 

LR test ( )0.01
1.3528LL

MTL ≤  

316                
[272-365] 

491                
[432-557] 

764                
[667-876] 

773                
[685-868] 

1,202                
[1,092-1,325] 

1,870                
[1,670-2,095] 

1,892                
[1,667-2,146] 

2,943                
[2,635-3,297] 

4,577                
[4,038-5,218] 

≤1% probability that parameter estimates differ 

by ≥10% from true values ( )0.01
0.1MTL

β
β≤  

659                           
[597-726] 

486                           
[442-534] 

359                           
[324-397] 

592                           
[539-649] 

437                           
[399-477] 

322                           
[292-355] 

532                           
[481-586] 

393                           
[357-432] 

290                           
[261-320] 

≤1% probability that parameter estimates differ 

by ≥10% from true values ( )0.01
0.05MTL

β
β≤  

1,712                           
[1,556-1,879] 

1,263                           
[1,154-1,382] 

932                           
[846-1,027] 

1,538                           
[1,406-1,680] 

1,135                           
[1,041-1,234] 

838                           
[764-916] 

1,382                           
[1,255-1,518] 

1,020                           
[932-1,116] 

753                           
[683-828] 

≤1% probability that parameter estimates differ 

by ≥10% from true values ( )0.01
0.01MTL

β
β≤   

15,720                           
[14,287-
17,307] 

11,601                           
[10,608-
12,695] 

8,562                           
[7,797-9,404] 

14,128                           
[12,900-
15,463] 

10,426                           
[9,592-11,344] 

7,695                           
[7,045-8,407] 

12,697                           
[11,526-
13,969] 

9,370                           
[8,565-10,245] 

6,915                           
[6,297-7,593] 
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 1 

Choice tasks per individual 4 4 4 8 8 8 12 12 12 

Individuals 400 800 1,200 400 800 1,200 400 800 1,200 

10 attributes / MTL0.05 
         

≤5% probability of simulation-driven error in 

the LR test ( )0.05
3.3174LL

MTL ≤   

81                 
[56-113] 

175                
[128-230] 

375                
[280-491] 

387                
[297-491] 

830                
[678-1,001] 

1782                
[1445-2186] 

1,837                
[1,449-2,306] 

3,942                
[3,231-4,837] 

8,462                
[6,704-10,833] 

≤5% probability of simulation-driven error in 

the LR test ( )0.05
1.9207LL

MTL ≤  

263                
[193-346] 

563                
[439-708] 

1,209                
[945-1,528] 

1,246                
[1,003-1,529] 

2,675                
[2,257-3,160] 

5,742                
[4,698-7,101] 

5,918                
[4,667-7,509] 

12,702                
[10,191-
16,052] 

27,264                
[20,889-
36,562] 

≤5% probability of simulation-driven error in 

the LR test ( )0.05
1.3528LL

MTL ≤  

556                
[423-714] 

1,193                
[956-1,465] 

2,562                
[2,028-3,224] 

2,640                
[2,154-3,224] 

5,667                
[4,781-6,768] 

12,163                
[9,821-15,399] 

12,535                
[9,785-16,231] 

26,905                
[21,007-
35,200] 

57,748                
[42,904-
80,801] 

≤5% probability that parameter estimates differ 

by ≥10% from true values ( )0.05
0.1MTL

β
β≤  

5,182                           
[4,454-6,038] 

3,124                           
[2,711-3,601] 

1,884                           
[1,617-2,194] 

4,338                           
[3,768-5,011] 

2,616                           
[2,292-2,986] 

1,577                           
[1,368-1,821] 

3,631                           
[3,125-4,228] 

2,190                           
[1,902-2,525] 

1,320                           
[1,135-1,535] 

≤5% probability that parameter estimates differ 

by ≥10% from true values ( )0.05
0.05MTL

β
β≤  

25,294                           
[21,531-
29,864] 

15,251                           
[13,131-
17,736] 

9,196                           
[7,866-10,766] 

2,1174                           
[18,232-
24,777] 

12,767                           
[11,123-
14,674] 

7,698                           
[6,674-8,913] 

17,725                           
[15,140-
20,819] 

10,688                           
[9,249-12,388] 

6,444                           
[5,556-7,497] 

≤5% probability that parameter estimates differ 

by ≥10% from true values ( )0.05
0.01MTL

β
β≤   

1,003,977                           
[806,569-
1,262,736] 

605,365                           
[494,545-
747,850] 

365,015                           
[298,783-
449,838] 

840,449                           
[683,177-
1,045,805] 

506,763                           
[418,157-
620,541] 

305,561                           
[252,422-
372,977] 

703,556                           
[570,100-
877,886] 

424,221                           
[348,425-
519,026] 

255,791                           
[211,056-
312,096] 

10 attributes / MTL0.01          

≤1% probability of simulation-driven error in 

the LR test ( )0.01
3.3174LL

MTL ≤   

152                
[111-201] 

317                
[245-400] 

664                
[518-837] 

678                
[543-831] 

1,417                
[1,197-1,662] 

2,965                
[2,457-3,580] 

3,026                
[2,431-3,741] 

6,329                
[5,240-7,703] 

13,240                
[10,548-
16,893] 

≤1% probability of simulation-driven error in 

the LR test ( )0.01
1.9207LL

MTL ≤  

469                
[361-596] 

980                
[792-1,193] 

2,050                
[1,646-2,540] 

2,092                
[1,729-2,519] 

4,377                
[3,741-5,134] 

9,155                
[7,551-11,287] 

9,342                
[7,465-11,763] 

19,543                
[15,714-
24,669] 

40,880                
[31,401-
54,691] 

≤1% probability of simulation-driven error in 

the LR test ( )0.01
1.3528LL

MTL ≤  

966                
[763-1,205] 

2,020                
[1,665-2,432] 

4,226                
[3,418-5,252] 

4,312                
[3,567-5,208] 

9,020                
[7,637-10,785] 

18,869                
[15,247-
23,884] 

19,254                
[15,090-
24,854] 

40,277                
[31,421-
52,774] 

84,254                
[62,809-
117,281] 

≤1% probability that parameter estimates differ 

by ≥10% from true values ( )0.01
0.1MTL

β
β≤  

9,062                           
[7,818-10,552] 

5,549                           
[4,838-6,373] 

3,398                           
[2,934-3,935] 

7,627                           
[6,649-8,794] 

4,671                           
[4,115-5,312] 

2,860                           
[2,496-3,280] 

6,419                           
[5,553-7,448] 

3,931                           
[3,437-4,513] 

2,407                           
[2,088-2,779] 

≤1% probability that parameter estimates differ 

by ≥10% from true values ( )0.01
0.05MTL

β
β≤  

42,339                           
[36,058-
50,011] 

25,927                           
[22,323-
30,142] 

15,877                           
[13,630-
18,535] 

35,635                           
[30,668-
41,668] 

21,822                           
[19,003-
25,116] 

13,363                           
[11,596-
15,426] 

29,992                           
[25,628-
35,232] 

18,366                           
[15,898-
21,275] 

11,247                           
[9,711-13,045] 

≤1% probability that parameter estimates differ 

by ≥10% from true values ( )0.01
0.01MTL

β
β≤   

1,518,200                           
[1,220,658-
1,908,915] 

929,692                           
[757,707-
1,149,623] 

569,311                           
[465,252-
703,039] 

1,277,794                           
[1,037,273-
1,589,909] 

782,476                           
[644,666-
959,871] 

479,161                           
[394,743-
585,573] 

1,075,456                           
[871,228-
1,343,284] 

658,571                           
[540,144-
806,879] 

403,286                           
[331,926-
492,888] 

 2 
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