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Online Supplement A  1 

This supplement presents the rationale and the description of algorithms used by the quasi Monte 2 

Carlo methods compared in our study. 3 

Halton sequence 4 

The QMC method that is currently the most commonly used for simulating the log-likelihood 5 

function of discrete choice models uses the Halton sequence (Halton, 1960). Following Kocis and 6 

Whiten (1997), the n -th element of the Halton sequence generated with a base jb 36 is given by the 7 

so called radical inverse function ( )
jb nΦ  defined as follows: 8 
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where ( ) ), 0,i jj n bα ∈  and it is an integer obtained from digit expansion of n  in base jb : 10 
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The K -dimensional Halton sequence is given simply by K  one-dimensional Halton sequences 12 

generated with different bases (most often K  first prime numbers): 13 
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The drawback of the Halton sequence is a high correlation between sequences generated using 15 

high prime numbers (see Online Supplement B for illustration). This translates into poor 16 

performance in evaluating higher dimensional integrals. The way to address this problem is to use 17 

so called scrambling; in other words, apply a generalized radical inverse function: 18 
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where ( )σ ⋅  is an operator of permutations on ( ),i j nα . Different choices for σ  are proposed in 20 

the literature (e.g., Braaten and Weller, 1979). We applied the reverse Radix algorithm (Kocis and 21 

Whiten, 1997).  22 

                                                 

36 Most often jb  is some prime number. 
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The idea of the reverse Radix algorithm is as follows: given the representation of ( ),i j nα  in base 1 

2, the fixed number of its digits are reversed (this means that the Halton sequence in base 2 and 2 

scrambled Halton sequence in base 2 are the same). Values that are too large are removed from the 3 

sequence.  4 

The last thing to describe is randomization of the sequence. Proposed scrambling is still purely 5 

deterministic, so to include some randomness and be able to analyze the variance of the sequence, 6 

we applied the so-called random shift. When estimating mixed logit, N K⋅  sequences of length R  have 7 

to be generated.37 Instead, we generate only K  sequences of the length N R⋅  and divide it into N  8 

parts. Properties of the Halton sequence assure that these sub-sequences still have a good coverage 9 

on a unit cube. We apply the following random shifting: 10 

 { },jnk jnk nkx uε= +  (9) 11 

where jnkε  is an original scrambled Halton draw ( { }1, ,j R∈  , { }1, ,n N∈  , { }1, ,k K∈  ), nku  is a 12 

standard uniform draw and { }  is a fractional part function. We also tried a different type of 13 

random shifting of the following form:  14 

 { }jnk jnk kx uε= + , (10) 15 

which differs, as now uniform draws are the same for different individuals (but different for 16 

different attributes). Our initial simulation revealed that the shifting in (9) performed better, so we 17 

decided to use this type only.  18 

Sobol Sequence 19 

The Sobol sequence (Sobol, 1967) is a so-called (t,s)-sequence. To explain the idea behind (t,s)-20 

sequences, we are going to first introduce (t,m,s)-nets. While the Halton sequence aims at obtaining 21 

a uniform coverage of [ ]0,1 , and a multidimensional sequence is created by taking many such 22 

sequences generated with different bases, the (t,s)-sequences use only one base number and the 23 

multidimensional sequence is obtained by applying different generating matrices to different 24 

dimensions. Following Lemieux (2009) and Bratley and Fox (1988), let ( ),i j nα  from equation (6) 25 

be transformed in the following way for the k -th dimension: 26 

                                                 

37 N  is the number of respondents, K  is the number of random parameters, R  is the desired number of draws.  
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where kC  is what we call a generation matrix.38 Then the n -th element in the k -th dimension of 2 

this sequence is given by: 3 
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which is almost identical to the inverse radical function in (5). As can be seen, the choice of these 5 

generation matrices plays a key role. We describe the process of generating them below.  6 

Formally defining the (t,m,s)-nets requires one more definition. We are going to say that the point 7 

set of length m
jb  is ( )1 , , sq q -equidistributed in base jb , if every cell of the form: 8 
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contains m q
jb −  points of this point set, where 1 sq q q= + + , and kr  are any integers such that 10 

0 kq
k jr b≤ < . Then (t,m,s)-nets in base jb  can be defined as a sequence of length m

jb  which is 11 

( )1 , , sq q -equidistributed whenever q m t≤ −  (Lemieux, 2009).  12 

For an illustration, consider a (0,2,2)-net in base 2, which is a 4-point sequence in two dimensional 13 

space. The choice of ( )1 2,q q  can be only ( )0,0 , ( )1,0 , ( )0,1  and ( )1,1 . For the ( )0,0  case ( )J r14 

can be only a unit square, so the ( )0,0 -equidistribution condition says that all four points of this 15 

sequence are in this square (which is true for any sequence). In the ( )1,0  case, ( )J r  can be 16 

[ ) [ )0,1 2 0,1×  or [ ) [ )1 2,1 0,1× , so this condition says that in every such horizontal rectangle, two 17 

points of sequence are placed. The condition of ( )1,1 -equidistribution indicates that in every interval 18 

of the form ( ) ) ( ) )2, 1 2 2, 1 2i i j j + ×  +   where { }, 0,1i j∈ , one point of the sequence is placed.39 19 

As a result, this sequence has the best coverage one can expect from a 4-point long sequence. 20 

Having the definition of (t,m,s)-nets we can simply define a (t,s)-sequence as a sequence for which 21 

every subsequence ( )1
, ,h h

j jl b l b⋅ + ⋅
x x  is a (t,h,s)-net. In particular, this means that the first h

jb  points 22 

of the (t,s)-sequence are (t,h,s)-net.  23 

                                                 

38 kC  elements 
jb∈ ; matrix multiplication on the righthand side is also in 

jb  

39 These intervals are just squares emerged from partitioning of a unit square in four parts.  
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As in case of the Halton, scrambling techniques can improve performance of the Sobol sequence. 1 

For (t,s)-sequences, it is a more difficult task, however, because we would like the scrambled 2 

sequence to possess the properties of the original sequence.  3 

One way of scrambling Sobol sequences is to apply a random linear scramble combined with a 4 

random digital shift (Matoušek, 1998). Random digital shift is like the random shift described for 5 

the Halton sequence. For a draw from the Sobol sequence k
nx , which can be presented in the form 6 

of a binary digit expansion 
0

2k i
n ii

x b −
=

= ⋅∑ , and a draw from a standard uniform distribution 7 

0
2k k i

ii
u u −

=
= ⋅∑ , also presented in binary form, the new draw is created by setting: 8 
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where addition is done in 2 . 10 

The random linear scramble is done by using generation matrices of form k kR C⋅  instead of simple 11 

kC , where kR  is a lower-triangular non-singular matrix and matrix multiplication is done in 2 . 12 

This is called a linear scramble, as the n -th draw after scrambling is a linear function of n  first 13 

draws in original sequence. Both linear scrambling and a random linear digit shift keep ( )1 , , sq q14 

-equidistribution property of a sequence and, what is more, the scrambling can lower the t-value of a 15 

(t,s)-sequence.40 16 

The last thing described here is the process of generating the matrices to create sequences with the 17 

required properties. Sobol (1967) proposed to create the matrices with 2jb = , which we applied in 18 

our study. To create the k -th generation matrix, we need to first define a primitive polynomial in 19 

2 of form: 20 
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Second, we need kd  (which is a degree of ( )kp z ) direction numbers: 22 
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where ,k rm  is an odd integer 1,2 1r ∈ −   and ,k rv  are written in binary digit expansion. The 24 

generation matrix kC  is created by setting its columns to these direction numbers presented in 25 

                                                 

40 Which implies a better coverage. 
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vector forms.41 To obtain direction numbers with indices greater than kd , the following recursive 1 

procedure can be applied: 2 

 ( ), ,1 , 1 , , , 2 k

k k k

d
k r k k r k d k r d k r dv a v a v v− − −= ⊕ ⊕ ⊕ , (17) 3 

where ⊕  is an exclusive or logical function and ,k ia  are taken from ( )kp z  polynomials.  4 

Consider an example from Lemieux (2009): in order to generate 3C  we set ( ) 2
3 1p z z z= + +  and 5 

choose 3,1v , 3,2v  to be 0.5 and 0.75, respectively, which is 0.1 and 0.11 in binary expansion. 6 

According to (17) we have: 7 

 ( ) ( ) ( ) ( )3,3 1,1,0 1,0,0 0,0,1 0,1,1T T T Tv = ⊕ ⊕ = . (18) 8 

This way we obtained the first three columns of 3C . To obtain further columns, (17) has to be 9 

applied again.  10 

Presentation of a Sobol sequence with generation matrices is relatively intuitive, and shows a 11 

connection between the Sobol and Halton methods. Nevertheless, it is easier to implement the 12 

following representation of ( )1n+ -th element of a Sobol sequence in the k -th dimension: 13 

 ( ) ( )1 ,1 2 ,21, 1,k
n k kx n v n vα α= ⋅ ⊕ ⋅ ⊕  (19) 14 

Where ( )1,i nα  are defined as in equation (6) with 2jb = . Antonov and Saleev (1979) showed that 15 

this formula can be rewritten using Gray Code binary representation of n  resulting in: 16 

 ( ) ( )1 ,1 2 ,2
k
n k kx g n v g n v= ⋅ ⊕ ⋅ ⊕ . (20) 17 

One property of Grey Code representation is that the representation for n  and 1n+  differs in only 18 

one position. Using this property, the formula in (19) can be written as 19 

 1 ,k k
n n cx x v−= ⊕  (21) 20 

where c  is an index of right-most zero bits in binary representation of n  (Bratley and Fox, 1988), 21 

e.g., in 0.1 2c = , in 0.01 1c = , and in 0.11 3c = . 22 

In our simulation, we used primitive polynomials and direction numbers implemented in Matlab 23 

sobolset class.  24 

                                                 

41 I.e., if , 0.11k rv =  then its vector form is (1,1,0, )T
 . 
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Modified Latin Hypercube Sampling 1 

Modified Latin hypercube sampling (MLHS) was proposed by Hess, Train and Polak (2006) as a 2 

variation of Latin hypercube sampling (see, e.g., Stein, 1987). Assume that { }jkP p=  is a R K×  matrix 3 

of which every column contains an independent, random permutation of sequence  4 

{ }1,2,...,R . Additionally let { }kξΞ =  be a 1 K×  vector of independent, random uniform draws on 5 

[ ]0,1  interval. Matrix { }jkX x=  of MLHS draws is created by setting: 6 

 ( )( )1 1 1jk jk kx F R p ξ− −= + − , (22) 7 

where ( )F ⋅  is a cdf of the distribution one wants to draw from.  8 

MLHS is not a low-discrepancy sequence designed as the Halton or Sobol sequence, because 9 

generation of a longer sequence requires creating a new one. Nevertheless, it has good coverage 10 

properties and, because of the random element kξ  and permutations, its variance can be readily 11 

analyzed the same way as in the pseudo-random case. In our setting, K  is equal to number of 12 

random parameters multiplied by the number of respondents, and R  is a desired number of draws.  13 

  14 


