Simulation error in maximum likelihood estimation of discrete choice models

Mikotaj Czajkowski', Wiktor Budzifiski®

Abstract

Maximum simulated likelihood is the preferred estimator of most researchers who deal with
discrete choice. It allows estimation of models such as mixed multinomial logit (MXL), generalized
multinomial logit, or hybrid choice models, which have now become the state-of-practice in the
microeconometric analysis of discrete choice data. All these models require simulation-based
solving of multidimensional integrals, which can lead to several numerical problems. In this study,
we focus on one of these problems — utilizing from 100 to 1,000,000 draws, we investigate the
extent of the simulation bias resulting from using several different types of draws: (1) pseudo
random numbers, (2) modified Latin hypercube sampling, (3) randomized scrambled Halton
sequence, and (4) randomized scrambled Sobol sequence. Each estimation is repeated up to 1,000
times. The simulations use several artificial datasets based on an MXL data generating process with
different numbers of individuals (400, 800, 1200), different numbers of choice tasks per respondent
(4, 8, 12), different number of attributes (5, 10), and different experimental designs (D-optimal, D-
efficient for the MNL and D-efficient for the MXL model). Our large-scale simulation study allows
for comparisons and drawing conclusions with respect to (1) how efficient different types of quasi
Monte Catlo simulation methods are and (2) how many draws one should use to make sure the
results are of “satisfying” quality — under different experimental conditions. Our study is the first
to date to offer such a comprehensive comparison. Overall, we find that the number of the best-
performing Sobo/ draws required for the desired precision exceeds 2,000 in some of the 5-attribute

settings, and 20,000 in the case of some 10-attribute settings considered.
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Highlights

- Simulation error for the maximum simulated likelihood estimation of discrete choice
models is investigated

- We use from 100 to 1,000,000 draws for 400, 800, and 1200 individuals, 4, 8 and 12 choice
tasks per individual, 5 or 10 attributes, and 3 different experimental designs

- Pseudo random numbers, modified Latin hypercube sampling, randomized scrambled
Halton sequence, and randomized scrambled Sobol sequence are compared. Each
estimation is repeated up to 1,000 times.

- We find that Sobol draws perform the best in these simulations.

- We find that in the case of 5-attribute designs over 2,000 Sobo/ draws were needed, while
in the case of 10 attributes over 20,000 draws were needed to attain desired levels of

precision.
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1. Introduction
Discrete choice models are widely used in many applications, with modelling of consumers’

preferences probably being the most prominent (Ben-Akiva and Lerman, 1985; Train, 2009). Mixed

logit (Revelt and Train, 1998) is the model of choice for most of these applications, and arguably

also the state-of-the-art, considering its ability to approximate any random utility based choice

model to any degree of accuracy (MclFadden and Train, 2000).

Most applications estimate the model using the simulated maximum likelihood method, as it is
relatively straightforward and readily implemented in most statistical software packages. Simulating
the value of the log-likelihood function is necessarily associated with the simulation error that
depends on the number and type of draws used. By using a different set of draws or even changing
the order of explanatory variables, a researcher will arrive at somewhat different estimation results,
in terms of the value of the log-likelihood function, parameter estimates, and their estimated

standard errors (and hence the associated z-statistics).

Several studies have demonstrated the advantages of using quasi Monte Carlo (QMC) methods in
terms of reducing simulation-driven variation of the results (e.g., using Halton rather than pseudo-

random draws), and this has led to their wide proliferation. Unfortunately, examples of 100 Halton

draws leading to smaller bias than 1,000 pseudo-random draws (c.g., Bhat, 2001) have led some to
actually use very few draws for simulations, when in fact not much is known about the extent of
the possible bias resulting from using different numbers of different types of draws in various

conditions (datasets). Our study aims at filling this gap.

In what follows, we present the results of a systematic comparison of pseudo-random, modified
Latin hypercube sampling, Halton, and Sobol draws under a wide set of experimental conditions
in terms of experimental designs, the number of individuals (400-1,200), the number of choice
tasks per individual (4-12), and the number of attributes (5, 10). Based on a Monte Carlo simulation,
we demonstrate the extent of the simulation error resulting from using 100 up to 1,000,000 draws.'
This allows us to offer recommendations in terms of the QMC method: which performs best and

its relative efficiency.

Using more draws is always better than using fewer — not only will the estimates become more

precise (lower simulation error) but this can also lead to uncovering identification problems.

U'Throughout the paper, the number of draws refers to the number of draws per individual and per random parameter.
In total, each model utilizes [number of individuals - number of draws| x [number of random variables) draws.
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However, we propose guidelines regarding how many draws are “enough” for a required precision
level. Our measure is based on limiting the probability of making an error (to, e.g., 5%) when

comparing otherwise identical models that can differ in simulated values only.

Opverall, we find that the scrambled Sobol sequence performs the best in these simulations. As
expected, scrambled Halton draws and modified Latin hypercube sampling also perform
substantially better than pseudo-random draws. Importantly, our results indicate that, for common
setups, thousands or, in some cases, tens of thousands of draws are required to attain desired levels
of precision. While this result suggests more draws than have been common in previous
applications, advances in computer speed now permit far more draws with the same runtimes as

previously.

The rest of the paper is structured as follows. Section 2 provides an overview of earlier studies
devoted to measuring simulation error and comparing the performance of various QMC methods.
Section 3 presents the set-up of our Monte Carlo study. Section 4 introduces the methodology of
comparisons and describes the framework used for recommending a “sufficient” number of draws.
Results are presented in section 5 — we first compare the performance of various QMC simulation
methods and then address the question of how many draws are “enough.” The last section offers

discussion and conclusions.

2. Earlier studies
Quasi Monte Carlo (QMC) methods gained considerable attention as a way of reducing
computation burden or simulation error. Several alternatives to the pseudo-random Monte Carlo
method (i.e., drawing pseudo-random numbers and using them for simulations) were proposed,
including using modified Latin hypercube sampling, Halton and Sobol sequences. The rationale
and the description of the algorithms used for generating each of these types of “draws™” are
presented in Online Supplement A; in what follows we focus on critically reviewing existing studies
which aimed at comparing the performance of these methods in simulated maximum likelihood

estimation of discrete choice models.

The most popular QMC method used in this context is the Halton sequence, introduced by Bhat

(2001) and followed by Train (2000). Both of these papers provided an early indication that Halton

2 Technically, they ate not draws, because the generated numbers follow a pre-defined sequence. We choose to call
them draws, however, because in estimation they are used as if they were draws from the target distribution.
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draws greatly outperform pseudo-random methods, illustrating this with examples of 100 Halton
draws leading to smaller bias and standard deviation of parameter estimates than 1,000 pseudo-

random draws, or in some cases even 2,000 pseudo-random draws (Bhat, 2001). Although most of

the later comparisons showed that the differences in performance between pseudo-random and
QMC methods are not as substantial, Halton sequences were consistently found to outperform

pseudo-random draws, and became a new standard for most modelers.

One problem with using the Halton sequence is that, by definition, it is purely deterministic, and
therefore it is not possible to evaluate the error by applying variance analysis, as in classical Monte
Carlo simulations.” Another problem is its poor performance in higher dimensions, because the
sequences generated using high prime numbers as bases tend to be highly correlated (see Online
Supplement B for illustration). To address these problems, researchers suggested using scrambling

or shuffling the sequence or proposed other QMC methods.

Bhat (2003) compared the performance of pseudo-random draws with a randomized Halton
sequence and randomized scrambled Halton sequence using a mixed probit setting with 10 random
parameters. He reports that scrambling improved performance — 150 scrambled Halton draws

performed better than 1,000 pseudo-random draws. In a similar study Hess, Polak and Daly (2003)

and Hess, Polak and Daly (2003) compared pseudo-random draws with scrambled Halton and

shuffled Halton sequences, and found that shuffling is a valid alternative for scrambling in the case
of breaking the correlation for high dimensional problems. The authors conclude that the
differences in performance between pseudo-random and QMC methods are not as large as

indicated in the initial studies. Wang and Kockelman (2008) also compared scrambled and shuffled

Halton sequences, concluding that although scrambling seems to perform better, the difference is

relatively small.

Other QMC methods that were proposed typically used the Halton and pseudo-random draws as

a benchmark. Sandor and Train (2004) used four types of randomized (t,m,s)-nets; two of them

outperformed the randomized Halton.* Garrido (2003) showed that using Sobol sequences

generally results in better performance than Halton and PMC, especially in higher (10+)

3 Train (2000) tried to work around this problem by estimating every model 5 times, each time generating Halton
sequences using different combinations of prime numbers. This approach still does not guarantee valid estimates of
variance, however.

* As noted by our reviewer, there are types of (t,m,s)-nets that have even better "coverage" (defined by number theory)
than Sobol draws and can be expected to perform better. Specifically, Neiderreiter nets in base 2 have better coverage
that Sobol draws, and Neiderreiter-Xing nets in base 2 have better coverage than Neiderreiter nets in base 2 (Sandor
and Train, 2004). For a software implementation of Neiderreiter-Xing nets in base 2 see Pirsic (2002).

3




O© o J N AW N e

—_
[ =)

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

dimensional problems, where it leads to 58% lower standard deviations of parameter estimates in

comparison with using 150 draws. Sivakumar, Bhat and Okten (2005) use mixed logit setting with

5 or 10 random variables to compare Latin hypercube sampling with Halton and Faure sequences
(with and without scrambling). Their results, based on 20 repetitions and the comparisons of the
simulation error resulting from using 25, 100, 125 and 625 draws with the results obtained using

20,000 draws, indicate that scrambled Faure sequence performs best. Hess, Train and Polak (20006)

proposed modified Latin hypercube sampling and showed that they can perform better than

Halton and pseudo-random draws. Munger et al. (2012) compared pseudo-random, randomized

Halton, Sobol, and lattice rules and analyzed variance and bias of the simulated likelihood in the
case of the mixed logit model. They found that randomized lattice rules and randomized Sobol

nets outperformed pseudo-random and Halton draws. Sidharthan and Srinivasan (2010) proposed

using generalized antithetic draws with double base shuffling to a Halton sequence and showed

that this can improve the model’s abilities to recover true parameters.™

Although it seems like a lot has been done, existing studies can hardly be considered a systematic
comparison that would allow for drawing conclusions with respect to which approach is best or

how many draws are “enough.” This is because many of these comparisons use a relatively low

number of QMC draws (e.g., Train (2000), Bhat (2001), Bhat (2003), Hess, Polak and Daly (2003)

and Sandor and Train (2004) do not use more than 200 QMC draws in their comparisons). In

addition, most earlier studies use deterministic QMC sequences or a very low number of repetitions

for each type and number of draws (e.g., Bhat (2003), Sindor and Train (2004), Garrido (2003) or

Hess, Train and Polak (2006) used no more than 10 repetitions). This makes it hard to judge if the

conclusions are sound, or the result is only obtained for a particular set of draws and data. Finally,

the results likely depend on the number of observations. As noted by Sindor and Train (2004):
“large sampling variance means that the log-likelibood function is fairly flat near the maxinum; and when the
likelibood function is fairly flat near its maximum, ervors induced by simulation can move the maxinum
considerably.” As a result, smaller datasets with fewer observations per individual (larger standard
errors of parameter estimates) are likely to result in different performance of QMC vs. pseudo-

random draws.

5 In another context, Bliemer, Rose and Hess (2008) compared the performance of pseudo-random, Halton, Sobol,
and Gaussian quadrature methods in simulating experimental design efficiency when using normally distributed priors
(simulating Bayesian D-efficiency of experimental designs).

¢ A somewhat similar stream of literature deals with the question of how many bootstrap draws should be used (e.g.,
Davidson and MacKinnon, 2000).
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Last, even if using x QMC draws indeed performs just as good as 1,000 pseudo-random draws, it

is not clear if 1,000 is sufficient for a desirably small simulation error. Chiou and Walker (2007)

show that using too few draws can lead to spurious convergence of models that are theoretically
or empirically unidentified. In the examples provided, even 1,000 Halton draws (which seems to

be the state-of-practice in most applied studies) was not sufficient to uncover the problems. Similar

conclusions are drawn by Andersen (2014) who shows that even using over 1,000 antithetic Halton
draws can lead to differences in log likelihood which can interfere with the likelihood ratio based

inference.

3. Design of our simulation study
We designed and executed a simulation study that is free of the shortcomings of earlier analyses of

the performance of QMC methods in maximum likelithood estimation of discrete choice models.

We compared four types of draws: pseudo-random, modified Latin hypercube sampling (MLHY),
randomized scrambled Halton sequence (Ha/ton), and randomized scrambled Sobol sequence

(Sobod).”

The comparison was made using datasets created using a mixed logit 8 data generatin
p g g g g g
process. We assumed the following utility function specification: individual i’s utility from

choosing an alternative j in choice task k is:

Up = erka + Ejes
where X, is a vector of alternative-specific attributes, B, is a vector of individual-specific random

parameters, assumed to follow independent normal distributions and ¢;, is the extreme value type

I distributed random term (McFadden, 1974).

The datasets were designed to mimic typical discrete choice modelling problems, such as

encountered in stated or revealed preference studies (e.g., Carson and Czajkowski, 2014; Hanley

and Czajkowski, 2017). Each choice task consisted of three alternatives, characterized using either

five or ten attributes: one alternative specific constant, one discrete variable valued one to four,

and three or eight dummy variables. This setting can be thought of as representing a choice between

7 In what follows, we use italicized names of the types of draws to refer to the specific settings described here (e.g.,
randomized scrambled Halton or Sobol sequences).

8 Random parameters (conditional) multinomial logit model (Revelt and Train, 1998; Greene, 2011).

5



1 a status quo (or opt-out) alternative (associated with the alternative specific constant and serving
as a 0-valued reference for all other attribute levels) and two “improvement” alternatives (e.g., new
policies to be implemented), characterized by a discrete variable (e.g., representing the costs

associated with the alternatives) and three or eight dummy variables (e.g., changes in various

1S4 B N S S I NS

characteristics of a good in relation to the status quo).

The estimated models have five or ten uncorrelated random parameters.” We assumed mean values
of these parameters are 1.0 for the dummy variables and -1.0 for the alternative specific constant

and the “cost.” Standard deviations of random parameters for all these attributes were assumed to

O oo 3 &

equal 0.5. Table 1 summarizes the choice task setting and the explanatory variables.

10 Table 1. Summary of the choice task setting and explanatory variables

. Assumed Possible values of the explanatory variables
Explanatory variables -

. : parameter Alternative 1 . .
(choice attributes) distribution (status quo / opt-out) Alternative 2 Alternative 3
X, (alternative specific constant) N(—1.0,0.5) X, =1 X, =0 X, =0
X, (discrete) N(-1.0,0.5) X, =0 X,e€{1,2,3,4} X, €{1,2,3,4}
X5 1 (dummy) N(1.0,0.5) X510 =0 X; . €{0,1} X5 1 €{0,1}

11

12 The datasets used for comparisons varied with respect to the number of choice tasks per individual
13 (4, 8, or 12), and with respect to the number of simulated individuals (400, 800, or 1,200). The
14 choice tasks (combinations of attribute levels) were generated following three common methods
15  encountered in the literature. They either used the so-called orthogonal optimal in the difference

16 fractional factorial design (OOD-design; Street, Burgess and Louviere, 2005; Street and Burgess,

17 2007), or the so-called efficient fractional factorial design (Scarpa and Rose, 2008), optimized for
18  the MNL model (MNIL.-design) or for the MXIL model (MXL-design).""'""* Overall, the

9 As an aside, we find no support for the requirement of having at least one parameter non-random for identification
of the MXL model (cf. Chiou and Walker, 2007).

19 The designs were generated in NGENE (ChoiceMetrics, Pty Ltd). Efficient designs were optimized for D-error
(minimized the determinant of an asymptotic variance-covariance matrix, using the true parameter values as fixed
priors).

1 Even though our data generating process is MXL, MNL-designs are much more common in the literature, possibly
because there is some evidence (Bliemer and Rose, 2010) indicating that the loss of efficiency from using them for a
different model is relatively low. Czajkowski and Budzinski (2016) show that this is not necessarily the case, particularly
for NGENE generated designs using blocking.

12 For the case of ten attributes we analyze the MXI.-design only.

6
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comparison was done using 3-3-3=27 datasets in the case of five attributes, and 3-3=9 datasets

in the case of ten attributes..

For each dataset, we estimated panel-data versions of MXL models using 100, 200, 500, 1,000,
2,000, 5,000 and 10,000 pseudo-random, MI.HS, Halton and Sobo/ draws. Additionally, for MXIL-
design and Sobo/ draws we estimated the models using 20,000, 50,000, 100,000 draws, and, in the
case of MXIL-design with five attributes, we additionally estimated the models using 200,000,
500,000 and 1,000,000 Sobo/ draws. The models for each setting were estimated 1,000 times (or 100
times in the case of additional MXL and Sobo/ specifications), each time using a new set of draws ",
enabling us to conduct variance analysis of the log-likelthood at convergence, estimated
coefficients, standard errors, and z-statistics. Each model used data generating process parameter
values as the starting point, to facilitate convergence and avoid local maxima problems."* Table 2

summarizes the design of our simulation study.

Table 2. Summary of the design of the simulation study

Draws Datasets
R i Number Number
epetitions T fd Number of f of choice Number of Experimental
ypes of draws draws % tasks per individuals designs
AEbutes 4 dividual
100
200
500
1,000
psendo-random 2,000 .
MLELS 5,000 5 4 400 OOD—des.lgn
1,000 Hallon 10,000 10%* 8 800 MNL-design
Sobol 20,000% 12 1,200 MXT.-design
50,000%*
100,000%
200,000%
500,000*
1,000,000%*

*Selected settings only.
*F MXI-design only.

13 Pseudo-random draws were generated using different random generator seeds; MILHS, Halton and Sobo/ draws differed
in each repetition because of the random shift. Overall, this allows us to perform a proper analysis of variance
associated with using a different number and type of draws (simulation error).

4 The software codes for estimating the MXL model were developed in Matlab and ate available at
http://github.com/czaj/DCE under Creative Commons BY 4.0 license. The code and data for estimating the models
presented in this paper are available from http://czaj.org/research/supplementary-materials.



http://github.com/czaj/DCE
http://czaj.org/research/supplementary-materials

B SN N\

U

10

11
12
13
14

15

16

17
18
19

20

21

22

23
24
25
26

4. Methodology of the comparisons
To compare the estimates resulting from using different QMC methods, we will need a method
that not only looks at their expected values, but also penalizes them for high variance. Consider
the case where one tests if two random variables @, and @, have equal means (e.g., using the
standard t-test). The larger the variance associated with @, or @,, the more difficult it is to reject
the equality hypothesis. As a result, inferior simulation methods (resulting in lots of variation) could

not be rejected in favor of better ones.

To address this problem we base our comparisons on equivalence tests (Hauck and Anderson,

1984; Kristofersson and Navrud, 2005). Equivalence tests reverse the null hypothesis and the

alternative hypothesis — instead of testing if @, is equal to ®,, we test if the absolute difference

between them is higher than an a priori defined “acceptable” level. Czajkowski and S¢asny (2010)

and Czajkowski et al. (2017) operationalize equivalence tests by proposing to search for a Minimum

Tolerance level (MTL), i.e., the minimum “acceptable” difference that allows the conclusion that

two values are equivalent at the required level of statistical significance.

Formally, for two random variables @, , @, MTL is defined as the minimum >0 that satisfies:
P(|a)1—a)2|>49)=a, (1)

where «a is the required significance level (e.g., 0.05). In our case, the probability can be evaluated

using two one-sided convolutions tests (TOSC; Poe, Giraud and LLoomis, 2005)", while MTL can

} ; @

where @, and @, are realizations of random variables, N, and N, are numbers of these

be found as

Ny

! i21{|wlyi—w2l/|>9}—a

N1N2 i=1 j=1

MTL, =argmin{

0e[0,+)

realizations and 1{} is an indicator function equal to 1 if the condition in brackets is fulfilled.'

Re-estimating the model using a different set of random draws (e.g., a different seed for pseudo-
random draws) is likely to result in a somewhat different value of the log-likelihood function. If
one were to use these two values of the log-likelihood function for inference (e.g., conduct a

likelihood-ratio test to compare two model specifications), it is important to note that they are

15 Our @ are not necessarily normally distributed. If they were, one could use two one-sided t-tests (TOST).

16 A collection of Matlab functions useful for calculating MTL. is available from https://github.com/czaj/BTtools.

8
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known with uncertainty (simulation error). As a result, it is possible to conclude that, for example,
one model specification is superior to another only because one was more “lucky” with the draws.
By using the MTL approach, with @, and @, representing the random (known with uncertainty)
values of the log-likelihood function for a given type and number of draws, we can say what the
probability of such an outcome is. Assuming the usual significance level (a=0.05), the

interpretation of the MTL, is that, with 95% probability, using a different sets of draws (of the
same number and type) would not cause the difference to be more than MTL .. Conversely, one

can provide recommendations regarding the minimum number of draws (of a particular type) that
results in the MTL being lower than the required level (e.g., a critical value of the LR-test), so that
the probability of erroneously concluding that one model is preferred to another (because of
simulation error) is lower than a desired significance level, e.g., 0.05. In a similar way, variation of

the estimates of coefficients, standard errors, and z-statistics can be compared.

5. Results
We now turn to presenting the results of the simulations. We first investigate the question of which
type of draw performs best (and what is the relative performance of different QMC methods), and
then attempt to provide recommendations with respect to how many draws are “enough” for a

required precision level.

5.1.  What type of draw performs best?

All the simulation methods considered result in unbiased estimates, and using more draws reduces
simulation error. However, it is possible to compare the variation of the results of different
simulation methods for the same number of draws, and this way conclude that using some of them

results in more precise estimates than others.

Consider the variation of the values of the log-likelihood function at convergence (LL) first. It is
an important measure, because LL is often used for comparing different model specifications by
applying the likelihood ratio test, and hence high variation in LL values between models could lead

to erroneous conclusions.

We calculated the MTL,,, for the models estimated using a different number and type of draws.
The general pattern was very evident and consistent. Irrespective of the experimental design, the
number of choice tasks per individual and the number of individuals, using Sobo/ draws resulted in

the lowest MTL (simulation error). Figure 1 provides an illustration for the case of an MXI-design
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with 5 attributes, four choice tasks per individual and 400 individuals. As expected, increasing the
number of draws results in decreasing MTL but Sobo/ draws always perform best, followed by

Halton, MILHS and pseudo-random.

Figure 1. MTL,,, for the values of the log-likelihood function simulated using a different

number of draws of each type (MXL-design with 5 attributes, 4 choice tasks per individual,

400 individuals)

——Pseudo-random
——MLHS

Haltan
— Sobol

MTLD 05 for the values of the log-likelihood function
(lower is better)

Number of draws (logarithmic scale)

The pattern illustrated in Figure 1 is not unique to this dataset. To show this, Online Supplement
C presents the detailed results — the percentage of cases where each type of draw performed the

best, in terms of the lowest MTL ., for each number of draws. In the overwhelming majority of

cases, Sobo/ draws were the best — they resulted in the lowest variation of the log-likelihood function

value, parameter estimates, and z-statistics of estimated models.

Overall, we find that using Sobo/ draws results in the lowest simulation error of all the simulation
methods compared in the majority of the considered cases, irrespective of whether one compares
the variation in the value of log-likelihood function at convergence, parameter estimates, or their
z-statistics. Although Halfon draws are a close second, using them nonetheless results in a higher
simulation error; apparently using draws designed for the best coverage in a multi-variate case
(Sobol) outperforms draws designed for best coverage on a line only (Ha/ton), despite state-of-the-
art shuffling techniques.
10
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To compare the relative performance of Sobo/ with other types of draws, we estimated regressions
explaining logarithms of MTL for log-likelihood function values, parameter estimates, and z-
statistics using various characteristics of experimental settings, such as the type of draws and

logarithm of the number of draws. The results are provided in Table 3.

Table 3. Variation of the simulation results (log(MTL,, )) explained using characteristics of

experimental settings

Dependent variables MTL for MTL for MTL for

. . arameter . .
log-likelihood p z-statistics

Explanatory variables estimates
Constant 2.7026*** -0.9256%** 0.6553***
0.0773) (0.0373) (0.0317)
Numberofabes s 10 ool oamwe omie
Psendo-random draws (5 attributes) 1.4568*+* 0.8770%** 0.8360***
(Sobol used as a reference) (0.0362) (0.0177) (0.0150)
MILHS draws (5 attributes) 0.9017*** 0.6495%+* 0.6142%+*
(Sobol used as a reference) (0.0379) (0.0185) (0.0157)
Halton draws (5 attributes) 0.3212%%* 0.2173%F* 0.2207*%*
(Sobol used as a reference) (0.0379) (0.0185) (0.0157)
Psendo-random draws (10 attributes) 0.5613%+* 0.2573%** 0.3061*+*
(Sobol used as a reference) (0.0639) (0.0221) (0.0188)
MI_HS draws (10 attributes) 0.2666*** 0.1715%** 0.1960%**
(Sobol used as a reference) (0.0639) (0.0221) (0.0188)
Halton draws (10 attributes) -0.0027 -0.0123 0.0372%*
(Sobol used as a reference) (0.0639) (0.0221) (0.0188)
ook sokok ook
log(number of draws) (5 attributes) (20683(7) 4 (2058(8)2 6 (205(6)32 0
log(number of draws) (10 attributes) gég?g:;(* _(E(jggij;* _(26‘8(1);:;{*
. 0.1356%** -0.0502%** 0.0332%**
Number of choice tasks 0.0035) 0.0015) 0.0013)
Number of individuals 0.8306%** -0.5914%** 0.2653***
(in thousands) (0.0350) (0.0153) (0.0130)
OOD-design -0.1273%%* 0.3125%+* 0.2446%**
(MXI-design used as a reference) (0.03206) (0.0159) (0.01306)
MNL-design -0.1501%** 0.3224%+* 0.3556%**
(MXTL-design used as a reference) (0.0326) (0.0159) (0.01306)
Standard deviations 1.3094** 1.3688***
(Means used as a reference) (0.0100) (0.0085)
X, (alternative specific constant) 0.6016% 0.2992%
! (0.0141) (0.0120)
sokok sokok
X, (discrete variable) (207341‘21) 0(8%51620)
R2 0.9291 0.8471 0.8669
1095 13740 13740

n (observations)
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We found that the log-log relationship between MTL and the number of draws was close to linear
and resulted in the best fit of the model (with the R* of approximately 0.9). The results show that,
as expected, increasing the number of draws significantly reduces the simulation error for all

analyzed measures (log-likelithood, parameter estimates, z-statistics).

Using Halton, MILHS, or pseudo-random draws results in increasingly higher variation in the results
than using Sobo/ draws, as indicated by significantly positive and increasing coefficients associated
with these types of draws, respectively. This is in line with the result presented above (see Figure 1
and Online Supplement C). In the case of ten attributes, the differences between types of draws
are smaller and the difference between Halfon and Sobol draws is no longer statistically significant.'”
The effect of increasing the number of draws is also weaker in the case of ten attributes. This means
that more draws are needed to decrease the simulation error by the same percentage as in the five

attributes case.

Next, we find that increasing the number of observations, in terms of the number of choice tasks
per individual and the number of individuals, leads to increasing variation of the log-likelihood
function, ceteris paribus. Again, this is in line with the requirement of the number of draws
increasing faster than the square root of the number of observations for the maximum simulated
likelihood estimator to be consistent, efficient, and asymptotically equivalent to maximum

likelihood (Train, 2009). On the other hand, increasing the number of observations reduces the

variation of parameter estimates — with more observations parameter estimates are more stable,
irrespective of the number of draws used. The variation of parameter estimates is the lowest for

discrete variable (X,), for which a few levels are observed, followed by dummy coded variables
(X, =X, or X, =Xy, ), and the highest for alternative specific constant (X, ). Similarly, we find that

the means of the random parameters are typically more precisely estimated than their standard
deviations, which require using more draws for the same precision level. Finally, we observed that
using the MXI.-designs optimized for D-efficiency (i.e., minimizing the determinant of the
asymptotic variance-covariance matrix) results in more precise estimates of parameter estimates
and z-statistics, but not necessarily log-likelihood values, for which simulation error is lower if

MNL-design or OOD-design is used.

17 This was contrary to expectations, as Sobol draws are designed to deliver better coverage in the multi-dimension
case while Halton draws are not. However, we note that both Halton and Sobol draws were scrambled, which improves
their performance in the case of more dimensions.
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Using the regression results allows us to estimate the relative increase in number of draws required
to compensate for using pseudo-random, MILHS or Halfon draws instead of Sobo/ draws. As a result
of using the log-log relationship, this relative increase does not depend on the number of draws or
other characteristics of the experimental setting. Specifically, we are looking for the number of
draws, D', which renders the MTL that is equal to that resulting from a model estimated with D

Sobol draws. This can be done by solving the following equation:
exp(a/]+ﬂjlog(D*)+V)=exp(ﬂj|og(D)+V), 3)

where «; is a coefficient associated with /-th type of draw (see Table 3) and ; attributes ( je {5,10})

,and V collects all other effects from the regression. By substituting D" =(1+4)D we can solve (3)

for A:

lzexp(—ﬁ]—l. 4)
B,

The results are presented in Table 4, separately for five and ten attributes. The interpretation is
straightforward — for example, achieving the same precision level of the log-likelihood function
value, in the case of five attributes, as when using 1,000 Sobo/ draws requires using approximately
1,661 Halton draws, 4,155 MILHS draws or 9,987 pseudo-random draws. In the case of ten attributes,
the percentage differences are lower. However, as we are about to show in the next section, this
case requires using a larger number of draws for the desired precision, so the lower relative
differences translate to large additional numbers of draws required when using pseudo-random or

MILHS draws (the difference between Sobol and Halton draws is no longer statistically significant).

13
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Table 4. The relative increase in the number of draws required to achieve the same

simulation etror as when using Sobol draws (95% confidence intervals in [] brackets)

Log-likelihood Parameter estimates z-statistics
5 attributes
Prondorand 898.73% 355.25% 340.89%
senaorandon [783.67%-1028.95%]  [327.86%-384.74%)]  [318.07%-366.29%]
MLELS 315.53% 207.24% 197.44%
[266.10%-370.33%]  [187.36%-228.33%]  [181.03%-215.00%]
o 66.09% 45.57% 47.95%
aon [47.52%-86.99%] [36.67%-55.21%] [40.11%-56.36%]
10 attributes
Pondorand 219.87% 79.81% 96.94%
cdo-randon [144.18%-324.35%] [62.61%-98.97%] [80.92%-114.19%]
MLEHS 73.72% 47.86% 54.33%
: [33.54%-127.22%] [33.56%-63.36%] [41.88%-67.70%]
o -0.56% 2.77% 8.59%
aion [-23.10%-29.79%] [-11.81%-7.14%) [0.17%-17.82%)]

5.2. How many draws are “enough”?

Let us start by stating the obvious: using more draws is always better than using fewer draws. Not

only will the estimates become more precise (lower simulation error) but as Chiou and Walker

(2007) note, using too few draws can mask identification problems. An illustration of this effect is
provided in Figure 2 —increasing the number of draws used for simulation can result in a substantial
change in the percentage of cases where parameter estimates are statistically significant (i.e., their
z-statistics exceed 1.96). Interestingly, too few draws can lead to erroneously concluding that an
insignificant parameter is significant (panel A) or that a significant parameter appears insignificant

(panel B). In the presented cases, Sobo/ draws are always the first to pick this up.

14
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Figure 2. Percentage of times z-statistics exceed 1.96, corresponding to the usual 5%

threshold for classifying a parameter as statistically significant (Panel A: the parameter for
standard deviation of a binary variable (X, ), MNL-design with 5 attributes, 4 choice tasks
per individual, 1,200 individuals — more draws avoids spurious significance; Panel B: the
parameter for standard deviation of a binary variable (X 3) » MXL-design with 5 attributes,

4 choice tasks per individual, 1,200 individuals — more draws avoids spurious

insignificance)
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The question of how many draws are “enough” depends on the required precision level. In the
case of log-likelihood, we propose to use the measure based on the critical value of the likelihood
ratio test that corresponds to comparing equivalent models estimated using a different set of draws.
Even if the two models are the same, simulation error may make the values of the log-likelihood
function at convergence differ." If the difference in log-likelihoods exceeds 1.9207, which is %2 of
the critical value of the likelihood ratio test with 1 degree of freedom, one would conclude that one
model is statistically better than the other.” We therefore propose a measure of the number of
draws required for a desired level of confidence (e.g., 95%) that such an erroneous conclusion is
not reached for equivalent models (i.e., exactly the same models estimated with a different set of

draws). This is exactly what the MTL, , can be used for — because MTL depends on the number of

draws of each type, it is possible to find the number of draws that makes MTL<1.9207.

Table 5 presents the estimated minimum number of draws required for the desired precision level
— limiting the probability of simulation-driven error in the likelihood ratio test to 5% and limiting
the simulation-driven differences between parameter estimates to 5%.* We focus on the analysis
for Sobo/ draws because, as shown above, Sobo/ draws ensure the lowest simulation etror of the
QMC methods compared.?* In line with the regression results presented in Table 3, we find that
as the number of observations increases, so do the absolute levels of log-likelihood, and the
minimum number of draws for a required precision level. Conversely, in the case of parameter
estimates, the reverse relationship is observed — increasing the number of observations reduces the

1.23

number of draws required for a given precision level.” This is because with more observations

(individuals and choice tasks per individual) parameter estimates generally become more precise

18 Such a situation could arise because of, for example, using a new seed for guasi-random draws, different primes for
generating Halton draws, or simply changing the order of random variables (and hence their association with generated
draws).

19 Note that comparing the results of the same model estimated using a different set of draws cannot formally be done
using the likelihood ratio test, as these models are not nested and do not differ with respect to the number of
parameters. Nonetheless, we use the critical value of the test with 1 degree of freedom as a natural reference. In
practice, the difference between models compared using the likelihood ratio test would arise due to both the simulation
error and the imposed restrictions.

20 There is no absolute reference level of differences that could be considered acceptable, as in the case of the critical
value of the likelihood ratio test for log-likelihoods. Instead we use the 5% differences in parameter estimates.

21 The results of regressions for MTL _ limited to Sobo/ draws only are presented in Online Supplement D.

22 In the case of ten attributes, Sobo/ and Halton tied for the lowest simulation errot.

2 Note that the minimum numbers of draws estimated here refer to all parameters in the model. In line with regression
results presented in Table 3, precise estimates of the means require fewer draws than the estimates of standard
deviations and estimates of discretely-valued variables require fewer draws than estimates of alternative specific
constants.
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(their variability decreases). As a result, although precise log-likelihood estimates require more
draws for large datasets, precise parameter estimates require more draws when the dataset is small.
Opverall, for the experimental conditions used here, limiting the simulation-driven variation to the
desired precision required up to 2,100 Sobo/ draws in the case of five attributes and up to 27,300
draws in the case of ten attributes. This is clearly much more than commonly used in empirical

studies.

Finally, to verify the robustness of these results, we have repeated the analysis presented here,
comparing the variation of log-likelihoods and parameter estimates associated with different
numbers of Sobo/ draws to that resulting from using 100,000 Sobo/ draws. For example, instead of
investigating how often the log-likelihoods of two models estimated using 7 draws can lead to
erroneous conclusions in the likelihood ratio tests, we investigated how often log-likelihood of a
model estimated using 7 draws can lead to erroneous conclusions in the likelihood ratio tests when
compared with log-likelihood resulting from using 100,000 draws; this seemed like a number that
greatly exceeds what is usually done in empirical studies. The results, presented in Online
Supplement E, show that the minimum numbers of draws implied by the alternative approach are

of similar magnitude to the ones presented here.

17



Table 5. Minimum number of Sobol draws required for desired level of log-likelihood and parameter estimates precision (95% confidence

intervals in [] brackets)

26, 27

Choice tasks per individual 4 4 4 8 8 8 12 12 12
Individuals 400 800 1,200 400 800 1,200 400 800 1,200
5 attributes
<5% probability of simulation-driven 148 230 357 363 563 874 889 1,380 2,142
error in the LR test for 5 attributes?s [125-174] [199-265] [307-415] [316-414] [504-629] [774-989] [775-1,018] [1,226-1,554]  [1,878-2,454]
<50 ili
;Sir/; atelz“g??fzh?;y t>h;‘(f/0 gz*;szrfé 1,170 862 636 1,051 775 571 944 696 513
e e Y [1,061-1,288] [786-946] [575-702] [959-1,150] [710-844] [520-627] 856-1,039] [634-764] [464-566]
Minimum recommended number 1,170 862 636 1,051 775 874 889 1,380 2,142
of draws [1,061-1,288] [786-946] [575-702] [959-1,150] [710-844] [774-989] [775-1,018] [1,226-1,554]  [1,878-2,454]
10 attributes
<5% probability of simulation-driven 263 563 1,20 1,246 2,675 5,742 5,018 12,702 27,264
error in the LR test for 10 attributes?* [193-346] [439-708] [945-1,528] [1,003-1,529]  [2,257-3,160]  [4,698-7,101]  [4,667-7,509]  [10,191-16,052] [20,889-36,562]
<50 ili
e—iir/; atelzr‘;??fih‘ir t>h;f/ paramer 2504 15,251 9,196 21,174 12,767 7,698 17,725 10,688 6,444
Doy =70 [21,531-20,864] [13,131-17,736]  [7,866-10,766]  [18,232-24,777] [11,123-14,674]  [6674-8913]  [15140-20,819]  [9,249-12,388]  [5,556-7,497]
values for 10 attributes?’
Minimum recommended number 25,294 15,251 9,196 21,174 12,767 7,698 17,725 12,702 27,264

of draws

[21,531-29,864]

[13,131-17,736]

[7,866-10,766]

[18,232-24,777]

[11,123-14,674]

[6674-8913]

[15,140-20,819]

[10,191-16,052]

[20,889-36,562]

26 Regression results presented in Online Supplement D.

27 Online supplement F presents the results for other critical values of the log-likelihood test (corresponding to 0.01 and 0.1 significance levels), other acceptable differences in
parameter estimates (1%, 10%), and other probability levels underlying the MTL (1%)).

. n
28 At 0.05 significance level (MTL, o <1.9207).

2 MTL . <0.05|A].
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6. Summary and conclusions
In this study, we investigate the issue of simulation error resulting from using the simulated
maximum likelihood method to estimate discrete choice models. We show that the simulation bias
is not negligible, and the number of draws used by many empirical applications is too low for

reliable inference.

We compare the performance of pseudo-random draws with three quasi Monte Carlo methods
(Halton, Sobol and modified Latin hypercube sampling) under 27 experimental conditions that differ with
respect to experimental design, number of individuals and number of choice tasks per individual.
Based on a Monte Carlo simulation using 100 to 1,000,000 draws, we can compare the relative
efficiency of different types of draws. We consistently find that a scrambled Sobo/ sequence
performs the best in terms of the lowest simulation error, while being matched by scrambled

Halton draws in the case of 10 attributes.

We propose a measure of sufficient simulation precision based on the likelihood that the results of
different simulations in the same conditions will be statistically different. Our results show that, at
the 95% confidence level, assuring that the simulation-driven errors in the likelihood ratio test do
not take place and that average deviations of parameter estimates do not exceed 5% of their true
values requires using over 2,000 Sobo/ draws in the case of 5-attribute design and over 25,000 Sobo/
draws in the case of 10-attribute design.” In some cases, one can get away with using fewer draws;
however, we note that as the number of draws required for the precision of log-likelihoods and the
number of draws needed for the precision of parameter estimates are negatively correlated, and
researchers are likely interested in satisfying both criteria, the maximum of the numbers required
for satisfying both criteria (log-likelihood and parameter estimates precision) may be appropriate.
In our experiments, the minimum number of draws required for “reliable” estimates was larger

than those used in most empirical studies.

Despite the common expectation, using thousands or tens of thousands of draws is not necessarily
prohibitively time consuming. Our results show that with efficient code implementation (Matlab,
https://github.com/czaj/dce)’" and using a regular modern desktop computer (Intel E5-2687W

@ 3.00 GHz, no GPU support, 128 GB RAM @ 2800 MHz) the computation time of one iteration

(evaluation of the log-likelihood function and gradient) was 1 second for 10,000 draws, 10 seconds

30 This number refer to the most demanding conditions in our experimental design; Table 5 provides more detailed
results.

3 In our simulation, similar implementation in R was approximately 5-10 times slower, Python Biogeme —
approximately 20 times slower, NLOGIT — 60 times slower and Stata — over 100 times slower (see Czajkowski,
Buczynski and Budzinski (2018) for details).
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for 100,000, and 100 seconds for 1,000,000 draws.” Given the advances in computing power, using
10,000 draws today takes less computer time then using 100 draws took back when Bhat (2001)
and Train (2000) did their analyses.” As a result, 10,000 draws is not as onerous as it might at first
seem. Even the most complicated models can be estimated in a reasonable amount of time using

many more draws than are commonly used.

Regarding other limitations of our study, we note that the results presented here are specific to the
experimental setting we used — 400 to 1,200 individuals, 4 to 12 choice tasks per individual, five or
ten normally distributed parameters, MXI. model without correlations, and other conditions in the
specific setting of the simulation.” We expect that datasets with more observations require using
more draws than found here for the precision of log-likelihoods, while datasets with fewer
observations require more draws for the precision of parameter estimates. The results are also
limited to the specific setting of the MXL model, such as parameter values assumed in the data
generating process. Larger standard deviations relative to the means (wider distributions) would
likely require more draws. Similarly, we expect that estimating MXIL. models that account for

correlations, are estimated in WTP-space (Irain and Weeks, 2005), use non-normal distributions

(I'rain and Sonnier, 2005), or use random parameters in the latent class model (Greene and

Hensher, 2012) or the hybrid choice model (Ben-Akiva et al., 2002) setting are likely to require
more draws. Note that by using the data generating process coefficients as starting values we also
avoided problems of convergence to local maxima. In practice, when less optimal starting values
are used, the expected variation in simulated log-likelihood values and parameter estimates can be
expected to be even larger.” Lastly, our comparison did not include a few other potentially well-
performing types of draws, such as lattice, Faure, Gaussian quadrature, Neiderreiter, and

Neiderreiter-Xing nets.

Finally, we note that in parallel to the simulated maximum likelihood, other estimation methods

have been developed. Examples include using a Bayesian framework (Train and Sonnier, 2005),

32 The times are given for the dataset with 400 individuals, four choice tasks per individual, 5 attributes.

33 Bhat (2001) reports that his model with 5 random parameters and 100 Halton draws converged in approximately 48
minutes (Intel Pentium II @ 300 MHz). Hess, Polak and Daly (2003) use a model with 4 random variables and the
same number of draws which makes one iteration in approximately 1 second (Intel Pentium III @ 2.0 GHz).

3 In addition, our analysis differs from a standard Monte Carlo experiment, in which the dataset would be regenerated
by taking new draws from the error term and the parameters in each estimation. Instead, we generated datasets for
each setting once, and estimated the models many times using different sets of draws. This way we hold sampling error
constant and focus on investigating simulation error. However, we acknowledge that this also makes our experiment
specific to the particular draws of the error term and parameter vector used to generate the datasets.

% There is some evidence indicating that increasing the number of draws smoothens the simulated log-likelihood
function and hence facilitates convergence (Luhkanen et al., 2016).
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expectation-maximization algorithm (Train, 2007), Laplace approximation (Harding and Hausman,

2007), or maximum approximate composite marginal likelthood (Bhat and Sidharthan, 2011). A yet

another strand of literature approaches the problem from a different perspective, by trying to utilize
non-parametric or semi-parametric approaches (instead of MXL) to model preference

distributions. Examples include linear regression approximation (Bajari, Fox and Rvan, 2007),

approximation of a density function based on Legendre polynomials (Hosgerau and Bierlaire, 2007),

using B-splines to approximate the CDF function of the true distribution (Bastin, Cirillo and Toint,

2010), using polynomials of draws taken from some chosen distribution (i.e., normal or log-normal)

for approximating the true distribution (Fosgerau and Mabit, 2013), and most recently, the logit-

mixed logit model (Lrain, 2016). Some of these methods may avoid the necessity to simulate
multidimensional integrals and thus avoid simulation error, possibly trading it for other

approximation biases.

There are three main takeaway messages from our study. The first is that Sobo/ draws outperformed
Halton, modified Latin bypercube sampling, and pseudo-random draws in our experimental settings.
Secondly, using too few draws can lead to substantial bias in log-likelihood values, parameter
estimates, and standard errors (p-values). Third, while the number of Sobo/ draws required for the
desired precision depends on the number of observations in the case of experimental designs with
5 attributes, using over 2,000 Sobo/ draws resulted in 95% confidence that log-likelihoods do not
lead to simulation-driven erroneous inference and that parameter estimates are within 5% of their
true values for all experimental settings considered. In the case of 10 attributes, over 20,000 Sobo/

draws were needed to meet these targets in all considered settings.
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Online Supplement A
This supplement presents the rationale and the description of algorithms used by the quasi Monte

Carlo methods compared in our study.

Halton sequence

The QMC method that is currently the most commonly used for simulating the log-likelihood
function of discrete choice models uses the Halton sequence (Halton, 1960). Following Kocis and

Whiten (1997), the n-th element of the Halton sequence generated with a base b, ** is given by the

so called radical inverse function @, (n) defined as follows:

0

@, (n)=>a(jn)b", 5)

i=0
where «,(j,n)e [O,bj) and it is an integer obtained from digit expansion of n in base b;:

0

n=>Ya(jn)b,. (6)

i=0

The K-dimensional Halton sequence is given simply by K one-dimensional Halton sequences

generated with different bases (most often K first prime numbers):

X, =(CI)b1 (n),....®, (n)) )

The drawback of the Halton sequence is a high correlation between sequences generated using
high prime numbers (see Online Supplement B for illustration). This translates into poor
performance in evaluating higher dimensional integrals. The way to address this problem is to use

so called serambling, in other words, apply a generalized radical inverse function:

@, (n)=20(a (im)5" ®)

i=0

where o(-) is an operator of permutations on ¢, (j,n). Different choices for o are proposed in

the literature (e.g., Braaten and Weller, 1979). We applied the reverse Radix algorithm (IKocis and

Whiten, 1997).

36 Most often bj is some prime number.
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The idea of the reverse Radix algorithm is as follows: given the representation of ¢,(j,n) in base

2, the fixed number of its digits are reversed (this means that the Halton sequence in base 2 and
scrambled Halton sequence in base 2 are the same). Values that are too large are removed from the

sequence.

The last thing to describe is randomization of the sequence. Proposed scrambling is still purely
deterministic, so to include some randomness and be able to analyze the variance of the sequence,
we applied the so-called random shift. When estimating mixed logit, N-K sequences of length R have
to be generated.” Instead, we generate only K sequences of the length N-R and divide it into N
parts. Properties of the Halton sequence assure that these sub-sequences still have a good coverage

on a unit cube. We apply the following random shifting:
Xjnk = {gjnk + Unk } ’ (9)
whete &, is an original scrambled Halton draw (je{1,...,R}, ne{l,- N}, ke{l,...K}), u, isa

standard uniform draw and { } is a fractional part function. We also tried a different type of

random shifting of the following form:

X =€ U (10)

which differs, as now uniform draws are the same for different individuals (but different for
different attributes). Our initial simulation revealed that the shifting in (9) performed better, so we

decided to use this type only.

Sobol Sequence

The Sobol sequence (Sobol, 1967) is a so-called (t,s)-sequence. To explain the idea behind (t,s)-

sequences, we are going to first introduce (t,m,s)-nets. While the Halton sequence aims at obtaining
a uniform coverage of [0,1], and a multidimensional sequence is created by taking many such
sequences generated with different bases, the (t,s)-sequences use only one base number and the
multidimensional sequence is obtained by applying different generating matrices to different

dimensions. Following Lemicux (2009) and Bratley and Fox (1988), let ¢, (j,n) from equation (6)

be transformed in the following way for the k -th dimension:

37 N is the number of respondents, K is the number of random parameters, R is the desired number of draws.
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where C, is what we call a generation matrix.” Then the n-th element in the k -th dimension of

this sequence is given by:

%00 = @ (jn-1)b"", (12)

i=0

which is almost identical to the inverse radical function in (5). As can be seen, the choice of these

generation matrices plays a key role. We describe the process of generating them below.

Formally defining the (t,m,s)-nets requires one more definition. We are going to say that the point

set of length b7 is (9,,...,q, ) -equidistributed in base b, if every cell of the form:

J(r)=1i[{b%,rkb%lJ (13)

k=1

contains b/ points of this point set, where g=g, +...+q,, and r, are any integers such that
0<r <bj. Then (t,m,s)-nets in base b, can be defined as a sequence of length b which is

(9y,...,q, ) -equidistributed whenever g<m—t (Lemicux, 2009).

For an illustration, consider a (0,2,2)-net in base 2, which is a 4-point sequence in two dimensional
space. The choice of (ql,qz) can be only (0,0), (1,0), (0,1) and (1,1). For the (0,0) case J(r)
can be only a unit square, so the (0,0)-equidistribution condition says that all four points of this
sequence ate in this square (which is true for any sequence). In the (1,0) case, J(r) can be
[0,1/ 2)><[O,1) or [1/ 2,1)><[O,1) , so this condition says that in every such horizontal rectangle, two
points of sequence are placed. The condition of (1,1) -equidistribution indicates that in every interval
of the form [i/2,(/+1)/2)><[j/2,(j+1)/2) where /,je€{0,1}, one point of the sequence is placed.”
As a result, this sequence has the best coverage one can expect from a 4-point long sequence.

Having the definition of (t,m,s)-nets we can simply define a (t,s)-sequence as a sequence for which

every subsequence X X1y is a (th,s)-net. In particular, this means that the first b; points

1] 7t (141)

of the (t,s)-sequence are (t,h,s)-net.

3% C, clements €7, ; matrix multiplication on the righthand side is also in Z,
1 1

% These intervals are just squares emerged from pattitioning of a unit square in four patts.
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As in case of the Halton, scrambling techniques can improve performance of the Sobol sequence.
For (t,s)-sequences, it is a more difficult task, however, because we would like the scrambled

sequence to possess the properties of the original sequence.

One way of scrambling Sobol sequences is to apply a random linear scramble combined with a

random digital shift (Matousek, 1998). Random digital shift is like the random shift described for

the Halton sequence. For a draw from the Sobol sequence x!, which can be presented in the form

of a binary digit expansion x =z/_:0b,. 27, and a draw from a standard uniform distribution

Ut = Z[:O uf -2, also presented in binary form, the new draw is created by setting:
%= (b+u)27, (14)
i=0

where addition is done in Z, .

The random linear scramble is done by using generation matrices of form R, -C, instead of simple
C,, where R, is a lower-triangular non-singular matrix and matrix multiplication is done in Z, .
This is called a linear scramble, as the n-th draw after scrambling is a linear function of n first
draws in original sequence. Both linear scrambling and a random linear digit shift keep (q,,...,q,)
-equidistribution property of a sequence and, what is more, the scrambling can lower the t-value of a
(t,s)-sequence.”

The last thing described here is the process of generating the matrices to create sequences with the
required properties. Sobol (1967) proposed to create the matrices with b, =2, which we applied in

our study. To create the k-th generation matrix, we need to first define a primitive polynomial in

Z, of form:
Py (z)zzdk +c7k‘1zdk’1 +ota, (15)
Second, we need d, (which is a degree of p,(z)) direction numbers:

mk,r
=2, a9

where m, . is an odd integer 6[1,2’ —1] and v, are written in binary digit expansion. The

generation matrix C, is created by setting its columns to these direction numbers presented in

40 Which implies a better coverage.
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vector forms.* To obtain direction numbers with indices greater than d, , the following recursive

procedure can be applied:

Vi, =0 Ve, ®...00, v, G—)(vkﬁdk / 2% ), (17)

where @ is an exclusive or logical function and a,; are taken from p, (z) polynomials.

Consider an example from Lemicux (2009): in order to generate C, we set p,(z)=2"+z+1 and

choose v,,, v;, to be 0.5 and 0.75, respectively, which is 0.1 and 0.11 in binary expansion.

31>

According to (17) we have:

v,,=(1,1,0)" ®(1,0,0) ®(0,0,1) =(0,1,1)". (18)
This way we obtained the first three columns of C,. To obtain further columns, (17) has to be
applied again.

Presentation of a Sobol sequence with generation matrices is relatively intuitive, and shows a

connection between the Sobol and Halton methods. Nevertheless, it is easier to implement the

following representation of (n+1)-th element of a Sobol sequence in the k -th dimension:

xy=a, (1L,n)v,, ®a,(L,n)v,,®... (19)

Where ,(1,n) are defined as in equation (6) with b, =2. Antonov and Saleev (1979) showed that

this formula can be rewritten using Gray Code binary representation of n resulting in:
xr=g,(n)-v,, ®g,(n)v,,®.... (20)

One property of Grey Code representation is that the representation for n and n+1 differs in only

one position. Using this property, the formula in (19) can be written as

k_
=

xf=xt ®v, 21)

where c¢ is an index of right-most zero bits in binary representation of n (Bratlev and Fox, 1988),

e.g,in0.1 c=2,in0.01 c=1,andin 0.11 c=3.

In our simulation, we used primitive polynomials and direction numbers implemented in Matlab

sobolset class.

“Le.,if v, , =0.11 then its vector form is (1,1,0,...)".
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Modified Latin Hypercube Sampling

Modified Latin hypercube sampling (MLHS) was proposed by Hess, Train and Polak (2000) as a

variation of Latin hypercube sampling (sce, e.g., Stein, 1987). Assume that P = {ij} isa RxK matrix

of which every column contains an independent, random permutation of sequence

{1,2,...,R} . Additionally let = ={§k} be a 1xK vector of independent, random uniform draws on

[0,1] interval. Matrix X = {X jk} of MLHS draws is created by setting:

X, =F* (R,l (b, +&, _1)) , (22)
where F () is a cdf of the distribution one wants to draw from.

MLHS is not a low-discrepancy sequence designed as the Halton or Sobol sequence, because
generation of a longer sequence requires creating a new one. Nevertheless, it has good coverage
properties and, because of the random element &, and permutations, its variance can be readily
analyzed the same way as in the pseudo-random case. In our setting, K is equal to number of

random parameters multiplied by the number of respondents, and R is a desired number of draws.
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Online Supplement B

Figure B1 Scatter plot matrix of 100 draws for 8 pseudo-random sequences
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Figure B3 Scatter plot matrix of 100 draws for 8 Halton sequences
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Figure B5 Scatter plot matrix of 100 draws for 8 Sobol sequences
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Online Supplement C
Table C1 presents the percentage of times* each type of draw performed the best, in terms of the
lowest MTL,,, for each number of draws.” In the overwhelming majority of cases, Sobo/ draws
were the best — they resulted in the lowest variation of the log-likelihood function value of the

estimated models.

Table C1. Percentage of times each type of draw resulted in the lowest simulation error

(MTL, ) for the log-likelihood function value

Number of draws used Psendo-random MILHS Halton Sobol
100 0.00% 0.00% 19.44% 80.56%
200 0.00% 0.00% 25.00% 75.00%
500 0.00% 0.00% 22.22% 77.78%
1,000 0.00% 0.00% 25.00% 75.00%
2,000 0.00% 0.00% 0.00% 100.00%
5,000 0.00% 0.00% 19.44% 80.56%
10,000 0.00% 0.00% 16.67% 83.33%

The conclusions are similar when comparing simulation bias associated with parameter estimates.*
Table C2 presents the percentage of times® each type of draw performed the best, in terms of the
lowest MTL,,. for each number of draws.* In the majority of cases, Sobo/ draws were the best —
they resulted in the lowest variation of parameter estimates. The relative advantage of using Sobol
draws is less evident than in the case of LL values but still evident, especially for higher numbers

of draws.

Table C2. Percentage of times each type of draw resulted in the lowest simulation error

(MTL, ) for the parameter estimates

42 Each cell of Table C1 corresponds to 36 dataset cases.
# Using MTL,,, does not qualitatively change these results.

# It is worth noting, that in this case the absolute levels of parameter-specific MTL differed considerably. As expected,

the lowest MTL were observed for the means of the discrete-valued variable (X or X ;) , while the highest were for

the standard deviation of the alternative specific constant (X 1 ) . Nevertheless, Sobo/ draws consistently performed the

best in all cases.

4 Hach cell of Table C2 corresponds to 450 dataset and parameter cases.

% Using MTL,,, does not qualitatively change these results.
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Number of draws used Pseudo-random MLHS Halton Sobol
100 2.67% 6.89% 36.22% 54.22%
200 1.11% 2.00% 30.67% 66.22%
500 0.89% 0.67% 37.56% 60.89%
1,000 0.22% 0.89% 28.44% 70.44%
2,000 0.00% 0.22% 19.33% 80.44%
5,000 0.00% 0.00% 36.67% 63.33%
10,000 0.44% 0.44% 32.22% 66.89%
1
2 Finally, Table C3 summarizes the performance of the different types of draws for the z-statistics
3 of the estimated parameters; in other words, not only taking parameter estimates into account but
4 also the associated standard errors. Z-statistics of parameters are important, because they usually
5  provide a basis for judging if a parameter is statistically significant or not. Once again, using Sobol
6 draws results in the lowest simulation error.

Table C3. Percentage of times each type of draw resulted in the lowest simulation error

8  (MTL,,) for the z-statistics of the parameters

Number of draws used  Pseudo-Random MLHS Halton Sobol

100 2.22% 8.44% 37.56% 51.78%

200 1.56% 4.44% 33.78% 60.22%

500 1.56% 5.11% 32.89% 60.44%

1,000 1.11% 2.44% 26.00% 70.44%

2,000 1.11% 3.33% 23.78% 71.78%

5,000 2.44% 3.33% 29.78% 64.44%

10,000 0.00% 0.00% 29.11% 70.89%
9
10
11
12
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2 Table D1. Variation of the simulation results (log(MTL,,;)) explained using characteristics

3  of experimental settings — Sobol draws only

Log-likelihood Par.a meter z-statistics
estimates
Constant 3.6256%%+ -0.1041 1.3792%%%
onsta (0.1398) (0.0688) (0.0606)
L ~1.4554%%k -0.6920%%* -0.8217%%*
Number of attributes is 10 0.1902) (0.0790) 0.0697)
lou(mumber of d (5 attributes)  -0.8118%%* -0.7254%%k -0.7064%%*
og(aumber of draws) (0.0133) (0.0067) (0.0059)
lou(mumber of de (10 attributes)  -0.4671%%* 0,437 2% -0.4621 %%
og(aumber of draws) (0.0180) (0.0064) (0.0056)
‘ 0.1819%*x -0.0194%%+ 0.0670%5+
Number of choice tasks 0.0066) 0.0029) 0.0026)
Number of individuals 0.891 9%+ -0.5530%%* 0.291G**+
(in thousands) (0.0659) (0.0291) (0.0256)
Ooz'iesigi q -0.1334 0.3693%#+ 0.3560%+*
(MXL-design used as a (0.0642) (0.0322) (0.0284)
reference)
MNLL'CLeSIig‘; q -0.1626%* 0.3614%%+ 0.4507#%+
(MXL-design used as a (0.0642) (0.0322) (0.0284)
reference)
Standard deviations 1.2608*** 1.3205%+*
(Means used as a reference) (0.0190) (0.0168)
X1 (alternative specific 0.5778%** 0.3240%#%*
constant) (0.0271) (0.0239)
X ierete vasiabl 0,741 1% 0.1509%*+
s lcrete variable) (0.0271) (0.0239)
R2 0.9543 0.8757 0.8922
n (observations) 309 3990 3990
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Online Supplement E
In this supplement, we provide a robustness check, in which we use a different measure of a
simulation error. We still use MTL, as described in Section 4, but instead of measuring the
difference between two models estimated with the same number of draws, we compare the
difference between a model estimated with a given number of draws, and a model estimated with
100,000 draws. In this analysis, we use only a subsample of our experiment, as models with 100,000
draws were estimated only for the MXL design and Sobol draws. Table E1 presents analogous

results to Table 5.
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1 Table E1. Minimum number of Sobol draws required for desired level of log-likelihood and parameter estimates precision (95% confidence

2 intervals in [] brackets)

Choice tasks per individual 4 4 4 8 8 8 12 12 12
Individuals 400 800 1,200 400 800 1,200 400 800 1,200
5 attributes
<5% probability of simulation-driven 103 154 230 308 461 690 924 1,382 2,068
error in the LR test for 5 attributes*’ [87-120] [133-170] [198-265] [271-348] [418-500] [617-768] [817-1,045] [1,250-1,524] [1,835-2,327]
<5% probability that parameter 663 523 413 695 549 433 729 575 454
estimates differ by 25% from true [597-734] [474-5706] [371-458] [631-765] [500-600] [392-477] [659-800] [521-634] [408-505]
values for 5 attributes 48
Minimum recommended number 663 523 413 695 549 690 924 1,382 2,068
of draws [597-734] [474-576] [371-458] [631-765] [500-600] [617-768] [817-1,045] [1,250-1,524] [1,835-2,327]
10 attributes
<5% probability of simulation-driven 171 334 655 1,065 2,087 4,087 6,652 13,027 25,514
error in the LR test for 10 attributes?* [131-220] [271-407] [526-807] [899-1,260] [1,840-2,368] [3,439-4,866] [5,429-8,240] [10,745-16,019]  [19,895-33,141]
<5% probability that parameter 9,750 6,710 4,618 10,508 7,232 4,978 11,325 7,795 5,365

estimates differ by 25% from true
values for 10 attributes?’

Minimum recommended number
of draws

8,299-11,458]

9,750
[8,299-11,458]

[5,787-7,782]

6,710
[5,787-7,782]

[3,048-5,405]

4,618
[3,948-5,405]

[9,040-12,259)

10,508
[9,040-12,259]

[6,292-8,324]

7,232
[6,292-8,324]

[4,293-5,776)

4,978
[4,293-5,776]

[9,653-13,372]

11,325
[9,653-13,372]

[6,727-9,071]

13,027
[10,745-16,019]

[4,584-6,287)

25,514
[19,895-33,141]

3

. n
47 At 0.05 significance level (MTL, . <1.9207).

 MTL . <0.05|A].
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2 Table F1. Minimum number of Sobol draws required for desired level of log-likelihood and parameter estimates precision (95% confidence

3 intervals in [] brackets)

Choice tasks per individual 4 4 4 8 8 8 12 12 12
400 800 1,200 400 800 1,200 400 800 1,200
5 attributes / MTLos
<5% probability of simulation-driven error in the 76 117 182 185 287 446 454 704 1,093
LR test (MTLLL <3 3174) [63-90] [100-137] [155-213] [159-214] [254-325] [391-509] [392-523] [621-798] [954-1,254]
<5% probability of simulation-driven error in the 148 230 357 363 563 874 889 1,380 2,142
R test (MTLLL <1 9207) [125-174] [199-265] [307-415] [316-414] [504-629] [774-989] [775-1,018] [1,226-1,554]  [1,878-2,454]
005 — T
<5% probability of simulation-driven error in the 228 354 549 559 867 1,346 1,370 2,126 3,299
IR test (MTLLL <1 3528) [194-266] [308-406] [475-636] [491-632] [782-963] [1,196-1,517] [1,199-1,562] [1,894-2,392] [2,900-3,778]
005 — T
<5% probability that parameter estimates differ 450 332 245 404 298 220 363 268 197
by £10% from true values (MTLios <o ﬁ|) [406-498] [300-366] [220-272] [367-445] [271-327) [198-243] [327-401] [242-295] [177-219]
<5% probability that parameter estimates differ 1,170 862 636 1,051 775 571 944 696 513
by 310% from true values (MTLﬂO_% < 0.05| ﬁ|) [1,061-1,288] [786-946] [575-702] [959-1,150] [710-844] [520-627] [856-1,039] [634-764] [464-566]
<5% probability that parameter estimates differ 10,759 7,931 5,847 9,666 7,125 5,253 8,684 6,401 4,719
by >10% from true values (,\/|-|-|_ﬁ0.05 < 0'01|'g|) [9,781-11,842]  [7,254-8,676] [5,322-6,425]  [8,830-10,575] [6,562-7,750] [4,810-5,737] [7,888-9,552] [5,855-6,996] [4,295-5,181]
5 attributes / MTLoo1
<1% probability of simulation-driven error in the 104 162 252 255 397 618 625 973 1,512
R test (MTLLL <3317 4) [88-123] [140-188] [217-293] [222-292] [355-444] [547-699] [545-715] [864-1,095) [1,328-1,726]
<1% probability of simulation-driven error in the 205 319 495 501 780 1,213 1,228 1,909 2,969
R test (MTLLL <1 9207) [175-238] [278-364] [430-572] [442-566] [705-864] [1,081-1,362]  [1,078-1,395]  [1,707-2,140]  [2,621-3,386]
001 — T
<1% probability of simulation-driven error in the 316 491 764 773 1,202 1,870 1,892 2,943 4,577
LR test (MTLLL <1 3528) [272-365] [432-557] [667-876] [685-868] [1,092-1,325] [1,670-2,095] [1,667-2,146] [2,635-3,297] [4,038-5,218]
<1% probability that parameter estimates differ 659 486 359 592 437 322 532 393 290
by 210% from true values (MTLﬂm <o ﬂ|) [597-726] [442-534] [324-397] [539-649] [399-477) [292-355] [481-586] [357-432] [261-320]
<1% probability that parameter estimates differ 1,712 1,263 932 1,538 1,135 838 1,382 1,020 753
by >10% from true values (,\/|-|-|_/;Dl < 0'05|'g|) [1,556-1,879] [1,154-1,382] [846-1,027] [1,406-1,680] [1,041-1,234] [764-916] [1,255-1,518] [932-1,116] [683-828]
<1% probability that parameter estimates differ 15,720 11,601 8,562 14,128 10,426 7,695 12,697 9,370 6,915
100 MTY <001 B [14,287- [10,608- [7,797-9,404] [12,900- [9,592-11,344]  [7,045-8,407] [11,526- [8,565-10,245]  [6,297-7,593]
by 210% from tre values (ML, 1) 17,307] 12,695] 15,463] 13,969]
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Choice tasks per individual 4 4 4 8 8 8 12 12 12
Individuals 400 800 1,200 400 800 1,200 400 800 1,200
10 attributes / MTLg.s
<5% probability of simulation-driven error in 81 175 375 387 830 1782 1,837 3,942 8,462
the IR test (MTL:LUS < 3_3174) [56-113] [128-230] [280-491] [297-491] [678-1,001] [1445-2186]  [1,449-2,306] [3,231-4,837] [6,704-10,833]
<5% probability of simulation-driven error in 263 563 1,209 1,246 2,675 5,742 5918 12,702 27,264
w [193-340] [439-708] [945-1,528]  [1,003-1,529] [2,257-3,160] [4,0698-7,101] [4,667-7,509] [10,191- [20,889-
the LR test (MTL, <1.9207) 16.052] 36.562]
<5% probability of simulation-driven error in 556 1,193 2,562 2,640 5,667 12,163 12,535 26,905 57,748
the IR test (MTLLL < 1.3528) [423-714] [956-1,465]  [2,028-3,224] [2,154-3,224] [4,781-6,768] [9,821-15,399] [9,785-16,231] [21,007- [42,904-
005 35,200] 80,801]
<5% probability that parameter estimates differ 5,182 3,124 1,884 4,338 2,616 1,577 3,631 2,190 1,320

by 210% from true values (MTL’;DS S 0'1|ﬂ|)

[4,454-6,038]

[2,711-3,601]

[1,617-2,194]

[3,768-5,011]

[2,292-2,986]

[1,368-1,821]

[3,125-4,228]

[1,902-2,525]

[1,135-1,535]

<5% probability that parameter estimates differ 25,294 15,251 9,196 2,1174 12,767 7,698 17,725 10,688 6,444
1o MTL < 0.05 [21,531- [13,131-  [7,866-10,766]  [18,232- [11,123-  [6,674-8,913] [15,140-  [9,249-12,388] [5,556-7,497]
by 210% from true values (wrc, 1) 29,864] 17,736] 24,777] 14,674] 20,819]
<5% probability that parameter estimates differ 1,003,977 605,365 365,015 840,449 506,763 305,561 703,556 424221 255,791
o MTL <001 [806,569- [494,545- [298,783- [683,177- [418,157- [252,422- [570,100- [348,425- [211,056-
by 210% from true values ( g |) 1,262,736] 747 850 449 838 1,045,805] 620,541] 372,977 877,886 519,026] 312,096
10 attributes / MTL0,01
<1% probability of simulation-driven error in 152 317 664 678 1,417 2,965 3,026 6,329 13,240
the LR test (MTL < 3.3174) [111-201] [245-400] [518-837 [543-831]  [1,197-1,662] [2,457-3,580] [2,431-3,741] [5,240-7,703] [112,85;;;-
<1% probability of simulation-driven error in 469 980 2,050 2,02 4377 9,155 9,342 19,543 40,380
" [361-596] [792-1,193]  [1,646-2,540] [1,729-2,519] [3,741-5134] [7,551-11,287] [7,465-11,763]  [15,714- [31,401-
the LR test (MTL, <1.9207) 24.669] 54.691]
<1% probability of simulation-driven error in 966 2,020 4,226 4312 9,020 18,869 19,254 40,277 84,254
" [763-1205]  [1,665-2,432] [3,418-5252] [3,567-5,208] [7,637-10,785]  [15,247- [15,090- [31,421- [62,809-
the LR test (ML, <13528) 23,884] 24,854] 52,774] 117,281]
<1% probability that parameter estimates differ 9,062 5,549 3,398 7,627 4,671 2,860 6,419 3,931 2,407

by 210% from true values (MTLim s 0'1|'B |)

[7,818-10,552]

[4,838-6,373)

[2,934-3,935]

[6,649-8,794]

[4,115-5312)

[2,496-3,280)]

[5,553-7,448)

[3,437-4,513)

[2,088-2,779)

<1% probability that parameter estimates differ 42,339 25,927 15,877 35,635 21,822 13,363 29,992 18,366 11,247
i MTL <005 [36,058- [22,323- [13,630- [30,668- [19,003- [11,596- [25,628- [15,898-  [9,711-13,045]
by 210% from true values (wrc, 2) 50,011] 30,142] 18,535 41,668] 25,116] 15,426] 35,232 21,275]
<1% probability that parameter estimates differ 1,518,200 929,692 569,311 1,277,794 782,476 479,161 1,075,456 658,571 403,286
1o MT <001 [1,220,658-  [757,707- [465252-  [1,037,273-  [644,666- [304,743- [871,228- [540,144- [331,926-
by 210% from true values (wrc, ) 1,908,915 1,149,623 703,039] 1,589,909 959,871] 585,573 1,343,284] 806,879] 492,888]
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