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Let’s first introduce the classical RRM 
model (Chorus, 2010)

• Let’s first introduce the classical RRM model (Chorus, 2010)

𝑅𝑅𝑖𝑛 = σ𝑗≠𝑖σ𝑚 ln(1 + exp(𝛽𝑚[𝑥𝑗𝑚𝑛 − 𝑥𝑖𝑚𝑛]) + 𝜀𝑖𝑛

• 𝜀𝑖𝑛 is i.i.d type I EV distributed with variance π²/6

• Choice probabilities correspond to 

𝑒−𝑅𝑖𝑛

σ𝑗 𝑒
−𝑅𝑗𝑛



Now let’s move to the µRRM model 
(Cranenburgh et al., 2015)

• This approach generalizes the classical RRM model

• The variance of the error term can be estimated

• The size of the scale parameter corresponds to the profundity
of regret imposed by the µRRM model

• « the notion of profundity of regret refers the extent to which
RRM models impose regret minimization behaviour »



The µRRM model

• 𝑅𝑅𝑖𝑛 = σ𝑗≠𝑖σ𝑚 ln(1 + exp(
𝛽𝑚

µ
[𝑥𝑗𝑚𝑛 − 𝑥𝑖𝑚𝑛)] + 𝜀𝑖𝑛

With 𝜀𝑖𝑛 ~ 𝑖. 𝑖. 𝑑. 𝐸𝑉(0,µ)

• Choice probabilities now correspond to 

𝑒−µ𝑅𝑖𝑛

σ𝑗 𝑒
−µ𝑅𝑗𝑛



The µRRM model – special cases

• When µ is arbitrarily large, the µRRM model exhibits
linear additive random utility maximization

• When µ is arbitrarily small, the difference between 
the utility one gets from a gain and the regret one 
gets from a loss is very strong. In this case, the µRRM 
model takes the form of the P-RRM model

• When µ is close to 1  the model corresponds to a 
normal RRM  model



Why using the the µRRM model rather
than a Latent class RUM-RRM model? 

• The µRRM approach allows to model the profundity
of regret in a continuous manner

• It gives a measure of « how much regret there is » 
rather than « what is the percentage of people 
expressing a regret minimisation behaviour »

• The µRRM can emulate the results from a LC RUM-
RRM while avoiding the estimation issues when µ is
set up to be random



Going beyond the µRRM model (1) 

• In this work, we propose a series of extensions for 
the µRRM model

• We seek to accomodate heterogeneity in the 
profundity of regret

• Different people use different decision rules

• Different attributes trigger different choice strategies



Going beyond the µRRM model (2) 

• We propose the following extensions:

• The random µRRM model

µ is allowed to be normally distributed across respondents

• The multiple random µRRM model

Different, randomly distributed µ are estimated for each
attribute



The random µRRM model

• 𝑅𝑅𝑖𝑛 = σ𝑗≠𝑖σ𝑚 ln(1 + exp(
𝛽𝑚

µ
[𝑥𝑗𝑚 − 𝑥𝑖𝑚]) + 𝜀𝑖

• µ now corresponds to mean_µ + sd_u ∗ random
draws

• The random draws are normally distributed

• It is a very straightforward change to implement



The multiple random µRRM model

• 𝑅𝑅𝑖𝑛 = σ𝑗≠𝑖σ𝑚 µm . ln(1 + exp(
𝛽𝑚

µm
[𝑥𝑗𝑚 − 𝑥𝑖𝑚]) + 𝜀𝑖

• Each µm now corresponds to mean_µm + sd_um ∗ random draws

• This model does not seem to converge well unless we estimate a 
full variance_covariance matrix for the random draws

• In this case, the choice probability correspond to:

𝑒−𝑅𝑖𝑛

σ𝑗 𝑒
−𝑅𝑗𝑛



Application

• Our dataset comes from an Australian regional mobility survey. Each 
respondent faced 10 choice tasks involving a choice between four labelled 
alternatives: plane and taxi, plane and shuttle, car, coach and taxi

• Attributes:

 departure time 

 average travel time

 travel time early

 travel time late

 Cost

 wait time for transfer service

 cost of transfer service

 Duration for transfer service

• 811 respondents



est t ratio est t ratio est t ratio
bdepatime 1.74 9.44 1.65 5.21 1.95 8.49
btravtime -0.76 -11.51 -0.81 -4.48 -0.84 -3.01
bearlymin -2.47 -1.55 -2.56 -1.78 -2.99 -3.03
blatemin -1.41 -8.33 -1.44 -4.45 -1.45 -1.61
btravcost -2.06 -11.70 -2.04 -10.45 -2.02 -13.16
bwaittime -2.52 -3.99 -2.45 -3.99 -2.73 -3.27
btrantime 6.36 2.20 5.25 4.12 4.95 3.99
btrancost -3.55 3.11 -3.01 2.54 -2.86 -2.05
alt1 -0.16 -7.89 -0.19 -5.58 -0.44 -2.51
alt2 -0.65 -1.47 -0.48 -1.42 0.19 1.12
alt3 -0.52 -6.47 -0.52 -5.54 -1.75 -22.25

uRRM Random uRRM
Multiple random 

uRRM



est t ratio est t ratio est t ratio
mu1 1.21 3.92 1.14 3.87 3.10 3.15
mu2 23.38 3.80
mu3 -0.34 -2.89
mu4 -0.65 -1.49
mu5 6.27 0.01
mu6 -0.05 -2.56
mu7 -0.16 -2.25
mu8 -0.26 -2.00

sdmu1 0.08 0.78 -0.05 0.01
sdmu2 0.11 2.87
sdmu3 0.34 1.99
sdmu4 -0.43 -1.36
sdmu5 0.14 -0.93
sdmu6 0.14 2.24
sdmu7 0.26 0.89
sdmu8 0.15 1.94

AIC
LL

179851.54

uRRM Random uRRM
Multiple random 

uRRM

17880.81
-8885.404

17963.13
-8969.565 -8958.781



Discussion 

• First results look promising:

 Significant observed heterogeneity in the profundity of regret

 Significant rando heterogeneity

• Model performed (much) better than a LC RUM RRM
 More convenient way to introduce heterogeneity in decision

rules in SP survey

• Some challenges: « more convenient » doesn’t mean
perfect (lots of issues with local optimas)




