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Simulation error

‒ Discrete choice data
‒ Mixed (random parameters) logit models

‒ Estimation via simulated maximum likelihood method

‒ Simulating the value of the log-likelihood function
‒ Necessarily associated with simulation error

‒ Depends on the number and type of draws

‒ A different set of draws = somewhat different estimation results



Simulation error vs. the number of draws



Quasi Monte Carlo methods

‒ Quasi Monte Carlo methods reduce simulation-driven variation
‒ Halton sequence (Train 2000, Bhat 2001), 

‒ Sobol sequence (Garrido 2003)

‒ Randomized (t,m,s)-nets (Sándor and Train 2004)

‒ Modified Latin Hypercube (Hess, Train and Polak 2006)

‒ Lattice rules (Munger et al. 2012)

‒ Generalized antithetic draws with double base shuffling (Sidharthan and 
Srinivasan 2010)

‒ Shuffling, scrambling sequences (Bhat 2003, Hess, Polak and Daly 2003, Hess 
and Polak 2003, Wang and Kockelman 2008)



Pseudo-random vs. Halton sequence



Halton vs. scrambled Halton sequence



Gaps in existing evidence

‒ What is the extent of the simulation bias resulting from using different 
numbers of different types of draws in various conditions (datasets)?

‒ Shortcoming of the existing studies:
‒ Low numbers of QMC draws (≤ 200)

‒ Low number of repetitions for each type and number of draws (≤ 10)

‒ Results likely to depend on the number of observations (individuals, choice tasks per 
individual)

‒ Examples of 100 Halton draws leading to smaller bias than 1,000 pseudo-
random draws (e.g., Bhat, 2001) have led some to actually use very few draws 
for simulations

‒ Using too few draws can lead to spurious convergence of models that 
are theoretically or empirically unidentified (Chiou and Walker 2007)

‒ Our study aims at filling these gaps



Design of our simulation study –
Choice task setting and explanatory variables



Design of our simulation study –
Choice task setting and explanatory variables



Methodology of comparisons

− We want a measure that takes expected values into account but also 
penalizes variance

− For typical equality tests – the larger the variance, the more difficult to reject 
the equality hypothesis

− Testing equivalence instead of equality
− Reverse the null and the alternative hypotheses

− Test if the absolute difference is higher than a priori defined ‘acceptable’ level

− Minimum Tolerance Level (MTL)
− What is the minimum ‘acceptable’ difference that allows to conclude that two 

values are equivalent at the required significance level

− How many draws of type A are required, so that with 95% probability the 
difference in LL / estimates / s.e. / z-stats is not going to be statistically 
different than:

− The critical value of the LR-test

− If the model was estimated using n draws of type B



Example – using MTL for the values of the LL function

− Re-estimating the model using a different set of draws is likely to 
result in a somewhat different value of the LL function

− If LL is used for inference (e.g., LR-test), it is possible to conclude that 
one specification is superior to another only because one was more 
‘lucky’ with the draws

− By using the MTL approach we are able to evaluate the probability of 
such an outcome

− Assume α = 0.05, the interpretation of MTL0.05 is that with 95% probability 
using a different set of draws would not cause the difference in LL values to be 
higher than MTL0.05

− We can provide recommendations wrt the minimum number of draws that 
would result in MTL0.05 lower than the specified level

− E.g., the critical value of the LR-test – probability of erroneously concluding that one 
model is preferred to another (because of simulation error) is lower than a desired 
significance level, e.g., 0.05



Results – relative performance of types of draws

− Example: MTL0.05 of LL for MXL-design, 400 x 4:
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Percentage of times each type of draws resulted in the lowest 
simulation error (MTL0.05) for the log-likelihood function value

Number of draws used Pseudo-random MLHS Halton Sobol

100 0.00% 3.70% 22.22% 74.08%

200 0.00% 0.00% 0.00% 100.00%

500 0.00% 0.00% 3.70% 96.30%

1,000 0.00% 0.00% 3.70% 96.30%

2,000 0.00% 0.00% 0.00% 100.00%

5,000 0.00% 0.00% 0.00% 100.00%

10,000 0.00% 0.00% 0.00% 100.00%



Percentage of times each type of draws resulted in the lowest 
simulation error (MTL0.05) for parameter estimates

Number of draws used Pseudo-random MLHS Halton Sobol

100 0.37% 7.41% 34.07% 58.15%

200 0.37% 0.00% 25.19% 74.44%

500 0.00% 0.37% 14.81% 84.81%

1,000 0.00% 0.00% 13.70% 86.30%

2,000 0.00% 0.00% 8.89% 91.11%

5,000 0.00% 0.00% 2.22% 97.78%

10,000 0.00% 0.00% 4.07% 95.93%



Percentage of times each type of draws resulted in the lowest 
simulation error (MTL0.05) for z-stats

Number of draws used Pseudo-random MLHS Halton Sobol

100 2.22% 6.67% 34.07% 57.04%

200 0.37% 3.33% 28.15% 68.15%

500 0.37% 1.48% 18.15% 80.00%

1,000 2.59% 1.48% 21.11% 74.81%

2,000 0.37% 1.11% 19.26% 79.26%

5,000 3.70% 1.11% 5.56% 89.63%

10,000 0.00% 0.00% 4.44% 95.56%



Results – Sobol draws consistently perform best

− Minimum number of Sobol draws (on average) that outperforms 
(in terms of MTL0.05) 10,000 draws of each type:

− How many more draws (relatively, on average) required to perform as 
good as Sobol draws:

Pseudo-random MLHS Halton

LL 1 167 2 185 8 889

Parameter estimates 2 928 3 648 9 537

z-stats 3 366 4 106 9 374

Pseudo-random MLHS Halton

LL 11.82 5.32 2.18

Parameter estimates 5.54 4.08 2.00

z-stats 5.47 4.34 1.97



Results – how many draws are ‘enough’?

−Using more draws is always better to using fewer draws

−How many are ‘enough’ depends on the desired precision 
level

−Log-likelihood:
− Imagine you are comparing 2 specifications using LR-test (d.f. = 1)

− Simulation error low enough to have 95% / 99% probability of not erroneously 
concluding that one model is better than the other

− In other words, 95% / 99% of the times the (simulation driven) difference in LL must 
be lower than 1.9207 (at α = 0.05)

− This is exactly what MTL0.05 and MTL0.01 can be used for!

400 x 4 800 x 4 1,200 x 4 400 x 8 800 x 8 1,200 x 8 400 x 12 800 x 12 1,200 x 12

p = 0.05 200 500 500 500 1,000 1,000 1,000 2,000 2,000

p = 0.01 500 500 500 1,000 1,000 2,000 1,000 5,000 5,000



Results – how many draws are ‘enough’?

− Parameter estimates:
− No absolute difference level

− The numbers of draws required for 95% / 99% probability that the difference 
between parameter estimates < 5%:

− The numbers of draws required for 95% / 99% probability that the difference 
between parameter estimates < 1%:

− Similar results for comparisons with models estimated using 1,000,000 draws

− The required number of draws typically higher for standard deviations, lower for means

400 x 4 800 x 4 1,200 x 4 400 x 8 800 x 8 1,200 x 8 400 x 12 800 x 12 1,200 x 12

p = 0.05 20,000 10,000 10,000 20,000 10,000 10,000 20,000 20,000 10,000

p = 0.01 50,000 20,000 20,000 50,000 20,000 10,000 20,000 20,000 20,000

400 x 4 800 x 4 1,200 x 4 400 x 8 800 x 8 1,200 x 8 400 x 12 800 x 12 1,200 x 12

p = 0.05 5,000 2,000 2,000 2,000 1,000 1,000 2,000 2,000 1,000

p = 0.01 5,000 2,000 2,000 5,000 2,000 2,000 2,000 2,000 2,000



Using too few draws and identification problems –
percentage of times z-statistics exceeded 1.96
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Summary and conclusions

‒ We investigate the performance of the 4 most commonly used types of draws for simulating 
log-likelihood in the mixed logit model setting

‒ We find Sobol draws consistently result in the lowest simulation error

Sobol draws recommended 

‒ Conditional on our simulation setting, we find one needs more draws than typically used for 
‘reliable’ estimation results

‒ If ‘reliable’ is defined as having no more than 5% or 1% chance of erroneous conclusion that a model 
is significantly better than the same model estimated using a different set of draws (LR-test with 1 
d.f.): 

Use at least 2,000 (5%) or 5,000 (1%) draws

‒ Could be less if the number of individuals is less than 1,200 or the number of choice tasks per individual less 
than 12

‒ If ‘reliable’ is defined as being 95% sure that one has no more than 5% or 1% simulation-driven 
variation in parameter estimates:

Use at least 5,000 (5%) or 20,000 (1%) draws

‒ Could be less if the number of individuals is more than 400 or the number of choice tasks per individual is more 
than 4

‒ Evidence of erroneous inference on significance (both ways) if too few draws are used


