Simulation error in maximum likelihood estimation of discrete choice models

Mikołaj Czajkowski, Wiktor Budziński czaj.org

Simulation error

- Discrete choice data

- Mixed (random parameters) logit models
 - Estimation via simulated maximum likelihood method
- -Simulating the value of the log-likelihood function
 - Necessarily associated with simulation error
 - Depends on the number and type of draws

– A different set of draws = somewhat different estimation results

Simulation error vs. the number of draws

Quasi Monte Carlo methods

-Quasi Monte Carlo methods reduce simulation-driven variation

- Halton sequence (Train 2000, Bhat 2001),
- Sobol sequence (Garrido 2003)
- Randomized (t,m,s)-nets (Sándor and Train 2004)
- Modified Latin Hypercube (Hess, Train and Polak 2006)
- Lattice rules (Munger et al. 2012)
- Generalized antithetic draws with double base shuffling <u>(Sidharthan and Srinivasan 2010)</u>
- Shuffling, scrambling sequences (Bhat 2003, Hess, Polak and Daly 2003, Hess and Polak 2003, Wang and Kockelman 2008)

Pseudo-random vs. Halton sequence

Scatter plot of 1000 draws for 2 pseudo-random sequences

Scatter plot of 1000 draws for 2 Halton sequences

Halton vs. scrambled Halton sequence

Scatter plot matrix of 100 draws for 8 Halton sequences

Scatter plot matrix of 100 draws for 8 scrambled Halton sequences

Gaps in existing evidence

- What is the extent of the simulation bias resulting from using different numbers of different types of draws in various conditions (datasets)?
 - Shortcoming of the existing studies:
 - Low numbers of QMC draws (\leq 200)
 - Low number of repetitions for each type and number of draws (≤ 10)
 - Results likely to depend on the number of observations (individuals, choice tasks per individual)
 - Examples of 100 Halton draws leading to smaller bias than 1,000 pseudorandom draws (<u>e.g., Bhat, 2001</u>) have led some to actually use very few draws for simulations
- Using too few draws can lead to spurious convergence of models that are theoretically or empirically unidentified (Chiou and Walker 2007)
- -Our study aims at filling these gaps

Design of our simulation study – Choice task setting and explanatory variables

Evolapatom variables	Assumed	ssumed Possible values of the explanatory variables					
(choice attributes)	parameter distribution	Alternative 1 (status quo / opt-out)	Alternative 2	Alternative 3			
X_1 (alternative specific constant)	N(-1.0, 0.5)	$X_1 = 1$	$X_1 = 0$	$X_1 = 0$			
X_2 (dummy)	N(1.0, 0.5)	$X_{2} = 0$	$X_2 \in \left\{0, 1\right\}$	$X_2 \in \{0, 1\}$			
X ₃ (dummy)	N(1.0, 0.5)	$X_{3} = 0$	$X_3 \in \{0, 1\}$	$X_3 \in \{0,1\}$			
X ₄ (dummy)	N(1.0, 0.5)	$X_{4} = 0$	$X_4 \in \left\{0,1\right\}$	$X_4 \in \left\{0,1\right\}$			
X_5 (discrete)	N(-1.0, 0.5)	$X_{5} = 0$	$X_5 \in \{1, 2, 3, 4\}$	$X_5 \in \{1, 2, 3, 4\}$			

Design of our simulation study – Choice task setting and explanatory variables

	Dra	WS		Datasets				
Repetitions	Types of draws	Number of draws	Number of choice tasks per individual	Number of individuals	Experimental designs			
1,000	pseudo-random MLHS Halton Sobol	100 200 500 1,000 2,000 5,000 10,000 20,000* 50,000* 100,000* 500,000* 1,000,000*	4 8 12	400 800 1,200	OOD-design MNL-design MXL-design			
				*Se	elected settings only.			

Methodology of comparisons

- We need a measure that takes expected values into account but also penalizes variance
 - For typical equality tests the larger the variance, the more difficult to reject the equality hypothesis
- Testing equivalence instead of equality
 - Reverse the null and the alternative hypotheses
 - Test if the absolute difference is higher than a priori defined 'acceptable' level
- Minimum Tolerance Level (MTL)
 - What is the minimum 'acceptable' difference that allows to conclude that two values are equivalent at the required significance level
 - How many draws of type A are required, so that with 95% probability the difference in LL / estimates / s.e. / z-stats is not going to be statistically different than:
 - The critical value of the LR-test
 - If the model was estimated using *n* draws of type B

Example – using MTL for the values of the LL function

- Re-estimating the model using a different set of draws is likely to result in a somewhat different value of the LL function
- If LL is used for inference (e.g., LR-test), it is possible to conclude that one specification is superior to another only because one was more 'lucky' with the draws
- By using the MTL approach we are able to evaluate the probability of such an outcome
 - Assume α = 0.05, the interpretation of $MTL_{0.05}$ is that with 95% probability using a different set of draws would not cause the difference in LL values to be higher than $MTL_{0.05}$
 - We can provide recommendations for the minimum number of draws that would result in $MTL_{0.05}$ lower than the specified level
 - E.g., the critical value of the LR-test probability of erroneously concluding that one model is preferred to another (because of simulation error) is lower than a desired significance level, e.g., 0.05

Results – relative performance of types of draws

- Example: *MTL*_{0.05} of LL for MXL-design, 400 x 4:

Percentage of times each type of draws resulted in the lowest simulation error $(MTL_{0.05})$ for the <u>log-likelihood function value</u>

Number of draws used	Pseudo-random	MLHS	Halton	Sobol
100	0.00%	0.00%	18.52%	81.48%
200	0.00%	0.00%	29.63%	70.37%
500	0.00%	0.00%	22.22%	77.78%
1,000	0.00%	0.00%	25.93%	74.07%
2,000	0.00%	0.00%	0.00%	92.59%
5,000	0.00%	0.00%	11.11%	81.48%
10,000	3.70%	3.70%	0.00%	81.48%

Percentage of times each type of draws resulted in the lowest simulation error $(MTL_{0.05})$ for parameter estimates

Number of draws used	Pseudo-random	MLHS	Halton	Sobol
100	0.00%	0.37%	42.96%	56.67%
200	0.00%	0.00%	33.33%	66.67%
500	0.00%	0.00%	31.11%	68.89%
1,000	0.00%	0.00%	31.48%	68.52%
2,000	0.00%	0.00%	14.44%	78.15%
5,000	0.00%	0.00%	17.78%	74.81%
10,000	3.70%	3.70%	5.56%	75.93%

Percentage of times each type of draws resulted in the lowest simulation error $(MTL_{0.05})$ for <u>z-stats</u>

Number of draws used	Pseudo-random	MLHS	Halton	Sobol
100	0.00%	0.37%	48.15%	51.48%
200	0.74%	1.85%	34.07%	63.33%
500	0.37%	2.22%	32.22%	65.19%
1,000	0.74%	1.85%	26.67%	70.74%
2,000	0.00%	4.44%	22.59%	65.56%
5,000	3.70%	1.11%	19.26%	68.52%
10,000	3.70%	3.70%	5.19%	76.30%

Results – Sobol draws consistently perform best

 Percent of additional draws needed to achieve the same simulation error as Sobol draws:

	Pseudo-random	MLHS	Halton
LL	889%	305%	66%
	[776% - 1,020%]	[258% - 360%]	[47% - 87%]
Parameter estimates	361%	209%	48%
	[331% - 392%]	[189% - 232%]	[38% - 58%]
z-stats	347%	200%	51%
	[321% - 375%]	[182% - 219%]	[42% - 60%]

* Based on regression analysis

Results – regression results Dependent variable: log(*MTL*)

	$\mathbf{L}\mathbf{L}$	Betas	Z stats
Come	3.4432***	0.5144***	2.7254***
Cons.	(0.0693)	(0.0363)	(0.0316)
Type of draws, Deauda wandow	1.4637***	0.8803***	0.8366***
Type of draws: Pseudo-random	(0.0365)	(0.0185)	(0.0161)
Type of drower MI HS	0.8939***	0.6507***	0.6140***
Type of draws: MLHS	(0.0383)	(0.0195)	(0.0169)
Type of draws: Halton	0.3241***	0.2261***	0.2297***
Type of draws. Hatton	(0.0384)	(0.0195)	(0.0170)
	0.1803***	-0.3372***	-0.3736***
Design is: MIXL	(0.0333)	(0.0169)	(0.0147)
Design is: OOD	0.0426	-0.0124	-0.1082***
Desigli Is: OOD	(0.0346)	(0.0176)	(0.0153)
No. of CT is 9	0.6121***	-0.4829***	-0.0355**
	(0.0323)	(0.0164)	(0.0143)
No. of CT is 12	0.8894***	-0.3424***	0.2058***
10.01 C1 15 12	(0.0332)	(0.0168)	(0.0146)
No. of individuals is 800	0.4287***	-0.3001***	0.1334***
10. of individuals is 600	(0.0326)	(0.0165)	(0.0144)
No. of individuals is 1200	0.6811***	-0.4943***	0.2605***
10. 01 marviduais is 1200	(0.0329)	(0.0167)	(0.0145)
Log of No. of draws	-0.6387***	-0.5764***	-0.5587***
Log of No. of draws	(0.0076)	(0.0038)	(0.0033)
Parameter for mean		-1.4881***	-1.4266***
Tarameter for mean		(0.0136)	(0.0118)
80		0.3477***	0.1108***
54		(0.0176)	(0.0153)
Cost		-0.7951***	0.0302**
		(0.0176)	(0.0153)
\mathbb{R}^2	0.9346	0.8535	0.8704
Ν	783	7830	7830

Results – how many draws are 'enough'?

- -Using more draws is always better to using fewer draws
- -How many are 'enough' depends on the desired precision level
- -Log-likelihood:
 - Imagine you are comparing 2 specifications using LR-test (d.f. = 1)
 - Simulation error low enough to have 95% probability of not erroneously concluding that one model is better than the other
 - In other words, 95% of the times the (simulation driven) difference in LL must be lower than 1.9207 (at α = 0.05)
 - This is exactly what $MTL_{0.05}$ can be used for!

	400 x 4	800 x 4	1,200 x 4	400 x 8	800 x 8	1,200 x 8	400 x 12	800 x 12	1,200 x 12
<i>p</i> = 0.05	120	230	340	300	600	890	470	920	1,370
<i>p</i> = 0.01	300	575	850	750	1,500	2,225	1,175	2,300	3,425

Results – how many draws are 'enough'?

- Parameter estimates:

- No absolute difference level
- The numbers of draws required for 95% probability that the difference between parameter estimates :

	400 x 4	800 x 4	1,200 x 4	400 x 8	800 x 8	1,200 x 8	400 x 12	800 x 12	1,200 x 12
< 5%	2,050	1,220	870	890	530	380	1,130	670	480
< 1%	33,420	19,850	14,180	14,450	8,590	6,130	18,450	10,960	7,820

- More draws required for standard deviations, ASC, dummies, fewer required for means, cost
- Similar results for comparisons with models estimated using 1,000,000 draws

Using too few draws and identification problems – percentage of times z-statistics exceeded 1.96

"It must take ages to estimate models with so many draws!"

- Estimation time (1 iteration = LL function evaluation + gradient)

- Data set: 400 respondents x 4 choice tasks
- Intel E5-2687W @ 3.00 GHz (12-core) CPU (no GPU used!)
- Efficient code implementation (Matlab, <u>https://github.com/czaj/dce</u>)

Number of draws	1,000	10,000	100,000	1,000,000
Iteration time	0.2 s	1 s	10 s	100 s

Summary and conclusions

- We investigate the performance of the 4 most commonly used types of draws for simulating log-likelihood in the mixed logit model setting
- -We find Sobol draws consistently result in the lowest simulation error

Sobol draws recommended

 Conditional on our simulation setting, we find one needs more draws than typically used for 'reliable' estimation results

Use at least 1,000 (5%) or 10,000 (1%) draws

- mean of the minimums; samples with fewer observations require fewer draws for precise LL and more draws for precise betas, and vice versa
- Evidence of erroneous inference on significance (both ways), if too few draws are used