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Simulation error

‒ Discrete choice data
‒ Mixed (random parameters) logit models

‒ Estimation via simulated maximum likelihood method

‒ Simulating the value of the log-likelihood function
‒ Necessarily associated with simulation error

‒ Depends on the number and type of draws

‒ A different set of draws = somewhat different estimation results



Simulation error vs. the number of draws



Quasi Monte Carlo methods

‒ Quasi Monte Carlo methods reduce simulation-driven variation
‒ Halton sequence (Train 2000, Bhat 2001), 

‒ Sobol sequence (Garrido 2003)

‒ Randomized (t,m,s)-nets (Sándor and Train 2004)

‒ Modified Latin Hypercube (Hess, Train and Polak 2006)

‒ Lattice rules (Munger et al. 2012)

‒ Generalized antithetic draws with double base shuffling (Sidharthan and 
Srinivasan 2010)

‒ Shuffling, scrambling sequences (Bhat 2003, Hess, Polak and Daly 2003, Hess 
and Polak 2003, Wang and Kockelman 2008)



Pseudo-random vs. Halton sequence



Halton vs. scrambled Halton sequence



Gaps in existing evidence

‒ What is the extent of the simulation bias resulting from using different 
numbers of different types of draws in various conditions (datasets)?

‒ Shortcoming of the existing studies:
‒ Low numbers of QMC draws (≤ 200)

‒ Low number of repetitions for each type and number of draws (≤ 10)

‒ Results likely to depend on the number of observations (individuals, choice tasks per 
individual)

‒ Examples of 100 Halton draws leading to smaller bias than 1,000 pseudo-
random draws (e.g., Bhat, 2001) have led some to actually use very few draws 
for simulations

‒ Using too few draws can lead to spurious convergence of models that 
are theoretically or empirically unidentified (Chiou and Walker 2007)

‒ Our study aims at filling these gaps



Design of our simulation study –
Choice task setting and explanatory variables



Design of our simulation study –
Choice task setting and explanatory variables



Methodology of comparisons

− We need a measure that takes expected values into account but also 
penalizes variance

− For typical equality tests – the larger the variance, the more difficult to reject 
the equality hypothesis

− Testing equivalence instead of equality
− Reverse the null and the alternative hypotheses

− Test if the absolute difference is higher than a priori defined ‘acceptable’ level

− Minimum Tolerance Level (MTL)
− What is the minimum ‘acceptable’ difference that allows to conclude that two 

values are equivalent at the required significance level

− How many draws of type A are required, so that with 95% probability the 
difference in LL / estimates / s.e. / z-stats is not going to be statistically 
different than:

− The critical value of the LR-test

− If the model was estimated using n draws of type B



Example – using MTL for the values of the LL function

− Re-estimating the model using a different set of draws is likely to 
result in a somewhat different value of the LL function

− If LL is used for inference (e.g., LR-test), it is possible to conclude that 
one specification is superior to another only because one was more 
‘lucky’ with the draws

− By using the MTL approach we are able to evaluate the probability of 
such an outcome

− Assume α = 0.05, the interpretation of MTL0.05 is that with 95% probability 
using a different set of draws would not cause the difference in LL values to be 
higher than MTL0.05

− We can provide recommendations for the minimum number of draws that 
would result in MTL0.05 lower than the specified level

− E.g., the critical value of the LR-test – probability of erroneously concluding that one 
model is preferred to another (because of simulation error) is lower than a desired 
significance level, e.g., 0.05



Results – relative performance of types of draws

− Example: MTL0.05 of LL for MXL-design, 400 x 4:



Percentage of times each type of draws resulted in the lowest 
simulation error (MTL0.05) for the log-likelihood function value

Number of draws used Pseudo-random MLHS Halton Sobol

100 0.00% 0.00% 18.52% 81.48%

200 0.00% 0.00% 29.63% 70.37%

500 0.00% 0.00% 22.22% 77.78%

1,000 0.00% 0.00% 25.93% 74.07%

2,000 0.00% 0.00% 0.00% 92.59%

5,000 0.00% 0.00% 11.11% 81.48%

10,000 3.70% 3.70% 0.00% 81.48%



Percentage of times each type of draws resulted in the lowest 
simulation error (MTL0.05) for parameter estimates

Number of draws used Pseudo-random MLHS Halton Sobol

100 0.00% 0.37% 42.96% 56.67%

200 0.00% 0.00% 33.33% 66.67%

500 0.00% 0.00% 31.11% 68.89%

1,000 0.00% 0.00% 31.48% 68.52%

2,000 0.00% 0.00% 14.44% 78.15%

5,000 0.00% 0.00% 17.78% 74.81%

10,000 3.70% 3.70% 5.56% 75.93%



Percentage of times each type of draws resulted in the lowest 
simulation error (MTL0.05) for z-stats

Number of draws used Pseudo-random MLHS Halton Sobol

100 0.00% 0.37% 48.15% 51.48%

200 0.74% 1.85% 34.07% 63.33%

500 0.37% 2.22% 32.22% 65.19%

1,000 0.74% 1.85% 26.67% 70.74%

2,000 0.00% 4.44% 22.59% 65.56%

5,000 3.70% 1.11% 19.26% 68.52%

10,000 3.70% 3.70% 5.19% 76.30%



Results – Sobol draws consistently perform best

− Percent of additional draws needed to achieve the same simulation 
error as Sobol draws:

* Based on regression analysis

Pseudo-random MLHS Halton

LL
889%

[776% - 1,020%]
305%

[258% - 360%]
66%

[47% - 87%]

Parameter estimates
361%

[331% - 392%]
209%

[189% - 232%]
48%

[38% - 58%]

z-stats
347%

[321% - 375%]
200%

[182% - 219%]
51%

[42% - 60%]



Results – regression results
Dependent variable: log(MTL)



Results – how many draws are ‘enough’?

−Using more draws is always better to using fewer draws

−How many are ‘enough’ depends on the desired precision level

−Log-likelihood:
− Imagine you are comparing 2 specifications using LR-test (d.f. = 1)

− Simulation error low enough to have 95% probability of not erroneously 
concluding that one model is better than the other

− In other words, 95% of the times the (simulation driven) difference in LL must be 
lower than 1.9207 (at α = 0.05)

− This is exactly what MTL0.05 can be used for!

400 x 4 800 x 4 1,200 x 4 400 x 8 800 x 8 1,200 x 8 400 x 12 800 x 12 1,200 x 12

p = 0.05 120 230 340 300 600 890 470 920 1,370

p = 0.01 300 575 850 750 1,500 2,225 1,175 2,300 3,425



Results – how many draws are ‘enough’?

− Parameter estimates:
− No absolute difference level

− The numbers of draws required for 95% probability that the difference 
between parameter estimates :

− More draws required for standard deviations, ASC, dummies, fewer required 
for means, cost

− Similar results for comparisons with models estimated using 1,000,000 draws

400 x 4 800 x 4 1,200 x 4 400 x 8 800 x 8 1,200 x 8 400 x 12 800 x 12 1,200 x 12

< 5% 2,050 1,220 870 890 530 380 1,130 670 480

< 1% 33,420 19,850 14,180 14,450 8,590 6,130 18,450 10,960 7,820



Using too few draws and identification problems –
percentage of times z-statistics exceeded 1.96



“It must take ages to estimate models 
with so many draws!”

− Estimation time (1 iteration = LL function evaluation + gradient)
− Data set: 400 respondents x 4 choice tasks

− Intel E5-2687W @ 3.00 GHz (12-core) CPU (no GPU used!)

− Efficient code implementation (Matlab, https://github.com/czaj/dce)

Number of draws 1,000 10,000 100,000 1,000,000

Iteration time 0.2 s 1 s 10 s 100 s

https://github.com/czaj/dce


Summary and conclusions

‒ We investigate the performance of the 4 most commonly used types 
of draws for simulating log-likelihood in the mixed logit model setting

‒ We find Sobol draws consistently result in the lowest simulation error

Sobol draws recommended 

− Conditional on our simulation setting, we find one needs more draws 
than typically used for ‘reliable’ estimation results

Use at least 1,000 (5%) or 10,000 (1%) draws

− mean of the minimums; samples with fewer observations require fewer draws 
for precise LL and more draws for precise betas, and vice versa

‒ Evidence of erroneous inference on significance (both ways), if too 
few draws are used


