

Are people deterministic?

Exploring decision rules with the use of individual level models

Marek Giergiczny

mgiergiczny@wne.uw.edu.pl

Mikołaj Czajkowski

miq@wne.uw.edu.pl

Individual level models

- Modelling preference heterogeneity
 - Mixed logit and other sample-level models
 - Possible to recover respondent-specific posterior distributions
 - Estimating independent individual level (IL) models
 - A separate model (set of coefficients) for each individual
- This paper
 - ▶ IL models using maximum likelihood estimator
 - Reasons for the cases of non-convergence
 - Explore respondents' decision rules
 - Lexicographic, other deterministic
 - ▶ The influence of design (efficient, optimal-in-difference)

Elicitation formats used to deal with data intensity required for IL models

Full ranking

- Beggs et al. (1981), Chapman et al. (1984)
 - Significant improvement over specification with identical coefficients
 - Almost 50% of the IL models 'did not converge'
- ▶ Statistical differences in preferences across ranking stages even after controlling for the scale differences (Hausman and Ruud, 1987; Ben-Akiva et al., 1991)

Best-worst

- More consistent responses to extreme options (Flynn et al., 2007; Marley 2009)
- ▶ Louviere et al. (2008)
 - Optimal-in-difference design (Street et al. 2007) + weighted least squares estimator
- WLS estimator not efficient
- ▶ Best-worst elicitation does assure preference stability (Giergiczny et al., 2013)

Best choice

Data patterns and the existence of a finite ML estimator

- The problem of existence, finiteness and uniqueness of ML estimators
 - LL function of the MNL model is globally concave in β
 - Some cases ML estimate does not exist or is reached at the boundary of parameters space
- What can we expect?
 - Lexicographic preferences
 - No utility function to represent such preferences
 - ▶ Fully deterministic respondents

$$U_{ij} = \beta_1 X_{1ij} + \beta_2 X_{2ij} + ... + u_{ij} / \sigma$$
$$V_{ij} = \sigma \beta_1 X_{1ij} + \sigma \beta_2 X_{2ij} + ... + \varepsilon_{ij}$$

Data patterns and the existence of a finite ML estimator

- Patterns of data points
 - Complete separation

$$\bigvee_{t=1,\ldots,T} \bigvee_{l\neq Y_t} \beta'_{Y_t} X_t > \beta'_l X_t$$

Quasi-complete separation

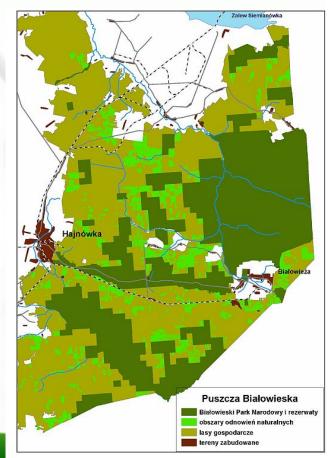
$$\bigvee_{t=1,\dots,T} \bigvee_{l\neq Y_t} \beta'_{Y_t} X_t \geq \beta'_l X_t$$

Overlap

$$\exists \exists_{t=1,\dots,T} \quad \exists_{l\neq Y_t} \quad \beta'_{Y_t} X_t < \beta'_{l} X_t$$

Patterns of data points LL functions and choice probabilities

- Complete separation
 - Respondents deterministic
 - One or more attributes enough to make <u>perfect</u> predictions
 - ▶ If no alternatives with the same levels in the choice sets and one attribute enough to make predictions lexicographic* preferences
 - Probabilities approach 0 or 1, LL approaches 0
 - Optimization algorithm does not converge
- Quasi-complete separation
 - As above but at least one choice situation in which equal choice probabilities
 - LL approaches some negative constant
 - Optimization algorithm does not converge


Patterns of data points LL functions and choice probabilities

Overlap

- Full overlap
 - Individual makes trade-offs for all attributes
 - Optimization routine converges
- Partial overlap
 - As above, but individual does not make trade-offs for at least one attribute (e.g., never chooses the SQ alternative)
 - Optimization routine does not converge
 - (e.g., LL can be made arbitrarily better by decreasing the SQ parameter)
 - Other (traded) parameter estimates ok (can be significant) and useful

Data

- Czajkowski, M., Bartczak, A., Giergiczny, M., Navrud, S., and Żylicz, T., 2014. Providing Preference-Based Support for Forest Ecosystem Service Management. Forest Policy and Economics, 39:1-12.
- ▶ The Białowieża Forest
 - Introducing passive protection to enhance the level of naturalness
 - National Park, and the nature reserves
 - Second-growth forest
 - ▶ Typical commercial forest
 - Restricting the number of visits
 - Cost (coercive, income tax)

National Park, and the nature reserves

- ▶ About 35% of the Białowieża Forest
- Remains practically unaffected by human activity
- ▶ ~100 m³ of dead wood / ha

Typical commercial forest

- ▶ About 50% of the Białowieża Forest
- Have been subjected to human activity and commercial use
- Management focused on sustainable timber production

Second-growth forest

- ▶ 15% of the Białowieża Forest clear-cut after the WW-1 and never reforested
- Area of natural regeneration natural dynamics and adaptation to local conditions

The sample, design and models

- ▶ The sample
 - Representative sample of adult Polish population
 - ▶ 1000 CAWI
 - 24 choice-tasks per respondent
- Design
 - ▶ 500 optimal-in-difference
 - 500 efficient design (optimized for the MNL model)
- Models estimated using 18 choice tasks (6 used as a hold-out sample)
 - Separate MNL model for each individual
 - Sample level MNL
 - Sample level MXL (all parameters normally distributed, correlated)

Results – data patterns in the sample

Туре		Attribute	No. of respondents	
Complete or quasi-complete separation		SQ	126	
	Lexicographic	Commercial	10	
		Second-growth	8	
	Other deterministic	2	128	
		3	131	
		4	68	
		5	13	
Overlap	Quasi-overlap		200	
	Full overlap		316	
Total			1000	

Who is deterministic? (binary logit)

	Lexicographic behavior	Deterministic behavior	
Constant	-1.480***	-1.316***	
Female	0.013	-0.179*	
Age	0.188**	0.010*	
Education	-0.189*	0.171*	
Income	-0.186	0.312	
Visitor	0.051	-0.090	
O-i-D	-0.241*	0.589***	

Performance of modelling approaches

	Estimation sample 18 CT		Hold-out sample 6 CT			
	LL	correct predict.	correct choice prob.	LL	correct predict.	correct choice prob.
MNL-ILM	-6150.5	0.84	0.81		0.75	0.71
MNL-sample	-18614.5	0.45	0.37	-6124.1	0.45	0.37
MXL-sample	-8818.9	0.79	0.70	-3443.5	0.75	0.66

- Not possible to calculate LL of MNL-ILM for hold-out sample
- Use likelihood function (not log-likelihood) for comparisons?

Summary and conclusions

- We investigated the possibility of using ML estimator for RUMbased individual-level models
 - ► Convergence problems (2/3 of the sample)
 - ▶ 48% of the sample deterministic decision rules
 - ▶ 20% of the sample do not trade on one or more attributes
 - ▶ 32% of the sample finite ML estimator exist
 - ▶ These are respondents who make errors!
 - Evidence of the influence of design type
- Using RUM-based IL models problematic
 - Provide a way to identify decision rules
 - Perform very well in predictions
 - Although only marginally better than the MXL model