

Warsaw University Warsaw Ecological Economics Center

Modeling the effects of information in random utility-based stated preference methods

Mikołaj Czajkowski <u>mig@wne.uw.edu.pl</u> Jacob LaRiviere jlarivi1@utk.edu

Nick Hanley n.d.hanley@stir.ac.uk

Introduction

- Contingent Valuation (CV) techniques (including DCE)
 - Detailed information about public or quasi-public goods
 - Elicit preferences / willingness to pay
- Providing additional / different information matters
 - Just like for goods and services traded in markets
 - Characteristics, substitutes, complements
 - How information is presented (framing)
- This paper theoretical and econometric framework for taking information differences into account in CV studies
 - Consistent with the notion of Bayesian updating
 - Additional information affects preference uncertainty
 - Information = experience, ...

Behavioral context

- Decisions under uncertainty
 - Uncertainty about one's preferences
 - Learn with each consumption event (*experience goods*)
- Modelling preference uncertainty for experience goods
 - Assume consumers have a true preference parameter
 - They learn about it through Bayesian updating
- Private goods
 - Agents' repeated purchasing decisions over time
- Public or quasi-public goods

Warsaw University Warsaw Ecological Economics Center

The literature

- Uncertainty about one's preferences, information effects
 - Nelson (1970, 1974) Journal of Political Economy
 - Stigler and Becker (1977) *The American Economic Review*
- Theoretical model of Bayesian updating
 - Ackerberg (2003) International Economic Review
 - ▶ Israel (2005) *The American Economic Review*
- Empirical interest in the context of experience goods
 - Erdem and Keane (1996) Marketing Science
 - Crawford and Shum (2005) Econometrica
 - ▶ Goeree (2008) Econometrica
 - Osborne (2011) Quantitative Marketing and Economics

Utility derived by individual *i* from a good *j* at time *t*:

$$U_{ijt} = \mathbf{\beta}'_{j} \mathbf{X}_{j} + \delta_{ij} + \varepsilon_{ijt}$$

- ► X_i characteristics of a good
- β_j marginal utilities associated with these characteristics
- $\mathcal{E}_{ijt} \sim N(0, \sigma_{\varepsilon}^2)$ idiosyncratic error term
- δ_{ij} individual fixed effect, consumer 'type', time invariant
 - $\delta_{ij} \sim N(0, \sigma_j^2)$ distribution of consumer types in the population
- Consumers are not certain what their type is

• Observe
$$\left(u_{ij}^{t} = \delta_{ij} + \varepsilon_{ijt}\right)$$

Learn about one's type by repeated purchasing decision

Warsaw University Warsaw Ecological Economics Center

Given the priors over one's type (δ⁰_{ij} ~ N(0, σ²₀)), posterior beliefs about type after K consumption experiences

$$\delta_{ij}^{K} \sim N\left(\frac{\sum_{t=1}^{K} \delta_{ij}^{t}}{\frac{\sigma_{\delta}^{2} + \sigma_{\varepsilon}^{2}}{\sigma_{o}^{2}} + K}, \frac{\sigma_{\delta}^{2} + \sigma_{\varepsilon}^{2}}{\frac{\sigma_{\delta}^{2} + \sigma_{\varepsilon}^{2}}{\sigma_{o}^{2}} + K}\right)$$

- Additional experience has ambiguous effect for the mean
 - Relative strength of a prior vs. additional experiences
- Additional experience reduces variance

Warsow University Warsow Ecological Economics Center

Warsaw University Warsaw Ecological Economics Center

- The effects of Bayesian updating
 - The magnitude of the deterministic relative to the idiosyncratic component of utility increases
 - The variance of that effect (between respondents) decreases

$$\operatorname{var}\left(\delta_{ij} + \varepsilon_{ijt} \middle| K\right) = \frac{\sigma_{\delta}^{2} + \sigma_{\varepsilon}^{2}}{\frac{\sigma_{\delta}^{2} + \sigma_{\varepsilon}^{2}}{\sigma_{0}^{2}} + K} + \sigma_{\varepsilon}^{2}$$

\$

Warsaw University Warsaw Ecological Economics Center

Random Utility Model Framework

Individual i's utility from choosing alternative j from a set of J_t alternatives available at time occasion t

$$U_{ijt} = \sigma_i \boldsymbol{\beta}_i' \mathbf{x}_{ijt} + \varepsilon_{ijt}$$

- **x**_{ijt} observed choice attributes
- β_i ~ f(b,Σ) marginal utilities associated with these attributes (individual-specific)
- $\sigma_i \sim LN(1,\tau)$ individual-specific scale parameter
 - Preference and scale are not separately identifiable
 - We interpret scale heterogeneity as a parameter which collects the effect for all the parameters simultaneously
- ε_{ijt} iid error term

Bayesian updating in RUM framework

- Account for unobserved preference and scale heterogeneity
- Econometric framework consistent with the notion of Bayesian updating:

$$\sigma_i \sim LN ig(1 + \mathbf{\Phi' z}_i \,, au + \mathbf{\xi' z}_i ig)$$

- Introduce observed scale heterogeneity
 - H: changes in scale (uncertainty) due to the differences in information levels
- Introduce observed scale variance heterogeneity
 - H: changes in scale variance (how differentiated the sample is in terms of their uncertainty) due to the differences in information levels

Empirical application

- DCE studies
 - Raptor conservation on heather moorland
 - 2 samples different information packs
 - Coastal water quality in Northern Ireland
- Different information levels
 - Experience used as a proxy of information level

Varsaw Unive Norsow Ec

Raptor conservation on heather moorland

- Alternative protection schemes for a top-level predator birds in managed moorlands
 - Alternative protection schemes of two species of birds of prey
 - Breed on heather moorlands in the Scottish uplands
 - Areas often managed for commercial grouse shooting
 - Feed on Red Grouse the main game bird for which the moorlands are managed

Red grouse

Raptor conservation on heather moorland

- Hen Harriers
 - Medium-sized bird of prey
 - Breed on heather moorlands in the uplands
 - Roughly 633 pairs in Scotland
 - Protected by law since 1954
 - Loss of their habitat, illegal persecution decline in their numbers
 - Can significantly reduce grouse numbers
 - Grouse shoots become uneconomical and close
 - Affect people relying on grouse shooting for jobs and income
 - Transform the moorland ecosystems

Hen harrier

Waxsaw University Warsaw Ecological Economics Center

Raptor conservation on heather moorland

Golden eagles

- Large bird of prey (2 m wingspan)
- Feed on small birds and mammals
- 442 pairs in the U.K. (440 in Scotland)
- Often found in Hen Harrier habitat
- Also top predators, subject to illegal persecution, particularly in managed grouse moors

Golden eagle

Raptor conservation on heather moorland

- The choice attributes and their levels
 - Population changes of Hen Harriers and Golden Eagles
 - Status quo management 20% population decline
 - Introducing new management strategies maintaining current populations, 20% increase in the new steady state
 - Monetary attribute
 - Cost of adopting a particular management strategy
 - Additional tax which respondent's household might have to pay annually if the government went ahead with selected option

Raptor conservation on heather moorland

The choice attributes and their levels

- Methods matter
 - Labeled CE alternatives associated with e.g. management options
- Alternative management options
 - Increasing the probability of detection of illegal persecution
 - Increasing police surveillance on grouse moors
 - Establishment of feeding stations
 - Providing alternative food sources to grouse
 - Establishing quotas for bird of prey densities on sporting estates
 - Physically moving eggs or chicks away from grouse moors to alternative locations
 - 'Status quo'
 - Maintaining current management

Case study 1 Raptor conservation on heather moorland

CHOICE A	DO NOTHING	LAW	FEED	MOVE
	Maintain	Stricter law	Feeding	Move eggs and
	current	enforcement	stations away	chicks to new
	management		from grouse	sites
	20%	Maintain	Maintain	Maintain
HEN HARRIER	population	current	current	current
	decline	population	population	population
GOLDEN20%EAGLEpopulationpopulationdeclinein	20%	20%	20%	20%
	population	population	population	population
	increase	decline	decline	
COST	£0	£50	£25	£25
YOUR CHOICE				
(please tick				
one only)				

Raptor conservation on heather moorland

- Two samples of the general public
 - Differ only in the nature of information provided
- Info pack 2 relative to pack 1
 - Moorland management depicted as more beneficial
 - Hen harriers depicted as less threatene
 - Golden eagles depicted in less detail and in a less "sympathetic" way

Expected result:

- Lower levels of willingness to pay for both hen harriers and golden eagles
- Greater willingness to choose a management option rather than the status quo in study 2 as compared to study 1

Case study 2 Coastal water quality in Northern Ireland

- Changes to the EU Bathing Water Directive in 2015
 - Environmental monitoring data collected
 - Set targets and standards
 - Current good standard to become the future mandatory standard
 - Current excellent becomes the good standard
 - Future excellent twice as strict
- DCE used to investigate preferences for these kind of water quality / beach quality improvements
- Three parallel surveys in four countries
 - "Active" beach users surveyed in Ireland only

Case study 2 Coastal water quality in Northern Ireland

- Attributes
 - Human Health risk
 - Following the directive, current good standard identified to have a 10% risk of stomach upsets
 - Beach Debris management
 - Seen as important in earlier studies
 - Benthic health
 - Nutrient cycle will be affected, and therefore the ecological condition of sea bed
 - Impacts upon other species mammals, birds etc.
 - Costs
 - For recreational users an additional travel cost per trip to beach with higher standards
 - For off-site surveys council taxes

arsaw Ecological Economics Center

»

Case study 2 Coastal water quality in Northern Ireland

	Beach A	Beach B	Beach C
Benthic Health and population	Small increase More fish, mammals and birds. Limited potential to notice the change in species numbers	Large increase More fish, mammals and birds and an increased potential of seeing these species	No Improvement
Health Risk (of stomach upsets and ear infections)	Very Little Risk Excellent water quality	5% Risk Good water quality	10% Risk No improvement
Debris Management	Prevention More filtration of storm water, more regular cleaning of filters and better policing of fly tipping	Collection and Prevention Debris collected from beaches more regularly in addition to filtration and policing	No Improvement
Additional travel cost	£ 18	£ 67	£ 0
Please tick the <u>ONE</u> option you prefer			

Experience measures

- Raptor conservation study
 - visit log of the number of trips to the UK uplands in the last 12 months
 - (still control for 2 information treatments)
- Coastal water quality study
 - bdays log of the number of days spent on a beach in the last 12 months

	Raptor conservation study – experience accounted for	Raptor conservation study – experience not accounted for	Coastal water quality – experience accounted for	Coastal water quality – experience not accounted for			
Covariates of scale (ϕ)							
log(visit) or log(bday)	0.2796*** (0.0671)	-	0.0778** (0.0353)	-			
study	0.5991** (0.2753)	0.7208*** (0.2616)	-	-			
Scale variance parameter (τ)							
τ	7.3734*** (0.8755)	7.2005*** (0.9822)	1.1164*** (0.3896)	2.0094*** (0.4208)			
Covariates of scale variance (ξ)							
log(visit) or log(bday)	-0.0641*** (0.0122)	-	-0.4807* (0.2535)	-			
study	-0.2931*** (0.0565)	-0.2628*** (0.0496)	-	-			
Model characteristics							
Log-likelihood	-2732.4803	-2736.2703	-3112.6638	-3116.2321			
McFadden's pseudo R ²	0.4287	0.4279	0.3365	0.3358			
AIC/n	1.6368	1.6378	1.4492	1.4499			
n (observations)	3450	3450	4366	4366			
k (parameters)	91	89	51	49			

Experience-related distribution of individual scale parameters (log-normal distribution)

Raptor conservation study – implicit prices (GBP)						
	Model with experience related covariates			Model without experience related covariates		
	median	95%	s c.i.	median	95%	Sc.i.
LAW_1	21.83 (10.5519)	2.52 -	44.06	26.40 (12.3651)	5.25 –	53.27
FEED_1	17.00 (10.3418)	-1.65 –	38.97	25.29 (12.2705)	4.22 –	51.88
MOVE_1	14.99 (10.4744)	-4.08 -	37.01	23.47 (12.1938)	2.33 –	49.90
HH1_1	13.27 (5.4750)	2.59 –	24.22	16.59 (4.7052)	7.13 –	25.78
HH2_1	13.10 (4.9696)	3.08 -	22.59	16.26 (4.6003)	6.81 -	25.14
GE1_1	21.11 (5.8122)	9.64 –	32.35	24.72 (4.8489)	14.88 -	33.87
GE2_1	21.34 (5.7622)	9.74 –	32.27	25.71 (4.9880)	15.27 –	35.05
LAW_2	50.06 (12.8543)	28.58 -	79.02	46.21 (14.1695)	23.49 -	79.00
FEED_2	58.85 (13.2612)	37.17 –	88.98	53.54 (14.6885)	30.25 –	88.40
MOVE_2	58.65 (12.6048)	37.97 –	87.41	52.75 (14.6233)	29.37 –	87.24
HH1_2	20.86 (5.1928)	9.64 -	29.93	22.03 (5.5040)	10.59 –	32.17
HH2_2	20.03 (5.2451)	8.73 –	29.22	21.17 (5.1209)	10.55 –	30.66
GE1_2	30.58 (5.7398)	17.64 -	40.54	31.80 (5.7249)	19.61 —	42.24
GE2_2	33.21 (5.8140)	20.15 –	43.00	34.15 (5.8234)	21.70 -	44.73

Coastal water quality – implicit prices (GBP)

	Model with experience related covariates			Model without experience related covariates		
	median	95% c.i.		median	95% c.i.	
SQ	-2.59 (0.6543)	-3.88 –	-1.35	-2.78 (0.6884)	-4.10 -	-1.52
BH1	1.27 (0.2649)	0.77 –	1.83	1.26 (0.2675)	0.76 –	1.80
BH2	1.92 (0.3954)	1.19 –	2.75	1.84 (0.3842)	1.14 -	2.59
HR1	1.14 (0.3701)	0.41 -	1.87	0.94 (0.3719)	0.21 -	1.68
HR2	1.38 (0.4416)	0.49 –	2.24	1.19 (0.4589)	0.31 -	2.07
DM1	1.60 (0.3945)	0.81 -	2.39	1.49 (0.4322)	0.64 –	2.34
DM2	2.23 (0.3610)	1.43 –	2.91	2.25 (0.4434)	1.26 –	2.99

Summary

- Econometric framework consistent with Byesian udating
 - Framework for taking information differences into account
- Theoretical predictions observed
 - Additional information (experience) vs. scale
 - Additional information (experience) vs. scale variance
- Marginal changes in WTP
 - However, ranking of the most preferred options can change
- Convenient way of accounting for scale differences when combining datasets
 - Controlling for scale variances significant

Conclusions

- Datasets can vary in not only scale but also scale heterogeneity
- Measures of information differences (experience) impact the randomness of choice, and how it varies across people
 - Excluding these effects (mis-specification of the choice model) results in marginal bias only
- Future work
 - Combine (i) variation in ex ante and (ii) new information
 - Unfamiliar good (cold water corals in Norway)
 - Familiar (flood management in the UK)

Watsaw University Warsaw Ecological Economics Center