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1 Introduction

This  user  manual  and  reference  guide  describes  how to  use  the  Ngene  software  and  also  briefly
introduces the underlying methodology.

1.1 What is Ngene?

Ngene is  software for generating experimental designs that  are used  in  stated  choice  experiments
for the purpose of estimating choice models, particularly of the logit type. 

Ngene  is  distributed  by  ChoiceMetrics  (www.choice-metrics.com).  The  syntax  used  in  Ngene  is
similar to that used in Nlogit/Limdep.

1.2 About Version 1

Ngene 1  is  the  first  commercial  release  of  this  software.  It  has  a  modern  graphical  interface  and
state-of-the-art  methods for generating a wide range of experimental designs.  Ngene  allows  for  the
generation  of  orthogonal  designs,  optimal  orthogonal  designs  and  efficient  stated  choice  designs.
Ngene  1  supports  orthogonal  main  effects  only  designs  and  for  efficient  designs,  supports  main
effects  and interaction effects  for MNL, MMNL panel and cross  sectional  and  EC panel  and  cross
sectional models.  Ngene also allows for  constraints  and  nesting  of  attributes  for  different  types  of
designs. Ngene allows the user to open and read existing data, for example to evaluate designs that
may have been generated elsewhere. 

Ngene 1 also allows the user to build the HTML code for any design generated.  The user may take
an existing design (even one generated using other software) and build step by  step the HTML code
for  presenting  that  design.  The  user  will  have  to  write  their  own  code  to  capture  data  using  the
design,  however for those wishing to show clients  what  the experiment  might  look  like  in  practice,
this  feature  will  allow  for  a  quick  solution  without  having  to  first  write  the  complete  survey
themselves.

Point releases are released periodically as a free upgrade,  and add minor functionality  and fix  bugs.
The current  release is  Ngene 1.1.1.  Check the website to see if a more recent  version of Ngene  is
available.

1.3 Feature overview

Ngene is designed to be the single source of stated choice (SC) experimental designs.  As such,  it
has an extensive range of features and outputs. 

With Ngene you can:

Specify designs with great flexibility:
Generate  designs  with  any  number  of  choice  situations,  alternatives,  attributes  and  attribute
levels.
Maintain attribute level balance, or specify  that  an attribute must  occur an exact  number of times

http://www.choice-metrics.com
http://www.choice-metrics.com
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or between a minimum and maximum number of times.
Dummy and effects code attributes.
Specify logical rules to limit what attribute levels can coexist in a choice situation.
Interrogate design level correlations as  calculated using a range of correlation  formulas  (Pearson
product moment, G index, J index, Spearman rank, Point biserial, CP coefficient, H index).

Generate full and fractional factorial designs.

Generate orthogonal designs:
Maintain orthogonality either across or within alternatives.
Obtain orthogonal designs for a very large range of design dimensions.
Add blocking and foldover columns.
Generate optimal orthogonal in the differences designs.
Find the most efficient orthogonal design.

Generate efficient designs:
Report and optimize on efficiency measures including d, a, s (sample size), b (utility balance), and
wtp (willingness to pay).
Report and optimize on efficiency measures for multinomial logit (MNL) models, mixed multinomial
logit  (MMNL) models  (panel and cross sectional) and error components  (EC)  models  (panel  and
cross sectional).
Account for prior uncertainty with normally and uniformly distributed Bayesian priors.
Report and optimize on the Bayesian mean, median, minimum, maximum and standard deviation.
Draw Bayesian and random parameter distributions with random, Halton,  Sobol and MLHS draws,
as well as Gaussian quadrature.
Optimize on more than one model and error measure type using model averaging.
Search for efficient designs using the pair swapping, RSC and modified Federov algorithms.
Report utilities, probabilities, the Fisher matrix and the covariance matrix for each model type.

Generate formatted HTML mockups:
Format the scenarios  by  placing design levels,  text  and radio buttons wherever you  like  within  a
table.
Format or relabel design levels for presentation.
Apply cascading style sheets (CSS) to instantly modify the appearance of the formatted scenarios
(CSS files included, or create you own).
View the mockups directly within Ngene.

Interact with a modern user interface that maximizes flexibility:
Open and evaluate existing data files and designs.
Open  files  independently  in  the  workspace  or  maintain  syntax,  data  and  output  files  within  a
project.
Retain all syntax runs and associated outputs during a session.
Interrogate any design found during a search.
Report design properties as needed - no need to decide what to report before the syntax  runs,  and
no calculation of unnecessary properties during the search.
Easily  view any number of user  selected  design  properties  in  a  grid,  and  copy  directly  to  other
applications including Microsoft Excel.

and do much more...
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1.4 Overview of this manual

This  manual is  arranged so that  the functions you are most  likely  to use are the ones you will  find
documented first. We have attempted to be concise, where possible substituting hands-on examples
for  lengthy  prose  about  particular  aspects.  Nonetheless,  in  order  to  be  complete,  this  manual  is
necessarily longer than we would have hoped.  In spite of this,  first  time users  should take the time
to skim the first few paragraphs of each chapter before beginning serious use. 

This manual is broken into chapters:

Chapter 1 "Introduction" gives a brief introduction to the capabilities  of Ngene,  and the contents  of
this manual.
Chapter 2 "Installation and Setup" provides instructions for the installation and setup of the Ngene
software.
Chapter 3 "The Ngene Workspace" explores  the graphical  operating  environment  and  its  various
components.
Chapter 4 "Ngene Syntax" is an introduction to the structure of the syntax that the analyst uses to
control Ngene.
Chapter 5 "Introduction to Experimental Design Theory"  provides  an  introduction  to  experimental
design theory. It is recommended to read this chapter before reading subsequent chapters.
Chapter 6 "Orthogonal Designs" discusses the theory  of orthogonal designs,  and guides the user
through the construction of various types of orthogonal designs in Ngene.
Chapter  7  "Efficient  Designs"  introduces  the  theory  of  efficient  designs,  and  demonstrates  the
basic features of efficient design generation in Ngene.
Chapter  8  "Advanced  Features  in  Generating  Efficient  Designs"  describes  some  state-of-the-art
design generation techniques that can be utilized in Ngene.
Chapter  9  "Designs  With  Continuous  Attribute  Levels"  examines  designs  that  allow  some
attributes to have continuous attribute levels.
Chapter 10 "Formatting Experiments"  explores  the  tools  that  Ngene  provides  for  creating  HTML
survey mockups using the generated experimental designs.
Chapter  11  "Syntax  Reference"  outlines  in  detail  the  permissible  syntax  of  each  of  Ngene's
commands and properties.
Chapter 12 "Endnotes" contains endnotes from the entire manual.
Chapter 13 "References" lists all references cited in the manual.

Key concepts. Some pieces of information are very important. To make them stand out from the
rest of the documentation, these 'key concepts' will be presented in a yellow box such as this
one.
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2 Installation and Setup

2.1 Installing Ngene

Ngene is a Windows based program (there is no Macintosh version). As of version 1.0.2,  Ngene can
run on computers installed with 64 bit versions of Windows.

To install Ngene:

1. Install .NET 3.0, if necessary
Ngene requires .NET 3.0 to run.  If you do not  already have .NET 3.0 installed,  you can download
the latest version from the Microsoft website.  If you are uncertain if .NET 3.0 is  installed,  attempt
step 3 - an error message will be shown if .NET 3.0 is not installed.

2. Obtain the Ngene installer.
Download  the  installer  EXE  file  from  www.choice-metrics.com/download.  The  file  is  large  -
approximately 80MB.

3. Navigate to and run the setup program
Run  the  program  'Ngene  setup.exe'.  You  can  change  the  installation  location  if  you  wish,  and
install for either all users of the computer, or just yourself.

One screen of the setup program

http://www.microsoft.com/downloads/details.aspx?familyid=10cc340b-f857-4a14-83f5-25634c3bf043&displaylang=en
http://www.choice-metrics.com/download
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4. Run Ngene
A shortcut  called 'Ngene' will  have been placed on your desktop,  and a further shortcut  will  have
been placed in your Start Menu. Open either of these shortcuts, and Ngene will run.

5. Activate Ngene
If you purchased your copy of Ngene,  refer to the section License activation and management for
information on how to activate  your  copy  of  Ngene.  Otherwise,  Ngene  will  run  as  an  evaluation
version.

2.2 Evaluation version

Until you activate Ngene, Ngene will run as an evaluation version. Ngene can only  be activated if you
have purchased the software. If you have purchased the software,  refer to the next  section,  License
activation and management, for details on how to activate Ngene.

We have provided the evaluation version to allow you to see how Ngene works,  and experience first
hand all  of  the  features  that  it  provides.  You  can  pass  the  software  on  to  others  freely.  The  only
limitation in the evaluation version is  that  all  design values will  appear  as  "0",  with  the  real  design
levels being obfuscated. All other functionality will be complete.

2.3 Purchasing Ngene

Ngene can be purchased securely online through PayPal, or by bank transfer.  For up to date details
on how to pay, including current pricing, visit www.choice-metrics.com/purchase.

2.4 License activation and management

Single licenses of Ngene allow the software to be used on at  most  two computers.  We understand
that many people want a copy for their desktop computer and for their laptop.

The full  version of Ngene is  activated using a license ID  and  password  provided  by  ChoiceMetrics,
with the software being locked  to  a  single  computer  after  activation.  Moving  the  software  with  the
license  file  to  another  computer  will  cause  Ngene  to  revert  to  the  evaluation  version  on  that
computer.

Note  that  purchasing  Ngene  is not  instantaneous.  We  will  need  to  check  that  payment  has
cleared before we send you your password.  Please do not  leave the purchase of Ngene to the last
minute if you need it for a project.

There are two mechanisms for activating Ngene: online activation and manual activation. We strongly
recommend online activation, as it is faster and more convenient. If however you do not  have internet
access on the computer you wish to activate, you may need to manually  activate the software.  Both
methods are described below.

http://www.choice-metrics.com/purchase
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Online activation

1. Purchase Ngene. We will email you a receipt, a license ID, and a password.

2. If you have not already done so, download Ngene from the ChoiceMetrics  website at  www.choice-
metrics.com/download and install the software.

3. Run Ngene.

4. From the Help menu, select ‘Online Activation’. A dialog box will appear, similar to that below.

The online activation dialog box

5.  Enter the license ID and password provided to you when you purchased Ngene.  If you have  lost
these  details,  email  sales@choice-metrics.com  and  we  will  send  through  the  details  again.  Your
software should now be activated.

Manual activation

1. Purchase Ngene.

2. If you have not already done so, download Ngene from the ChoiceMetrics  website at  www.choice-
metrics.com/download and install the software.

3. Run Ngene.

4. From the Help menu, select ‘Manual Activation’. A dialog box will appear, similar to that below.

http://www.choice-metrics.com/download
http://www.choice-metrics.com/download
mailto:sales@choice-metrics.com
http://www.choice-metrics.com/download
http://www.choice-metrics.com/download
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The manual activation dialog box

5. Email sales@choice-metrics.com with ‘User Code 1’ and ‘User Code 2’.

6.  We will  reply  with an  activation  code.  Run  Ngene.  From  the  'Help'  menu,  again  select  ‘Manual
Activation’. Enter the activation code into the field 'Reg Key 1:'.  Your copy of Ngene should now be
activated.

Note that the user codes will sometimes reset  before the user codes can be entered.  You will  need
to email us  again with the updated user codes.  This  issue is  outside of our control,  and is  another
reason why online activation is preferable. 

What if I change computers?

If you received a licence ID and password for online activation (i.e.  you purchased the software after
late 2009),  the same details  will  allow you  to  activate  Ngene  after  you  have  upgraded  or  changed
computers.  If  the  activation  fails  due  to  insufficient  activations  being  available,  email
contact@choice-metrics.com. If you purchased Ngene in 2009, you may not have received a license
ID and password. Email contact@choice-metrics.com to obtain these details.  Alternatively,  you can
request a manual activation.

If  you  have  merely  upgraded  a  part  of  your  computer,  it  is  unlikely  that  you  will  need  a  new
activation, although this  is  a possibility.  For example,  updating the operating system or installing a
new hard drive is unlikely to cause any problems.

What if I uninstall Ngene?

If  you  uninstall  Ngene,  the  license  file  "Ngene.lf"  will  be  left  in  the  folder  in  which  Ngene  was
installed. So long as  this  file is  left  in place,  future installations of Ngene to the same folder on the
same computer will not need activation. It is strongly recommended that  you create a backup of the
"Ngene.lf" file.

mailto:sales@choice-metrics.com
mailto:contact@choice-metrics.com
mailto:contact@choice-metrics.com
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2.5 Uninstalling Ngene

Navigate to the Control Panel, and open 'Add or Remove Program'.  Select  'Ngene' from the list,  and
then its associated 'Remove' button.
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3 The Ngene Workspace

This  chapter  will  explain  how  to  navigate  within  and  operate  the  Ngene  workspace.  Ngene  is
primarily  command  driven,  where  the  commands  are  stored  in  a  syntax  file  and  entered  via  the
user’s  keyboard.  However,  the  rest  of  Ngene  utilizes  a  rich  graphical  user  interface  (GUI),  the
components of which are described in this chapter.

3.1 Workspace overview

Upon starting Ngene, a blank workspace will appear as below. Initially,  the workspace consists  only
of a menu bar and a toolbar with buttons.  When performing  tasks  within  Ngene,  new windows  will
appear within the workspace. 

The Ngene workspace as it appears on startup

The  windows  can  be  minimized,  so  that  the  window appears  at  the  bottom  of  the  workspace  as
shown below.

Windows minimized within the workspace
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Various files can be opened and represented within Ngene as windows, including:
Ngene project files
Ngene syntax files
Ngene design files
Excel files
Comma separated files

Of these files,  only  one project  can be open at  any one time.  There is  no limit  to how many of the
remaining file types can be open within the main operating environment.

A key distinction can be made within Ngene between a managed and an unmanaged workspace.

A managed workspace is controlled by an open project. All new files  created will  automatically  be
added to the project  folder,  and files  external to the project  that  are opened will  be copied to the
project's folder.

An unmanaged workspace exists  when no project  is  open.  All  new files  will  not  be  stored  until
they are saved explicitly, and files will be opened from their original location.

The  choice  of  which  type  of  workspace  to  use  will  depend  on  the  user's  preferences,  and  the
number of files and designs they wish to work with.

The following sections outline the files that can be opened,  their purpose,  and how they are handled
and visualized within Ngene.
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3.2 Syntax windows and files

Whilst some functionality  can be invoked in Ngene via the menus,  syntax  is  the primary  method of
controlling the program. Syntax is  entered as  plain text  into a syntax  window, an example of which
is below. To run syntax, the syntax  window that  contains  the relevant  syntax  must  be made active,
and the Run menu item selected. The results of the run will be displayed in the Output window.

An empty syntax window

A description of the structure of Ngene syntax  is  covered in Ngene Syntax,  together with  a  simple
example. The syntax is introduced across several chapters, and the manual also contains  a Syntax
Reference chapter.

Syntax files

Ngene syntax  is  stored in syntax  files,  which have a .ngs suffix.  These are plain text  files,  and  so
are portable and can be opened by a wide range of programs.  However,  Ngene registers  these files
so that they will open in Ngene by default. The File menu section describes how syntax  files  can be
created, opened and saved.

When a syntax file has not been saved since changes were made,  a star will  appear next  to the file
name in that file's syntax window (see below).

A syntax file that has had changes since it was last saved
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3.3 Data windows and files

Various functions in Ngene may require that  the user  access  data  files.  For  example,  the  analyst
may wish to evaluate an existing design stored in an Excel file.

The current release version of Ngene supports the access of Excel files  (including the new .xlsx  and
.xlsm file formats),  comma separated (CSV) files,  semicolon delimited files,  and tab delimited files.
Data file access is read-only, so the data can be viewed within Ngene and used by the routines,  but
may not be modified. Memory permitting, any number of datasets can be opened simultaneously.

The File menu section describes how data files can be opened.

Below is a screenshot of an Excel file containing a design that has been opened with Ngene.

An Excel file displayed within Ngene

If the data file represents  a design,  and is  to be used with the eval  or start  properties,  the columns
need to exist in a specific order. The first column contains  the design number.  In most  cases,  there
will just be a single design.  In this  case,  all  rows should contain the value 1.  If D designs are to be
evaluated,  perhaps for a heterogeneous design,  then  the  designs  should  appear  in  order,  with  the
first column containing values 1...D. The second column contains  the choice situation number.  One
choice situation should be specified per row, with the values increasing from 1 to S  in order for every
design  (where  there  are  S  choice  situations  per  design).  The  remaining  columns  contain  the
attributes,  and should be specified in the same  order  as  the  attributes  are  declared  in  the  syntax
that will be used to evaluate the design. Note that constants in a utility expression are not treated as
attributes, and should not be stored in the data file. The above example contains a single design with
12 choice situations and eight attributes.

Ngene can either treat the first row in the data file as a header, or the first row of actual data.  For the
former, the first row should contain names for each column, and the actual data should be specified
from the second row. For the later,  no column names need to be specified,  and the data can begin
from the first  row.  To change this  setting,  select  Session  Options  or  Permanent  Options  from  the
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Tools  menu,  and select  the General tab (see below for  the  relevant  part  of  this  screen).  Check  or
uncheck the "With column headers" check box. All data files will be opened with this setting.

Preferences for changing how data files are read

When opening a CSV file,  the file can be seperated by  commas (the default),  semicolons,  or tabs.
To change  this  setting,  select  Session  Options  or  Permanent  Options  from  the  Tools  menu,  and
select  the General tab (see above for the relevant  part  of this  screen).  All  data files  will  be  opened
with this setting.
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3.4 Output window

When  syntax  is  run,  results  are  accessed  from  the  Output  window,  shown  below.  The  Output
window is not initially visible, but will automatically open the first time syntax is run in a session.

The Output window

The Output window consists of several parts, listed below. 

Session History

On the left,  the  session  history  is  stored.  Each  time  syntax  is  run,  a  new row will  appear  in  the
Session  History  list.  The  row,  which  represents  a  single  syntax  run,  contains  several  fields  of
information:

Command: the main command that was run.
Time: the time the run commenced.
Status: running, paused, or stopped. Note that only one routine may be run at  a time.  Hence,  the
user cannot pause one routine and start a second.
Syntax: the syntax that was run. Placing the curser over a cell  in this  column will  produce a pop-
up box that shows the full syntax used for that routine.
Comments:  the user may type personal comments  here that  may be useful for future reference.
Also, if an error occurs when the syntax is parsed, Ngene will place the word ‘Error’ here.  In doing
this,  the  user  will  quickly  be  able  to  see  that  the  routine  for  that  syntax  is  not  running  and
hopefully be able to diagnose the problem. 
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The Session History

The user may wish to remove previous syntax  runs to free memory.  This  can be done in one of two
ways:
1. The user may press the ‘Clear entire session history’ button  located  below the  Session  History

list. This will clear all syntax runs that are not running and free the associated memory. 
2. The user may remove a single syntax  run by  right  hand clicking on any cell  of the corresponding

row in the Session History list, and selecting 'Remove' from the popup menu, as shown below. 

Removing a single syntax run

Note that once removed, a syntax run cannot be retrieved. That is, the undo button will  not  retrieve a
removed run.  However,  any designs that  were added to  the  project  or  opened  in  a  Design  window
prior to the removal of the run will still be accessible.

Selecting a syntax  run in the Session History  load  that  run's  output  on  the  right  hand  side  of  the
window. Each syntax run is described by two tabs: the Design History tab and the Syntax tab.
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Iteration History tab

The  top  of  the  Iteration  History  tab  contains  a  list  of  all  designs  found  so  far  in  the  syntax  run.
Sometimes only a single design will be found, at other times there may be very many designs found,
as below.

Very important: To open a design window and  examine  the  properties  of  the  design,  including
the design levels, double click on a row in the iteration history.

The Iteration history

Each row in the list represents a single design. Three properties of the design are displayed:
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Evaluation:  this  indicates  how many  designs  have  been  evaluated  in  the  search  to  get  to  this
design state.
Time: the time and date that the design was found.
A performance  measure  (optional):  the actual measure (and so the column heading) will  vary
depending on the syntax.  For example,  efficient  designs will  report  the  efficiency  measure  being
optimized (e.g. MNL d error in the example above), but  orthogonal designs will  not  report  anything
for this field.

The information in the row is  only  a small subset  of all  the available properties  of the design that
can be reported. This information is presented in a separate window, the Design window. To open
this  window and  examine  this  information,  double  click  on  the  row  of  the  design  you  wish  to
examine. See Design windows and files for more information on Design windows. 

Some rows may grey  out.  This  means that  the design has been deleted and is  no longer available.
While  in  Ngene  attempts  to  make  as  much  information  available  as  possible,  some  designs  can
consume  a  large  amount  of  memory,  and  the  deletion  of  old  designs  is  a  strategy  for  preventing
Ngene from running out of memory. The first  design is  always retained,  and then the N most  recent
designs are also retained, where N is an integer that can be configured from the Options dialog box,
or specified in syntax.  Also,  all  designs can be specified to be retained.  The syntax  for both these
options is:

;store = N
;store = all

Designs can be added to the current  project  if it  is  open.  This  can either be done  from  the  Design
window, from the Add button in the toolbar, or from the design history  list.  To perform the later,  right
click  on any  retained  design,  and  select  'Add  design  to  project'  from  the  popup  menu,  as  shown
below.

Adding a design to the project from the Iteration History list

The bottom of the Iteration History  tab contains  a scrolling text  area called 'Trace'.  This  text  area is
used by Ngene to provide a variety of feedback to the user, including, but not limited to:

Syntax error messages that will prematurely terminate a run.
Warnings that alert the user to potential problems, but will not terminate a run.
Notifications of assumptions made from a syntax specification.
Information providing updates on algorithm progress.

A  significant  effort  has  been  made  by  Ngene's  authors  to  provide  meaningful  error  messages.
However, the authors welcome your feedback and suggestions on unclear messages. 

The bottom of the Iteration History  tab also presents  the 'Current  evaluation' number.  This  can help
reassure  the  user  that  a  search  is  still  running  when  an  improved  design  has  not  been  found  for
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some time. The 'Current  number of invalid designs' reports  how many designs have been found that
have  had  to  be  discarded  due  to  a  problem  with  the  evaluation  of  the  design.  For  example,
sometimes the calculation of a Bayesian efficient design results in a singular Fisher matrix.  A small
number of discarded designs can usually  be tolerated,  but  a large number is  symptomatic  of some
underlying problem, and should be investigated by the analyst.
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Syntax tab

The Syntax  tab displays  a  read-only  copy  of  the  syntax  that  was  used  for  the  currently  selected
syntax run.

The Syntax tab
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3.5 Design windows and files

The design window contains  all  available  information  about  a  design.  It  can  be  opened  by  double
clicking on a row in the iteration history of the output window. 

The title contains several pieces of information:
A performance measure (optional): If relevant, a performance measure. The actual measure will
vary  depending on  the  syntax.  For  example,  efficient  designs  will  report  the  efficiency  measure
being optimized (e.g.  MNL d error in  the  example  below),  but  orthogonal  designs  will  not  report
anything for this field.
The evaluation number: this indicates how many designs have been evaluated in the search to
find this design.
The syntax filename: the syntax file that was run to generate the design.

The design window itself contains three tabs, described below.

Properties tab

The Properties tab, shown below, contains two key components. 

The tree structure: On the left is a tree structure that provides a list  of properties  of the design that
can be reported. Related properties are grouped together, and the actual properties available will  vary
depending  on  the  syntax  of  the  design.  The  tree  structure  can  be  expanded  and  collapsed  by
clicking  on  the  plus  (+)  and  minus  (-)  symbols  to  the  left  of  the  tree.  A  property  is  selected  for
viewing by  selecting its  corresponding check  box  in  the  'Show'  column.  Any  number  of  properties
can be selected for viewing.

The output grid:  On the right  is  a grid that  reports  each of the selected properties.  The properties
themselves  are  typically  tables,  and  the  grid  will  adjust  its  size  to  accommodate  all  selected
properties. The properties are listed in the grid in the order they were selected. Values in the grid are
read-only and cannot  be edited.  However,  the values may be copied and pasted into other software
packages such as Microsoft Excel or Microsoft Word.

When a design is  opened,  certain properties  are selected by  default.  The default  selection will  vary
according to the syntax. 

Many properties are calculated on the fly when they are selected. This prevents needless calculation
of properties  at  earlier  stages,  say  during  a  search.  However,  it  does  mean  that  some  properties
may  be  slow  to  display  once  selected.  Properties  that  are  known  to  frequently  be  slow  to  be
calculated will have '(slow)' listed next to their name. 

This section will not describe the actual available properties,  or the corresponding outputs  displayed
in the grid. These outputs will be described in later chapters  where appropriate.  However,  it  is  worth
noting that  the  design  matrix  will  always  be  available  (the  first  property  listed  below),  as  will  that
design's correlation structure.
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Properties tab of the Design window

Syntax tab

The Syntax  tab,  shown below, displays  a read-only  copy of the syntax  that  was  used  to  generate
the design, in addition to the name of the syntax file that was run to generate the design.
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Syntax tab of the Design window

Formatted scenarios tab

In addition to reporting the levels and various properties of the design,  Ngene provides a mechanism,
known  as  scenario  formatting,  for  applying  extensive  formatting  to  the  design.  The  results  are
presented in HTML, and the style of output can be rapidly transformed using cascading style sheets
(CSS files).  Choice matrices  of any size can be generated and  populated  with  arbitrary  text,  radio
buttons for capturing choice, and design levels, which can themselves be formatted and transformed
into  labels.  The  formatting  functionality  is  extensive,  and  is  described  in  Chapter  10  "Formatting
Experiments".

Scenario  formatting  is  accessed  through  the  Formatted  scenarios  tab  of  the  Design  window.  A
simple example is shown below.
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Formatted scenarios tab of the Design window

Design files

Ngene designs are stored as Ngene design files, which have a .ngd suffix.  These are plain text  files,
and can be examined by the curious. However, care must be taken if modifying an Ngene design file
yourself,  as  changes  may  cause  problems  when  the  file  is  opened  again  in  Ngene.  The  Ngene
design file is  registered in Windows on installation so that  they will  open in  Ngene  by  default.  The
File menu section describes how design files can be opened and saved.

It  is  worth noting that  .ngd files  do not  store all  possible  properties  of  the  design.  Instead,  the  file
only  contains  the  syntax  used  to  generate  the  file,  and  the  design  levels.  When  the  design  is
opened, the syntax is parsed and used to evaluate the stored design, making all properties available.
This has several advantages, including a small file size and the ability for future versions of Ngene to
report additional properties. The key disadvantage is that opening the .ngd file may be a little slow for
some complex designs.

Adding designs to a project

In addition to saving designs in isolation,  designs can be added to a project  that  is  currently  open.
From  the  Design  window,  right  click  anywhere  on  the  Properties  tab,  and  select  'Add  design  to
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project' from the popup menu,  as  shown below. Alternatively,  designs can  be  added  to  the  project
from the iteration history list of the Output window.

Adding the design to the current project

3.6 The unmanaged workspace

When  a  project  is  not  open,  Ngene  operates  with  an  unmanaged  workspace.  The  unmanaged
workspace treats files in the following way:

New syntax files are only stored after they are explicitly saved for the first time.
Design  windows  that  have  been  opened  from  the  Output  window are  only  stored  after  they  are
explicitly saved for the first time.
When syntax files, design files and data files are opened, the original version of the files are used.
Designs cannot be added to a project, as no project is open.

The unmanaged workspace can be useful in the following situations:
Only a small number of files are to be used.
A design file needs to be interrogated.
A simple search needs to be performed.

However,  an unmanaged workspace with many windows can quickly  become unwieldy,  and  in  this
case the user may wish to consider moving to a managed workspace by creating a project.
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3.7 Projects: the managed workspace

When  a  project  is  open,  Ngene  operates  with  a  managed  workspace.  The  managed  workspace
treats files in the following way:

New syntax files are automatically stored in the project's folder when they are created.
Design windows that have been opened from the Output  window can be added to the project  and
thus stored in the project's  folder.  However,  they are not  automatically  added to the project  when
they are opened.
When syntax files, design files and data files  are opened from outside the project's  folder,  a copy
of the file is made to the project's folder and this copy is used by the project.

The  unmanaged  workspace  can  be  useful  when  many  files  are  required  by  the  user.  Once  the
project  file is  created,  the user does  not  need  to  worry  about  where  the  project's  files  are  stored.
Only a single project  file needs to be opened to resume from where the user left  off in the previous
session.

The project window

The project  window (shown  below)  groups  files  in  three  categories:  Syntax,  Data  and  Output  (the
later contains  design  files).  Each  group  has  its  own  tab,  which  can  be  changed  by  selecting  the
appropriate button at the bottom of the project window.
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The Syntax Files tab of the project window

The Data and Output tabs of the project window

To open any file in the project as a window, click  the file once in the Project  window. The window
will  open,  or  if  it  was  already  open  it  will  come  into  focus.  The  window will  maximize  if  it  was
minimized.

Managing files in a project

Files  are  added  to  the  project  whenever  a  file  is  created  or  opened.  Additionally,  the  created  or
opened file is always stored in the project's folder.

To remove a file from a project, right click on the file in the project  window, and select  'Remove from
project' (see below). The file will  not  be deleted,  but  instead placed inside a subfolder of the project
folder, called 'Removed Items'. You may wish to delete the file yourself from this  folder,  especially  if
it is a large data file.

Removing a file from a project
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Files  in a project  can be renamed within Ngene.  Right  click  on  the  file  you  wish  to  rename  in  the
project  window,  and  select  'Rename'  (see  below).  Enter  the  new file  name  in  the  dialog  box  that
appears (see below).

Renaming a file in a project

If you open or create a new project  from an unmanaged workspace that  contains  open files,  Ngene
will ask you if you wish to move copies of the open files  into the opened or new project  (see below).
This is particularly useful if, say, your unmanaged workspace is getting too complex and you want to
consolidate all the files into a single project.

Option to add open files to opened or new project

The project file and its associated folder

Project files end in the suffix .ngp. However, since projects can contain many files,  Ngene creates  a
folder to store these in the  same  directory  as  the  .ngp  file.  If  the  project  file  is  called  'X.ngp',  the
associated folder will be called 'X project files'. If you copy a project to a different  location,  be sure to
copy both the .ngp file and the associated folder in its entirety.

The .ngp file is registered in Windows on installation so that it will open in Ngene by default.
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3.8 Menus

The following sections outline the options available from each of the menus in Ngene.

3.8.1 File menu

The file menu

New Project

Creates a new, empty project. 

If the current  project  is  unsaved or unsaved files  are open,  you will  be asked if you  wish  to  save
them.
If the workspace is currently unmanaged but files are open,  you will  be asked if you wish to move
copies of the files to the new project.
If syntax is executing, you will be asked if you wish to stop the execution.

New Syntax

Creates a new, blank syntax window. 

If the workspace is unmanaged, the syntax file will not be stored until it is saved for the first time.
If a project is open, you will  be asked for a file name, and the new syntax  file will  be listed in the
project and stored in the project's folder.

Open

Opens any of the following file types in Ngene:
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Ngene syntax files (.ngs)
Ngene design files (.ngd)
Ngene project files (.ngp)
Excel files (.xls), read only
Comma separated files (.csv), read only

If the workspace is unmanaged and you open a syntax,  design,  Excel or CSV file,  the file will  be
opened from its original location.
If a project is open and you open a syntax, design, Excel or CSV file,  the file will  be copied to the
project's folder and that copy will be opened.
If the workspace is  unmanaged with open files,  and you open a project,  you will  be asked if  you
wish to move copies of the files to the project that is being opened.
If the existing (managed or unmanaged) workspace contains  unsaved files  and you open another
project, you will be asked if you wish to save them.
If you open a project while syntax is running, you will be asked if you wish to stop the run.

The Open dialog box

Recently Used Syntax
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Recently Used Data
Recently Used Designs
Recently Used Projects

The most  recently  opened syntax,  data  files,  design  files  and  projects  will  be  listed,  and  may  be
opened quickly  with this  submenu.  The toolbar options open  the  most  recent  project,  syntax,  and
data files. An error message will be displayed if the file selected no longer exists.

Close

Closes the active window.

If the project  window is  closed,  but  the  project  contains  unsaved  files,  you  will  be  asked  if  you
wish to save them. 
If syntax is running, you will be asked if you wish to stop the run.

Save

Saves the active window in its current location. 

If the file has not yet been saved, a save location will be requested, as per Save As.

Save As

Saves a copy of the active window in the location you specify.

Exit

Exits  Ngene.  If you are running syntax,  you will  be asked if you wish to stop  the  current  run.  You
may also be asked if you wish to save any unsaved syntax files or projects.

3.8.2 Edit menu

The edit menu
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Undo

Undo  the  last  syntax  window modification.  Undo  only  works  with  syntax  modifications  -  no  other
actions can be undone.

Redo

Redo the last  undone syntax  window modification.  Redo only  works  with syntax  modifications -  no
other actions can be redone.

Cut

Cut the selected text.

Copy

Copy the selected text.

Paste

Paste the selected text.

3.8.3 Run menu

The run menu

Run ( / Pause / Resume )
The  Run  menu  item  starts  the  syntax  run.  Run  can  only  be  selected  when  a  syntax  window  is
active.  If  any  text  is  selected  in  the  syntax  window,  only  the  selected  text  is  run.  If  no  text  is
selected, the first command is run.

While  the  syntax  is  being  run,  the  Run  menu  item  changes  to  Pause.  If  Pause  is  selected,  the
syntax  run halts  temporarily,  and this  menu item changes to  Resume.  If  Resume  is  selected,  the
syntax run resumes. A syntax run can be paused and resumed any number of times.

Stop

Many syntax  runs will  execute for a long time or indefinitely.  A syntax  run  can  be  stopped  at  any
stage by selecting the Stop menu item. Stop can only be selected if syntax is currently being run.
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3.8.4 Tools menu

The tools menu

Check Syntax

Rather than run a piece  of  syntax,  you  may  wish  to  just  check  that  the  syntax  is  valid.  When  a
syntax  window is  active,  select  this  option  and  any  syntax  errors  will  be  reported  in  the  Output
window.

Permanent Options...
Session Options...

There exist  a number of settings and defaults  in Ngene  that  may  be  changed  by  the  user.  Ngene
allows users to change the defaults in two different ways. 

The  Permanent  Options dialog  box  allows  the  user  to  make  permanent  changes  to  the  various
settings which will be saved and retained across sessions. 

The Session Options dialog box allows the user to make changes to the various settings that  will
remain in effect only for a particular session. The settings will be retained until such time as the user
further changes the default values or until the program is closed.

Refer to the Options dialog box section for details of the actual settings that can be configured.

3.8.5 Window menu

The window menu allows you to navigate between all open windows.
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3.8.6 Help menu

The Help menu

Help

Opens the documentation in a Compiled HTML Help (CHM) file.

Manual

Opens the documentation as a single Acrobat (PDF) file.

Open demonstration project

Opens a copy of a demonstration project containing a collection of example syntax files.  The user is
prompted to select a location where the copy will be stored.

Activate Ngene

Allows  you  to  activate  Ngene  and  unlock  the  full  version.  For  more  information  refer  to  License
activation and management.

About

Provides specific  information on the current  installation of Ngene,  including the specific  version and
build number.  If you are reporting a bug or problem on the website,  please  quote  your  version  and
build number.

3.8.7 Options dialog box

There exist  a number of settings and defaults  in Ngene  that  may  be  changed  by  the  user.  Ngene
allows users to change the defaults in two different ways via the two options dialog boxes located in
the Tools menu. The Permanent Options dialog box allows the user to make permanent  changes to
the various settings which will  be saved and retained across sessions.  The Session Options dialog
box  allows  the  user  to  make  changes  to  the  various  settings  that  will  remain  in  effect  only  for  a
particular  session.  The  settings  will  be  retained  until  such  time  as  the  user  further  changes  the

http://www.choice-metrics.com
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default values or until the program is  closed.  The only  differences between the two dialog boxes are
the titles  and slight  differences to the functionality  of the Load Options button.  All  screenshots  will
use the Session Options dialog box, but the actual settings options will be identical.

The screenshot  below shows  the  basic  layout  of  the  Options  dialog  box.  On  the  left  are  links  to
various  pages  (e.g.  Draws  and  Algorithms),  which  are  grouped  under  a  heading  (e.g.  Designs).
Selecting one of these links  will  load the corresponding screen on the right.  The  'Restore  Defaults'
button  will  populate  all  settings  with  Ngene's  'factory'  defaults.  The  'Load  Options'  button  varies
between  the  two  settings  dialog  boxes.  In  the  Session  Options  dialog  box,  the  'Load  Permanent
Options'  button  will  populate  the  session  options  with  the  current  permanent  options.  In  the
Permanent Options dialog box, this same button is  called 'Load Session Options',  and will  populate
the permanent options with the current  session options.  Save will  apply  all  changes to the settings
and close the dialog box, while cancel will close the dialog box without making any changes.

Settings are described below, grouped by the page they appear on.
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General tab

The General tab of the Options dialog box

Store designs during search 
(default = 10)

When  generating  output,  Ngene  attempts  to  save  as  much  output  as  possible,  thus  allowing  the
user  to  see  how the  output  changes  over  different  iterations.  For  example,  in  generating  efficient
designs (see Chapter 7), multiple designs are generated and tested.  If a design is  found to be more
efficient,  Ngene will  store and save that  design.  Rather than throw away previously  stored  designs,
Ngene allows the user to store these as  well.  In this  way,  the user may view ‘less  efficient’ designs
for purposes of comparison.  Indeed,  the user may for  other  reasons  decide  to  use  a  less  efficient
design  if  so  desired.  Storing  large  numbers  of  designs  may  result  in  significant  memory  issues,
particularly  for  some  advanced  designs.  For  this  reason,  Ngene  allows  the  user  to  change  the
number of most recent designs that are stored. The first  design in a search will  always be stored.  It
is  also possible to allow all  designs to be  retained,  but  the  user  must  accept  the  risk  of  memory
issues.

Number precision
(default = 6)

This  settings allows the user to modify  the number of  decimal  places  reported.  While  calculations
are made with maximum precision internally, large numbers of decimal places can be unwieldy when
reported in the output. 
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Number of Recently Used Syntax
Number of Recently Used Data
Number of Recently Used Designs
Number of Recently Used Projects
(default = 6)

This alters the maximum number of most recently used syntax/data/designs/projects available in the
 File menu.

Open data files with column headers

Change whether Ngene will look for a header row when opening a data file (checked), or start  reading
the data from the first row (unchecked). All data files will be opened using this setting.

Formatting type for CSV files

Specify what character is used to delineate cells  when opening CSV files:  commas,  semicolons,  or
tab characters. All CSV data files will be opened using this setting.

Draws tab

The Draws tab of the Options dialog box
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Default to
(default = Halton)

Sets the default type of draws to use for either Bayesian or Random draws.

Number of draws
(default = 200)

Sets the default number of draws for each draw type.

In most software packages that use simulated draws the default number of simulated draws is  fixed.
In Ngene, the user is  able to change the default  number of draws for each draw type.  For functions
that require the use of simulated draws (for example,  Bayesian efficient  designs),  if the user fails  to
specify the number of draws, Ngene will use the default number of draws specified here. 

Remove first rows
(default = 10)

Specifies how many initial rows to remove from the table used for the corresponding draw type.

Many types of draws, often referred to as intelligent or quasi random Monte Carlo draws (e.g.,  Halton
sequences)  are  nothing  more  than  tables  of  generated  probabilities.  These  types  of  draws  are
constructed  in  a  specific  fashion  so  that  as  much  space  of  a  distribution  will  be  covered.  Many
researchers  have  questioned  certain  aspects  of  these  tables,  in  particularly  Tables  of  Halton
sequences. In particular, these researchers  claim that  the first  few rows of tables  (corresponding to
the first  few simulated  draws)  are  correlated  in  an  undesirable  way  (see  Train  2003  for  example).
These researchers therefore suggest removing the first few simulated draws.
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Algorithms tab

The Algorithms tab of the Options dialog box

The  generation  of  efficient  experimental  designs  requires  the  exploration  of  impact  of  different
attribute level combinations. How Ngene changes the attribute level combinations may be set  by  the
user. Different algorithms (discussed in Algorithms for generating designs in Ngene) are available to
the  user.  Most  algorithms  have  several  settings,  which  can  be  controlled  through  parameters
specified  in  the  'alg'  property.  If  no  parameters  are  specified,  the  defaults  specified  here  in  the
Options  dialog  box  are  used.  The  equivalent  parameter  names  that  can  be  supplied  in  the  'alg'
property are listed in brackets next to the description.

When generating efficient  designs,  the  type  of  model  used  to  calculate  the  efficiency  can  have  a
large impact  on performance,  and this  may be a consideration when  setting  algorithm  parameters.
For example, RP panel calculations are relatively slow, and so it  may not  be appropriate to allow as
many  seed  iterations  for  RP  panel  designs.  The  algorithm  parameter  defaults  can  be  set
independently for each type of model by  first  choosing the appropriate tab.  The model averaging tab
applies  whenever the 'eff' property  specifies  more than one  model  type  to  optimize  on  (See  model
averaging for more details).
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4 Ngene Syntax

4.1 Syntax command format

Most Ngene instructions follow a similar pattern.  Each new routine must  begin  on  a  new line  (see
Figure 4.1),  however  specific  instructions  within  a  routine  may  use  the  same  line.  A  routine  may
consist  of as  many lines as  required.  Ngene code is  not  case specific  so that  the user may  freely
use lower or capital case letters, and spaces may be used throughout the code. 

Figure 4.1: Sample syntax

The general format of a command is:

VERB
; other information …
$

The syntax for a routine in Ngene will always begin with a verb and end with a dollar sign ‘$’.  Specific
properties related to the routine must usually be specified, and each begins  with a semicolon ';'.  For
example, the typical structure of the Design command is as follows, which starts  with ‘Design’,  then
sets properties, and closes with the dollar symbol ‘$’:

Design
;<property>
;<property>
;...
? comment
$

Comments  in  the  syntax  file  can  be  indicated  with  a  question  mark  symbol  ‘?’  and  all  text
subsequent to that symbol on the same line will be ignored. 

The order of the properties or routine instructions does not matter.

Several routines may be run  in  sequence,  by  typing  several  routines  into  a  single  syntax  file  and
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pressing  run,  or  highlighting  several  routines  and  pressing  run.  However,  the  generation  of  many
types of designs will run indefinitely, even if an improved design is unlikely to be found after a certain
period of time.  In that  case,  you can specify  stopping criteria.  Refer to the syntax  reference for the
alg property for more details.

4.2 An example design syntax: Full factorial designs

In the following we will explain a simple syntax  file as  an introduction to the basic  syntax  structure.
A list and description of all propertys and properties can be found in the Syntax Reference.

Several  types  of  designs  can  be  created  using  the  Design  property.  One  such  design  is  the  full
factorial design, which uses only the most basic properties. 

For designs, three properties  will  always be present  in a syntax  file,  namely  alts,  rows,  and model.
The  alts  property  defines  which  alternatives  are  present  in  the  choice  model.  The  rows  property
defines how many choice situations need to be generated.  The  model  property  defines  the  choice
model by describing the complete utility function for each alternative.

For example,

;alts = A, B, C
;alts = car, bus, train
;alts = house1, house2

The alternatives can have any name (except  for some reserved words) and need to be separated by
commas.  These same names are then  used  in  the  model  property,  defining  their  utility  functions.
This model property is a complex property and will be described in more detail.

Suppose that  the alternatives  are named ‘alt1’ and ‘alt2’.  An example of setting the model property
is:

;model:
U(alt1) = b1 + b2 * A[0,1,2] + b3 * B[0,1]     /
U(alt2) =      b2 * A        + b4 * C[2,4,6,8]

First, notice that  complex properties  consist  of several lines,  separated by  a slash ‘/’.  The first  line
after the ‘model:’ property describes the utility function for ‘alt1’,  the second line for ‘alt2’.  The utility
functions are expressed as linear functions of attributes with associated weighting parameters. In the
above  example,  ‘b1’  to  ‘b4’  are  the  weighting  parameter  names,  while  ‘A’  to  ‘C’  are  the  attribute
names. The first name in the multiplication is the parameter name, the second is the attribute name,
i.e.,  ‘b2’ is  the parameter associated  with  attribute  ‘A’.  Note  that  constants  like  ‘b1’  are  specified
without  an  associated  attribute.  In  all  cases,  the  parameter  name  precedes  the  attribute  name,
which are separated by the asterisk multiplicative symbol ‘*’.

Note that  ‘b2’ appears  both in the utility  function of ‘alt1’ and  ‘alt2’,  meaning  that  ‘b2’  is  a  generic
parameter  across  both  alternatives.  On  the  other  hand,  ‘b1’,  ‘b3’  and  ‘b4’  are  alternative  specific
parameters. Whenever the same name is used across alternatives,  the parameter is  assumed to be
generic.

The values between square brackets located after an attribute name are the possible attribute levels
for that specific attribute required by the user. For example,  attribute ‘A’ can have the levels  0,  1,  or



52 Ngene User Manual

© 2012 ChoiceMetrics

2, while attribute ‘B’ can only have the levels 0 or 1. If the same levels are used for a similar attribute
with the same name in another alternative, then it is not necessary  to repeat  the levels,  such that  in
the example above,  the levels  of ‘A’ can be omitted  in  the  second  utility  function.  If  the  levels  are
different,  then  the  attribute  level  values  will  need  to  be  added.  Note  that  one  can  use  the  same
attribute name in different  utility  functions as  Ngene  will  treat  them  separately  (Ngene  will  refer  to
them in the output as ‘alt1.A’ and ‘alt2.A’, etc.).  

The number of choice situations to be generated has to be defined using the rows  property.  Normally
this would be a whole number, but to prevent the user from having to calculate the number of rows in
the full factorial manually, the following can be specified:

;rows = all

Finally, to specify that we want a factorial design, we specify:

;fact

The complete syntax would be:

Design
? This will generate a full factorial design
;alts = alt1, alt2
;rows = all
;fact
;model:
U(alt1) = b1 + b2 * A[0,1,2] + b3 * B[0,1] /
U(alt2) =      b2 * A        + b4 * C[2,4,6,8]   
$

The above example will generate a full factorial design with 3x2x3x4 = 72 choice situations.

Attribute levels  can be  specified  in  an  alternative  way,  with  a  lower  and  upper  bound,  and  a  step
size.  These  three  values  are  specified  in  sequence  inside  the  square  brackets,  separated  by  a
colon. Using this syntax, the above example would be:

Design
? This will generate a full factorial design
;alts = alt1, alt2
;rows = all
;fact
;model:
U(alt1) = b1 + b2 * A[0:2:1] + b3 * B[0:1:1] /
U(alt2) =      b2 * A        + b4 * C[2:8:2]   
$
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5 Introduction to Experimental Design Theory

5.1 Introduction to experimental designs for stated choice
experiments

SC (SC) experiments,  as  proposed  by  Louviere  and  Woodworth  (1983)  and  Louviere  and  Hensher
(1983),  have  received  increasing  attention  in  many  different  fields,  including  marketing,
transportation,  health  economics,  environmental  economics,  and  resource  economics.  Theoretical
advances  in  and  estimation  of  discrete  choice  models  has  had  a  large  impulse  from  the
transportation community,  where many state-of-the-art  publications on this  topic  have  appeared.  In
contrast, the main research in design of choice experiments  has been in marketing and economics.
Lately, the interest  in the design of choice experiments  has increased in the transportation field as
well,  and  the  purpose  of  this  manual  is  to  present  the  state-of-the-art  in  designing  choice
experiments using the knowledge gained over the years  till  present  from all  disciplines.  While there
exist  good  books  with  overviews  for  discrete  choice  modelling  and  estimation  (Ben-Akiva  and
Lerman,  1985;  Hensher  et  al.,  2005;  Louviere  et  al.,  2000;  Train,  2003),  no  such  books  exist  for
designing SC experiments. 

The purpose behind conducting  experiments  is  to  determine  the  independent  influence  of  different
variables  (attributes  or factors  depending on the literature cited) on some observed outcome. In SC
studies,  this  translates  into the desire to determine the influence of the  design  attributes  upon  the
choices  that  are  observed  to  be  made  by  sampled  respondents  undertaking  the  experiment.
However,  an  acknowledged  limitation  of  SC studies  is  that  unless  the  number  of  person  specific
observations captured in a survey is extremely large, it is  necessary  to pool the responses obtained
from multiple respondents  in  order  to  produce  statistically  reliable  parameter  estimates.  As  such,
SC studies typically consist of numerous respondents  being asked to complete a number of choice
tasks  in  which  they  are  asked  to  select  one  or  more  alternatives  from  amongst  a  finite  set  of

alternatives. In each task,  the alternatives,  whether labeled or unlabeled1,  are typically  defined on a
number of different  attribute dimensions,  each of which are further described by  pre-specified levels
drawn from some underlying experimental design.  The number of choice  tasks  each  respondent  is
asked  to  undertake  will  generally  be  up  to  the  total  number  of  choice  situations  drawn  from  the
experimental  design.  Consequently,  an  archetypal  SC  experiment  might  require  choice  data  be
collected on 200 respondents, each of whom are observed to make eight  choices,  thus producing a
total of 1600 choice observations. 

Exactly how analysts  distribute the levels  of the design attributes  over the course of an experiment
(which typically is via the underlying experimental design),  may play  a big part  in whether or not  an
independent assessment of each attribute’s contribution to the choices observed to have been made
by sampled respondents can be determined.  Further,  the allocation of the attribute levels  within the
experimental  design  may  also  impact  upon  the  statistical  power  of  the  experiment  insofar  as  its
ability to detect  statistical relationships  that  may exist  within the data.  This  ability  is  related to the
sample size of the study and given a large enough sample,  the statistical power of an experimental
design may not matter. Nevertheless, for sample sizes more commonly  used in practice,  the ability
to retrieve statistically significant parameter estimates may be compromised given the selection of a
relatively poor design.  What  constitutes  a poor design is  the focus of this  chapter,  however,  at  this
stage it may be worth noting that there may exist a trade-off between the ability  of a design to allow
for an  independent  determination  of  the  impact  each  design  attribute  has  in  a  SC experiment  (at
least insofar as how independence is thought of in a traditional sense) and the ability of the design to
detect  statistically  significant  relationships.  The  experimental  design  chosen  by  the  analyst  may
therefore play a significant role in SC studies.
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Conceptually, an experimental design may be viewed as nothing more than a matrix of values that  is
used to determine what  goes where in a SC survey.  The values that  populate  the  matrix  represent
the attribute levels that  will  be used in the SC survey,  whereas the columns and rows of the matrix
represent  the choice situations,  attributes  and  alternatives  of  the  experiment.  The  actual  layout  of
the design matrix  is  often set  out  in one of  two  ways.  Some  researchers  set  up  the  experimental
design matrix such that each row represents a different choice situation and each column a different
attribute within the experiment (see e.g.,  Bliemer and Rose 2006;  Rose and Bliemer 2008).  In such
cases,  groups  of  columns  form  different  alternatives  within  each  choice  task.  Other  researchers
however  set-up  the  design  matrix  such  that  each  row  of  the  matrix  represents  an  individual
alternative and each column a different attribute (see e.g., Carlsson and Martinsson 2002;  Huber and
Zwerina 1996; Kanninen 2002; Kessels et al. 2006; Sándor and Wedel 2001,  2002).  In these cases,
multiple  rows  are  grouped  together  to  form  individual  choice  situations.  Independent  of  how  the
matrix  is  set  out,  the experimental design performs the same function;  that  being  the  allocation  of
attribute levels to choice tasks, as shown in Figure 5.1. 

Figure 5.1: From experimental design to choice situation construction

A number of competing explanations exist as to why this distinction has arisen in the past.  The first
explanation suggests that  the distinction arose due to historical reasons,  with Western Europeans,
led predominately by John Bates in the early 1980s, adopting the column based approach whilst  the
row based  approach  remained  a  legacy  from  the  traditional  conjoint  methods  used  by  marketing
researchers elsewhere in the world. A second explanation is that the different design formats  tend to
correspond to the use of either equations to derive the asymptotic  variance-covariance (AVC) matrix
(representing  the  column  based  approach)  or  matrix  algebra  (corresponding  to  the  row  based
approach). Independent of how the design matrix is represented however,  the end result  remains  the
same.
.
Given the above,  the primary  question for those generating experimental designs  for  SC studies  is
‘how best to allocate the attribute levels  to the design matrix’.  Traditionally,  researchers  have relied
upon  the  use  of  orthogonal  experimental  designs  to  populate  the  hypothetical  choice  situations
shown to respondents  (see Louviere et  al.,  2000,  for a review of orthogonal designs).  More recently
however,  some  researchers  have  begun  to  question  the  relevance  of  orthogonal  designs  when
applied to SC experiments  (e.g.,  Huber and Zwerina,  1996;  Kanninen,  2002;  Kessels  et  al.,  2006;
Sándor and Wedel, 2001, 2002, 2005). Generally, the argument against the use of orthogonality as a
design criterion in the construction process is  that  the property  of orthogonality  is  unrelated  to  the
desirable  properties  of  the  econometric  models  used  to  analyse  SC  data  (i.e.,  logit  and  probit
models).  The  orthogonality  (or  otherwise)  of  an  experimental  design  relates  to  the  correlation
structure between the attributes of the design with designs in which all between-attribute correlations
are zero being said to be orthogonal (in some cases,  this  definition of an orthogonal design may be
relaxed to define orthogonality as occurring when all attribute correlations are zero within alternatives
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but not necessarily between alternatives; see Louviere et  al.  (2000) discussion on sequential versus
simultaneous  generation  of  orthogonal  designs).  Whilst  orthogonality  is  an  important  criterion  to
determine independent effects  in linear models,  discrete choice models  are not  linear (Train,  2003).
In  models  of  discrete  choice,  the  correlation  structure  between  the  attributes  is  not  what  is  of
importance. Rather, given the derivation of the models,  it  is  the correlations of the differences in the
attributes which should be of concern.

Huber  and  Zwerina  (1996)  took  the  important  step  of  relating  the  statistical  properties  of  the  SC
experiments to the econometric  models  estimated on such data.  In their paper,  Huber and Zwerina
showed that  designs that  let  go of  orthogonality  as  a  consideration  in  generating  SC experiments
and which attempt to reduce  the  asymptotic  standard  errors  of  the  parameter  estimates  (i.e.,  the
square  roots  of  the  diagonal  elements  of  the  asymptotic  variance-covariance  (AVC)  matrix)  will
generally result in designs that either (i) improve the reliability  of the parameters  estimated from SC
data  at  a  fixed  sample  size  or  (ii)  reduce  the  sample  size  required  to  produce  a  fixed  level  of
reliability  in  the  parameter  estimates  with  a  given  experimental  design.  The  linking  of  the
experimental design generation process to attempts to reduce the asymptotic  standard errors  of the
parameter estimates has resulted in a class of designs known as efficient  or optimal designs,  where
designs that produce smaller asymptotic standard errors are thought of as being more efficient. 

5.2 Overview of general steps for creating stated choice
experiments

The aim of generating an experimental design  is  generally  to  help  construct  a  SC experiment,  for
which an example is  given in Figure 5.2.  In creating a stated choice experiment,  three  main  steps
have to be taken,  as  illustrated  in  Figure  5.3.  First  of  all,  a  complete  model  specification  with  all
parameters  to  be  estimated  has  to  be  determined.  Based  on  this  model  specification,  an
experimental  design  type  has  to  be  selected  and  then  the  design  can  be  generated.  Finally,  a
questionnaire  (on  paper,  internet,  CAPI,  etc.)  is  created  based  on  the  underlying  experimental
design and data can be collected.  The three  steps  will  be  elaborated  below.  The  main  part  of  the
chapter will be dedicated to the generation of experimental designs (step 2).
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Figure 5.2: Example of a screen in a stated choice experiment

1 0 1 1 2 2

2 1 3 3 4

V x x

V x x
- 1   - 1   - 1   - 1
- 1   - 1   - 1    1
- 1    1    1   - 1
- 1    1    1    1

1   - 1    1   - 1
1   - 1    1    1
1    1   - 1   - 1
1    1   - 1    1

Which mode would you choose in the following situations?

1. Car    Train
Travel time: 10 min. 10 min.
Cost/fare: $1 $1

Your choice:

2. Car    Train
Travel time: 10 min. 10 min.
Cost/fare: $1 $1.50

Your choice:

3. Car    Train
Travel time: 10 min. 15 min.
Cost/fare: $1.50 $1

Your choice:

…
…

1x 2x 3x 4x

1.
2.
3.
4.
5.
6.
7.
8.

Model                        Experimental design                Questionnaire

Figure 5.3: Steps in designing a stated choice experiment
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5.2.1 Step 1 - Model specification

Each SC experiment is specifically created for estimating a specific model (or sometimes a range of
models).  Therefore,  one  needs  to  specify  the  model  and  the  parameters  to  be  estimated  before
creating an experimental design. 

First,  the  problem  studied  should  be  refined  and  hypotheses  developed.  Secondary  data  search,
focus groups, and in-depth interview can assist in this.  Then the stimuli need to be refined,  in which
at least the following choices need to be addressed:

Which alternatives need to be included?
Which attributes to include for each alternative?

For example, alternatives can be existing or not-yet-existing transport  modes in the area of interest.
Each mode can have different  attributes  (travel  time,  waiting  time,  comfort,  etc.).  Additionally,  the
model type has to be chosen, appropriate to the problem. In other words,  is  the MNL model,  the NL
model, or perhaps the MMNL model suitable?

Essentially, the complete specification of the utility functions needs to be known. For the example in
Figure  5.3,  the  chosen  MNL  model  consists  of  two  utility  functions  (hence  two  alternatives  are
considered),  and each  alternative  has  two  attributes  (the  first  alternative  has  attributes  x

1
 and  x

2
,

while the second alternative has attributes x
3
 and x

4
.

Another important  decision to make is  whether an attribute is  generic  over  different  alternatives,  or
alternative-specific.  In the example,  x

1
 and x

3
 are assumed to  be  generic,  as  they  have  share  the

same  generic  parameter  β
1
,  while  the  constant  β

0
 and  the  parameters  β

2
 and  β

3
 are  alternative-

specific.  For example,  the attribute travel time can be differently  weighted in the  utility  functions  of
different mode alternatives, while it is typically weighted equally in case of different route alternatives.
If one is  not  certain about  parameters  being generic  or alternative-specific,  then  it  is  best  to  make
them  alternative-specific,  as  this  can  then  be  tested  afterwards  when  estimating  the  parameters.

However,  each additional parameter in the model represents  an extra degree of  freedom2,  meaning
that  the  experimental  design  may  become  larger  (although  this  is  typically  not  substantial).  The
minimum number of choice situations in the experimental design is discussed in Section 5.2.2.

Also of importance is to decide if any interaction effects (such as x
1
x

2
) besides the main effects  will

be included in the model.  Finally,  the  decision  has  to  be  made  if  nonlinear  effects  are  taken  into
account, either estimated using dummy-coded or effects-coded variables.  These will  introduce extra
parameters to be estimated and also impact  the number of attribute levels  used in the experimental
design.

Once  the  model  has  been  completely  specified,  the  experimental  design  can  be  generated.  It  is
important to note that the experimental design will be specifically determined for the specified model
and  may  be  sub-optimal  if  other  models  are  estimated  using  the  data  obtained  from  the  stated
choice experiment. Hence, estimating an MMNL model is done best using data from a stated choice
experiment  using a design generated based on the  same  MMNL model.  Adding  extra  variables  to
the utility  functions later in  estimation,  such  as  socio-economic  data  (age,  gender,  income,  etc.),
may make the experimental design again sub-optimal,  hence is  possible they should be taken into
account from the beginning.
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5.2.2 Step 2 - Generation of experimental design

Once the model specification is  known, the experimental  design  can  be  created.  An  experimental
design describes which hypothetical choice situations  the respondents  are faced with in the stated
choice experiment.  It  typically  consists  of a table of numbers  (as  illustrated in Figure 6.3) in which
each row represents a choice situation.  The numbers  in the table correspond to the attribute levels
for  each  attribute  (e.g.,  -1,  1)  and  are  replaced  by  their  actual  attribute  levels  later  on  in  the
questionnaire (e.g.,  $1,  $1.50).  In  the  example,  there  are  in  total  eight  choice  situations  and  four
different  columns  for  each  of  the  four  attributes.  Different  coding  schemes  can  be  used  for
representing  the  attribute  levels  in  the  experimental  design.  The  most  common  ones  are  design
coding (0, 1, 2, 3, etc.), orthogonal coding ({-1,1} for two levels, {-1,0,1} for three levels,  {-3,-1,1,3} for
four levels, etc.), or coding according to the actual attribute level values. 

There  are  many  experimental  designs  possible,  and  the  aim  here  is  to  determine  the  best  one.
Before finding the best design, some design decisions have to be made. These include:

Should the design be labelled or unlabelled?
Should the design be attribute level balanced?
How many attribute levels are used?
What are the attribute level ranges?
What type of design to be used? 
How many choice situations to use?

If  the  model  specification  has  alternatives  with  alternative-specific  parameters,  then  these
alternatives  need to be labeled (e.g.,  car,  train,  bus) in the experiment.  If  alternatives  have  generic
parameters, they can be unlabeled (e.g., route A, route B, route C).

Almost  all  experimental designs created satisfy  the attribute  level  balance  property,  which  means
that each attribute level appears an equal number of times for each attribute. In the example,  in each
column  -1  and  1  both  appear  exactly  four  times.  Although  imposing  attribute  level  balance  may
restrict the design to be sub-optimal, it is generally considered a desirable property.  Having attribute
level  balance  ensures  that  the  parameters  can  be  estimated  well  on  the  whole  range  of  levels,
instead of just having data points at only one or few of the attribute levels.  For most  designs,  Ngene
assumes designs will display the attribute level balance property.  Where there are exceptions,  such
as  designs  generated  using  the  Modified  Federov algorithm,  this  will  clearly  be  indicated  in  the
manual.

The number of  attribute levels  to  use  depends  on  the  model  specification.  If  nonlinear  effects  are
expected for a certain attribute, then more than two levels  need to be used for this  attribute in order
to be able to estimate these nonlinearities.  If dummy  and/or  effects  coded  attributes  are  included,
then the number of levels  to  use  for  these  attributes  is  predetermined.  The  more  levels  used,  the
higher the number of choice situations will be. Also, mixing the number of attribute levels  for different
attributes  may yield a higher number of  choice  situations  (because  of  attribute  level  balance).  For
example, if there are three attributes with 2, 3, and 5 levels,  respectively,  then the minimum number
of choice situations will be 30 (since this is divisible by 2, 3, and 5).  On the other hand,  if one would
use 2, 4, and 6 levels, then only a minimum of 12 choice situations would be enough.  Therefore,  it  is
wise not  to mix  too many different  numbers  of  attribute  levels,  or  at  least  have  all  even  or  all  odd
numbers of attribute levels.

Regarding  the  attribute  level  range,  research  suggests  that  using  a  wide  range  (e.g.,  $1-$6)  is
statistically  preferable to using a narrow range (e.g.,  $3-$4)  as  this  will  theoretically  lead  to  better
parameter estimates (i.e.,  parameter  estimates  with  a  smaller  standard  error),  although  using  too
wide a range may also be problematic (see Bliemer and Rose,  2009).  The reason for this  is  that  the
attribute level range will  impact  upon the likely  choice probabilities  obtained from the design,  which
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we show later  to  impact  upon  the  expected  standard  errors  from  that  design.  Having  too  wide  a
range  will  likely  result  in  choice  tasks  with  dominated  alternatives  (at  least  for  some  attributes)
whereas too narrow a range will result in alternatives which are largely  indistinguishable.  We have to
emphasize that this is a pure statistical property and that one should take into account  the practical
limitations of the attribute levels. The attribute levels shown to the respondents  have to make sense.
Therefore,  there  is  a  trade-off  between  the  statistical  preference  for  a  wide  range  and  practical
considerations that may limit the range.

Several different design types can be considered. A full factorial design (see Section 6.1.1) consists
of  all  possible  different  choice  situations  and  with  this  design  all  possible  effects  (main  and
interaction effects) can be estimated. However, for a practical study the number of choice situations
in  a  full  factorial  design  is  too  large.  Therefore,  most  people  rely  on  so-called  fractional  factorial
designs (see Section 6.2.2),  and within this  class  there exist  many different  types of designs.  One
could randomly select choice situations from the full  factorial,  but  clearly  this  is  not  the best  way of
doing it. Rather, one selects choice situations in a structured manner,  such that  the best  data from
the stated choice experiment will be produced for estimating the model.  A fractional factorial design
consists of subset of choice situations from the full factorial. The most  well-known fractional factorial
design type  is  the  orthogonal  design  (see  Section  6.1.2),  which  aims  to  minimize  the  correlation
between  the  attribute  levels  in  the  choice  situations.  As  will  be  shown  in  Section  6.1.6,  these
orthogonal designs have limitations and cannot  avoid choice situations in which a certain alternative
is  clearly  more  preferred  over  the  others  (hence  not  providing  much  information).  More  recently,
several researchers  have  suggested  another  type  of  fractional  factorial  designs,  so-called  efficient
designs  (see Chapter 7).  Instead  of  merely  looking  at  the  correlation  between  the  attribute  levels,
they aim to find designs that  are statistically  as  efficient  as  possible in terms of predicted standard
errors  of the parameter estimates.  Essentially,  these designs try  to maximize the  information  from
each choice situation.  Efficient  designs will  be able to outperform  the  orthogonal  designs,  however
prior parameter estimates need to be available.  Therefore,  efficient  designs rely  on the  accuracy  of
the prior parameter estimates. In order to obtain more stable designs that  rely  less  on the accuracy
of the priors,  the last  few years  Bayesian efficient  designs  have  been  proposed  (see  Section  7.3).
Instead  of  assuming  fixed  prior  parameters,  the  priors  are  considered  to  be  random  parameters.
Some  other  design  types  have  been  considered  very  recently,  in  which  attribute  level  balance  is
abandoned, in which constraints on attribute levels are imposed,  in which attribute levels  are pivoted
around realistic  values for each respondent,  or in which covariates  (such as  socio-economics  data)
are already considered when creating the  design.  These  design  types,  being  at  the  frontier  of  the
current state-of-the-art, will be briefly discussed in Chapter 8.

Unlike most other data types where an observation typically represents information captured about  a
specific  respondent  or  agent,  in  discrete  choice  data  each  alternative  j  represents  a  unique
observation.  This  is  because  each  alternative  is  observed  to  be  chosen  or  not,  hence  providing
information down to this  level of detail.  In  grouping  the  alternatives  together  in  choice  tasks,  there
therefore  exist  J-1  independent  choice  probabilities  within  each  choice  situations  S  which  will  be
estimated.  As  such,  for  first  preference  (pick  one)  tasks,  the  total  number  of  independent  choice
probabilities  obtained  from  any  given  design  will  be  equal  to  (J-1)S  with  the  maximum  number  of
parameters, K, including constants, that can be estimated from that design having to be less  than or
equal to this number. As such, the number of choice situations is bounded from below by (J-1)S  =K,
and the number of choice situations required to ensure attribute level balance.  Also the design type
may restrict  the number of choice situations.  An orthogonal design sometimes needs (many) more
choice situations than the minimum number determined by  the number  of  degrees  of  freedom  and
attribute level balance,  merely  because an orthogonal design may not  exist  or may be unknown for
these  dimensions.  A  full  factorial  design  has  a  predetermined  number  of  choice  situations,  only
influenced by the total number of attributes and the number of attribute levels.

It  should be noted that  determining a “good” experimental design is  not  a simple task  as  there  are
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generally billions of possible designs and it is impossible to evaluate all of them. Typically,  computer
software is used to assist in this process.

5.2.3 Step 3 - Construction of questionnaire

Using the underlying experimental design,  the actual  questionnaire  instrument  can  be  constructed
(see  Figure  5.2).  Obviously,  the  experimental  design  represented  by  a  table  of  numbers  is
meaningless to a respondent, hence it needs to be transformed somehow so as to be meaningful for
the  respondent.  Each  row  in  the  experimental  design  is  translated  into  a  choice  situation  as
illustrated for the first three rows in Figure 2. In this example, all four attributes  have two levels  each,
denoted by -1 and 1 in the experimental design.  These numbers  are replaced by  meaningful values
for each attribute,  e.g.,  10 minutes  and 15 minutes  for the travel time attribute for the car and train
alternatives,  and $1 and $1.50 for the cost/fare attribute for both alternatives.  Furthermore,  for each
respondent the order of the choice situations should be randomized in order to rule out  any possible
effects the ordering may have on the estimation. 

In the end, the questionnaire can be either written down on paper,  can be programmed into software
for computer-aided personal interviewing (CAPI),  or  implemented  as  an  internet  survey.  Of  course,
CAPI and  internet  surveys  are  much  more  flexible  (choice  situations  can  be  responsive  to  earlier
responses or automatically  tailor-made  for  each  respondent),  enable  more  advanced  surveys,  and
make  the  data  readily  available  without  human  data  entry  errors.  Therefore,  most  stated  choice
surveys nowadays are computer-based.

5.3 Notation

For the remainder of this manual we will  use the following notation when describing various aspects
of experimental design.  Let  each  alternative  j,  j  =  1,  ...,  J,   have  K

j
 associate  attributes.  Let  the

number of choice situations be denoted by  S,  and the number of respondents  by  N.  Suppose  that
each respondent n, n = 1, ..., N, faces all S choice situations.  In each choice situation s,  s  =  1,  ...,
S, each alternative has attributes with different attribute levels  x

jks
,  k  =  1,  ...,  K

j
.  The objective is  to

determine the experimental design matrix X
n
 = [x

jksn
] for each respondent n with x

jksn
  Λ

jkn
 where

Λ
jkn

 is the set  of possible attribute levels  for each attribute for respondent  n.  Let  l
jk

 =  |Λ
jkn

| denote

the number of levels for this  attribute.  In classical experimental designs,  each respondent  faces the
same attribute levels  in the same choice situations,  hence the subindex n can be omitted from the
variables  describing  the  attribute  levels.  However,  in  some  cases  a  different  design  for  each
respondent is created, such that this subindex n is important.
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6 Orthogonal Designs

6.1 Theory of full and fractional factorial designs

In this  chapter we discuss how to generate  orthogonal  designs.  Before  doing  so  however,  we  first
discuss the theory underlying the generation of these types of designs.  We begin with a discussion
of full factorial designs.

6.1.1 Full factorial designs

A full  factorial design considers  each possible choice situation,  i.e.,  each  possible  combination  of
the attribute levels.  Table 1 shows the full  factorial design in case of three attributes  (A,  B,  and  C)
with  two,  two,  and  three  levels,  respectively  (using  orthogonal  coding).  In  total  there  are  twelve
choice situations.

In general,  if there are J  alternatives,  each with K
j
 attributes,  where attribute k   K

j
  has l

jk
 levels,

then the total number of choice situations in the full factorial design is 

(6.1)

In  case  of  two  alternatives,  each  having  three  attributes  with  four  attribute  levels  each,  the  total

number of combinations is  (4 x  4 x  4) x  (4 x  4 x  4) = 42x3 =  4,096.  Clearly,  this  number increases
rapidly,  and it  is  not  feasible to let  a single respondent  face all  these  choice  situations.  Therefore,
only  for  the  smallest  problems  the  full  factorial  design  can  be  used.  However,  generating  the  full
factorial  design  may  be  useful  for  determining  other  designs,  such  as  certain  fractional  factorial
designs (e.g., constrained designs, see Section 8.2).

Table 6.1: Example full factorial design

In  the  more  practical  fractional  factorial  designs,  each  respondent  is  only  shown  a  subset  of  S
choice situations from the total number of choice situations. One option is to randomly select  choice
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situations from  the  full  factorial.  Another  option  is  to  give  the  first  S  choice  situations  to  the  first
respondent, the second S choice situations to the second respondent,  and so on.  Both options can
lead to biased outcomes,  as  for example a respondent  may face only  low or only  high  values  of  a
certain attribute.  This  could be avoided by  choosing the subsets  in  such  a  way  that  attribute  level
balance is  satisfied.  Orthogonal designs  and efficient  designs  select  subsets  in  a  more  structured
way, as will be outlined in the next sections.

6.1.2 Orthogonal designs

Orthogonal designs have been used in experimental design for a long time.  It  should be noted  that
nowadays optimal/efficient designs exist (described in the next section) and are gaining in popularity
among  researchers.  However,  for  reasons  of  history  and  inertia,  orthogonal  designs  remain
mainstream.

6.1.3 Definition of orthogonality

An orthogonal design is said to be orthogonal if it satisfies  attribute level balance and all  parameters
are  independently  estimable.  This  translates  into  the  definition  that  the  attribute  levels  for  each
attribute  column  in  the  design  need  to  be  uncorrelated.  In  case  of  using  orthogonal  coding,  an
orthogonal design  satisfies  the  property  that  the  sum  of  the  inner  product  of  any  two  columns  is
zero:

(6.2)

This is illustrated by the orthogonal design in Table 6.2. The design in Table 6.3 is not orthogonal,  as
the sum of the inner product of columns B and C is  not  equal to zero.  As can be observed from the
correlation matrix, columns B and C are perfectly (negatively) correlated.

Table 6.2: Orthogonal design with three attributes having two levels

Table 6.3: Non-orthogonal design with three attributes having two levels

Orthogonality is preserved if columns are left out, however not when rows are left out.  Therefore,  if an
orthogonal  array  exists  with  more  columns  than  is  needed,  one  can  randomly  select  columns  to
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enter the design, and re-arrange them in any preferred order.  Also,  multiplying one or more columns
by  -1  preserves  orthogonality.  Therefore,  from  the  orthogonal  design  in  Table  6.2,  in  total  eight
different orthogonal designs can be generated using all  possible combinations of column multipliers:
(1,1,1),  (-1,1,1),  (1,-1,1),  (1,1,-1),  (-1,-1,1),  (-1,1,-1),  (1,-1,-1),  and  (-1,-1,-1).  Furthermore,  when
replacing the orthogonal codes with the actual attribute levels  when constructing the questionnaire,
one is not restricted to assign the attribute levels  in the same order as  the orthogonal coded levels.
For example,  one is  free to choose the  replacement  {-1,0,1}  {$1,$2,$3}  or  {-1,0,1}  {$2,$1,$3},
again preserving orthogonality.

6.1.4 Generating orthogonal designs

The problem of finding an orthogonal design can be described as follows:

Given feasible orthogonal coded attribute levels Λ
jk
 for all j and k , given a minimum number of

choice situations S, determine the smallest level balanced design X with X
jks

  Λ
jk

 such that

Equation (6.2) is satisfied.

Determining  orthogonal  designs  is  not  a  straightforward  task.  Suppose  that  one  searches  for  an
orthogonal  design  for  five  attributes  having  three  levels  each.  The  smallest  number  of  choice
situations possible that satisfy the degrees of freedom and attribute level balance is  six.  However,  in
this  case  an  orthogonal  design  with  six  choice  situations  does  not  exist.  Even  in  nine  or  twelve
choice situations it  does not  exist.  We are able to find an orthogonal  design  with  no  less  than  18
choice situations for this problem. Tables  of orthogonal arrays  have been derived mathematically  for
different  numbers  of  columns  and  levels.  These  tables  are  limited  and  there  may  not  be  an
orthogonal array  known for the problem at  hand.  There are many lists  with two,  three,  or  even  four
levels,  but  higher levels  become rare,  and when mixing different  numbers  of levels  it  becomes even
harder to find an orthogonal design.  For  example,  Hahn  and  Shapiro  (1966)  have  published  tables
with orthogonal designs for certain instances of numbers  of attributes  and attribute levels,  but  these
are restricted to fairly small models. Computer programs can try to find near-orthogonal designs that
can be used.

If an orthogonal design has been found,  it  may  still  be  too  large  to  give  all  choice  situations  to  a
single  respondent.  An  often  used  procedure  called  block ing  can  split  the  orthogonal  design  into
smaller  designs.  Each  block  is  not  orthogonal  by  itself,  only  the  combination  of  all  blocks  is
orthogonal. Blocking mainly ensures that  attribute level balance is  satisfied within each block,  such
that respondents  do not  just  face only  low or high attribute levels  for a certain attribute.  Blocks are
typically  determined  by  using  an  extra  uncorrelated  column  with  a  number  of  levels  equal  to  the
number of blocks. This is illustrated in Table 6.4.  One can check that  the design for attributes  A,  B
and  C is  orthogonal,  and  that  also  the  blocking  column  is  orthogonal  to  all  other  columns.  The
orthogonal  design  with  nine  choice  situations  is  blocked  into  three  blocks,  such  that  each
respondent  now only  has  to  face  three  choice  situations  instead  of  nine.  Note  that  attribute  level
balance is satisfied within each of the blocks. 
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Table 6.4 Blocking an orthogonal design in three blocks

Orthogonal  designs  can  be  created  manually,  or  can  be  found  in  documents  such  as  Hahn  and
Shapiro (1966), or can be created automatically using software such as Ngene.

6.1.5 Reasons for using orthogonal designs

Aside from the fact  that  orthogonal designs allow for an independent  estimation  of  the  influence  of
each design attribute on choice, two other reasons lie behind the common use of orthogonal designs
in  practice.  The  first  reason  is  that  they  are  generally  easy  to  construct  or  obtain  (either  from
software  packages  or  academic  papers),  although  only  for  a  limited  number  of  combinations  of
attribute levels. Secondly, the common use of orthogonal designs in SC studies is  largely  a result  of
historical impetus. In the past, the experimental design literature has been primarily  concerned with
linear  models  (such  as  linear  regression  models),  where  the  orthogonality  of  data  is  considered
important. In linear regression models,  this  is  because (a) orthogonality  ensures that  the model will
not  suffer  from  multicollinearity,  and  (b)  orthogonality  is  thought  to  minimize  the  variances  of  the
parameter estimates,  which are taken from  the  variance-covariance  (VC)  matrix  of  the  model.  The
VC matrix of a linear regression model is given in Equation (6.3).

(6.3)

where σ2 is the model variance, and X is the matrix  of attribute levels  in the design or in the data to
be  used  in  estimation.  Fixing  the  model  variance  (which  simply  acts  as  a  scaling  factor),  the
elements  of  the  VC  matrix  for  linear  regression  models  are  minimized  when  the  X  matrix  is
orthogonal. A design that results in a model where the elements  contained within the VC matrix  are
minimized is  preferable,  for two reasons.  Firstly,  such a design  will  produce  the  smallest  possible
standard errors (i.e., square roots of the variances),  and hence maximize the t-ratios  produced from
that  model and secondly,  an orthogonal design (or  data  set)  will  produce  zero-off  diagonals  in  the
models  VC matrix,  thus ensuring that  the parameter estimates are unconfounded with one  another
(i.e., no multicollinearity).

As such,  orthogonal designs,  at  least  in relation to linear models,  meet  the two  criteria  for  a  good
design mentioned in the introduction;  they allow for an independent  determination of each attributes
contribution  on  the  dependent  variable  and  they  maximize  the  power  of  the  design  to  detect
statistically  significant  relationships  (i.e.,  maximize  the  t-ratios  at  any  given  sample  size).  The
question however is  whether for discrete choice models,  do  orthogonal  designs  produce  the  same
properties? Before we address this  question,  we first  discuss  several  problems  that  often  occur  in
practice between the mapping of design orthogonality to data orthogonality.
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6.1.6 Discussion of orthogonal designs

It  is  important  to  understand  that  parameters  are  estimated  from  data  sets  underlined  by  SC
experiments,  not  from  the  design  itself.  As  we  will  demonstrate,  only  under  exceptional
circumstances  will  orthogonality  be  preserved  within  the  data  used  to  estimate  discrete  choice
models, even if the experimental design is orthogonal. Indeed, with regards to choice data sets,  one
would  expect  orthogonality  to  be  the  exception  rather  than  the  rule.  Further,  even  under
circumstances where orthogonality is retained in a data set,  as  we show, orthogonality  will  likely  be
lost in the estimation process.

In  case  of  non-response,  in  which  a  few  choice  situations  are  missing,  the  data  will  not  be
orthogonal.  In  case  of  blocking,  if  not  all  blocks  are  equally  represented  in  the  data  set,  then
orthogonality will be lost. For example, consider again the blocked orthogonal design in Table 6.4.  If
blocks 1 and 2 appear twice in the data set  and block  3 only  once,  then the data  is  correlated  as
indicated  by  the  correlation  matrix  in  Table  6.5.  Removing  data  to  preserve  orthogonality  is  not
common, as extra data is preferred above preserving orthogonality.

Table 6.5: Correlation matrix with missing block

  

Further,  it  is  common  practice  to  collect  socio-demographic  and  contextual  variables  and  include
these in the utility  functions  of  models  of  discrete  choice.  Even  assuming  equal  representation  of
each choice situation of a design in the data, the current standard of sampling is  such that  analysts
fail to ensure orthogonality between the design attributes and other variables  within the data set.  For
example, if age,  gender,  or income is  added as a variable in the utility  function for estimation,  then
this attribute level is constant over all choice situations of this  person,  creating correlations between
this variable and other attributes in the design. 

Another reason that orthogonality may be lost  is  due to a poor transition between the design codes
and  the  attribute  level  labels  used  within  the  experiment.  Orthogonality  of  a  design  will  only  be
maintained if the (quantitative) attribute level labels  used are spaced equally  along the range of that
attribute. If unequal points are used along the attribute level range, then orthogonality will be lost.  For
example, if the orthogonal codes {-1,0,1} are replaced with quantitative attribute level labels  {$2,  $5,
$15},  then  the  attribute  levels  are  not  equidistant  in  spacing.  Therefore,  the  data  will  not  be
orthogonal. 

The primary  argument  for using orthogonal fractional factorial designs is  the ability  of such designs
to  produce  unconfounded  estimates  of  the  population  parameters  due  to  the  enforced  statistical
independence  between  the  attributes  contained  within  the  design.  However,  parameters  are
estimated  from  data  sets  underlined  by  SC  experiments,  not  from  the  designs  themselves.
Unfortunately,  only  under exceptional circumstances will  orthogonality  be preserved within the  data
used  to  estimate  discrete  choice  models,  even  if  the  experimental  design  used  to  construct  the
study is  itself orthogonal.  Indeed,  with regards to choice data sets,  one would expect  orthogonality
to be the exception rather than the rule  (see  however  Lanscar  et  al.  (2006)  for  an  example  where
orthogonality  has been transferred from the design through to the data).  We offer three  reasons  for
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this statement.

Firstly,  the principle of orthogonality  as  we  have  described  it  relates  solely  to  the  columns  of  the
design matrix being uncorrelated with one another. In cases where respondents  review the complete
orthogonal matrix,  this  orthogonality  will  be  preserved  through  to  the  data  set.  When  respondents
review subsets  of the matrix  however,  problems can occur and orthogonality  lost.  If the subsets  (or
blocks) of the design are not  replicated evenly  over the survey and hence certain  blocks  are  either
over or under represented within the data, orthogonality will generally be lost. Simply put, one cannot
(i) add or remove rows of the design and/or (ii)  replicate  unevenly  rows  of  the  design  over  multiple
respondents, and retain orthogonality within the data set. Note that  the removal of columns from the
design  will  not  impact  on  the  orthogonality  of  the  design  however.  Thus,  the  onus  is  on  the
researcher to ensure that  in allocating  the  choice  tasks  to  respondents,  that  each  choice  task  is
equally represented in the final data.  In cases of non-response or where the number of respondents
in the study does not  allow for each block  to  be  equally  distributed  over  the  sample,  this  may  be
difficult to achieve (this last point is often missed by the literature, as it has implications on sampling
and sample sizes that is rarely, if ever, discussed). 

Secondly,  it  is  typical  in  many  choice  studies  to  collect  data  on  non-design  attributes  such  as
socio-demographic and contextual variables.  In such cases,  unless  some form of strict  sampling is
imposed,  any  covariates  within  the  data  set  will  unlikely  be  orthogonal,  not  only  amongst
themselves, but also with the design attributes.  For example,  if age,  gender,  and income are added
as variables in some form of analysis, correlations are not only likely to exist  for these variables,  but
given  that  the  variables  described  are  constant  over  all  choice  situations  within  individual
respondents,  correlations between these variables  and other attributes  of the design are also  likely
to exist.

Finally, enforcement of orthogonality as a design principle does not  ensure against  the production of
behaviorally implausible choice situations within the survey. Often, analysts after generating a design
will  review the  final  survey  and  locate  choice  situations  in  which  they  believe  the  attribute  level
combination  of  a  particular  alternative  in  a  choice  situation  are  such  that  that  alternative  has  a  
probability  of one of being  chosen  (i.e.,  that  alternative  dominates  all  other  alternatives  on  offer  in
terms  of  preference).  In  such  cases,  no  information  is  gained  in  terms  of  the  possible  trade-offs
between  the  attributes  of  the  alternatives.  In  other  cases,  analysts  may  locate  choice  situations
whereby  certain  combinations  of  attributes  are  formed  which  may  not  be  plausible  in  reality  and
which thus detract from the realism of the choice tasks. In these cases, analysts  typically  reject  the
choice situations (i.e., delete that  row or combination of rows of the design),  thus ensuring that  the
design  and  data  will  no  longer  be  orthogonal  (for  a  discussion  of  the  benefits  and  costs  of  such
strategies, see e.g., Lanscar and Louviere 2006). 

Knowledge of these and other issues related to orthogonal designs are not  new and have been well
documented  in  the  literature.  For  example,  Hensher  and  Barnard  (1990)  have  made  a  distinction
between  design  orthogonality  and  estimation-data  orthogonality  in  order  to  highlight  that  design
orthogonality  is  not  always preserved  in  model  estimation.  In  making  this  distinction,  they  argued
that  estimation  orthogonality  based  on  discrete  choice  models  requires  that  the  differences  in
attribute  levels  be  orthogonal,  not  the  absolute  levels  themselves.  Such  arguments  are  similar  to
those that  led  to  the  creation  of  so  called  difference  designs  in  which  the  absolute  values  of  the
attribute  levels  of  the  alternatives  are  forced  to  be  as  different  as  possible  whilst  the  designs
themselves remain orthogonal in the differences. 

Given the above, a carefully determined orthogonal design is likely to produce non-orthogonal data in
practice.  As such,  the question arises  as  to how important  orthogonality  is  to  SC experiments.  In
the  next  section  efficient  designs  will  be  introduced,  which  seem  to  be  outperforming  orthogonal
designs easily, although such designs have not been used much in practice yet.
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To  summarize,  a  carefully  determined  orthogonal  experimental  design  is  likely  to  produce  non-
orthogonal data.  Therefore the question arises  if orthogonality  is  that  important.  In the next  section
so-called optimal or efficient  designs will  be introduced,  which seem to be outperforming orthogonal
designs easily, although such designs have not been used much in practice yet.

6.2 Generating orthogonal designs in Ngene

6.2.1 Full factorial designs

We demonstrated the syntax  to generate full  factorial designs in Section 4.2.  The syntax  we  used
was 

Design
? This will generate a full factorial design
;alts = alt1, alt2
;rows = all
;fact
;model:
U(alt1) = b1 + b2 * A[0,1,2] + b3 * B[0,1]     /
U(alt2) =      b2 * A        + b4 * C[2,4,6,8] $

In  the  above  syntax,  the  fact  property  in  conjunction  with  the  rows  property  instructs  Ngene  to
produce the full  factorial design.  The rows  property  is  required to inform Ngene as to the number of
rows that  the user requires  for a design.  The above  syntax  will  produce  the  output  given  in  Figure
6.1. Users should be cautioned that for designs with large numbers  of attributes  and attribute levels,
display of the full factorial may take some time. Further, full factorials with greater than 150,000 rows
cannot be generated due to memory issues.
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Figure 6.1: Full factorial design output

For all  experimental design  types,  clicking  the  first  ‘Design’  check  box  will  display  the  generated
design.  This  is  shown  in  Figure  6.1.  Located  under  the  ‘Design’  check  box  is  the  ‘Correlation’
branch. Ticking the ‘+’ symbol will reveal different correlation measures that may be used to examine
the design. Depending on the type of data,  different  correlation formulas  are appropriate.  Clicking on
one  of  the  correlation  checkboxes  will  result  in  the  desired  correlation  measure  being  displayed.
With  the  exception  of  the  ‘Interactions’  check  box,  Ngene  will  display  on  the  correlations  for  the
main  effects  only.  Selecting  the  ‘Interactions’  checkbox  will  display  the  correlations  for  the  main
effects and two way interaction terms for the design. This is shown in Figure 6.2.

Figure 6.2: Interaction and main effect correlations for a full factorial design output
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6.2.2 Fractional factorial designs

In order to create a fractional factorial design (i.e., one that does not  enumerate all  possible attribute
level combinations), the user will need to specify the desired number of rows required for the design.
The number of choice situations or rows of the design is  defined using the rows  property,  which  is
used to restrict  the number of choice situations in the design.  For example,  if a  subset  of  only  12
choice situations is required, the rows property can be set as:

;rows = 12

Using the same design as in Section 4.2, the complete syntax would now be:

Design
? This will generate a fractional factorial design
;alts = alt1, alt2
;rows = 12
;fact
;model:
U(alt1) = b1 + b2 * A[0,1,2] + b3 * B[0,1]     /
U(alt2) =      b2 * A        + b4 * C[2,4,6,8] $

The syntax  would now generate a design of 12 choice situations  by  randomly  choosing  12  choice
situations from the full  set  of  72  choice  situations.  Figure  6.3  shows  the  output  generated  for  the
above syntax. Note that the generated design will change each time the syntax is run as  the rows of
the design are randomly  taken from  the  full  factorial  design.  Further,  the  design  generated  will  be
randomly constructed and hence need not display the attribute level balance property.

Figure 6.3: Fractional factorial design with interaction and main effect correlations

If the fact property is not used in conjunction with the rows  property,  Ngene will  attempt to optimize
the design assuming that  an MNL model  is  desired.  Given  that  we  have  not  assumed  any  priors,
Ngene  will  assume  them  to  be  zero  (see  Chapter  7).  Ngene  will  continue  to  run  until  the  user
intervenes and presses ‘Stop’. We discuss optimization and priors further in Chapter 7.
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A restriction on the minimum number of rows that  can be generated is  the number of parameters  to
be estimated,  as  well as  the number of alternatives  present  in  each  choice  task.  As  discussed  in
Section 5.2.2, (J-1)S=K  and hence S=K/(J-1).  The rows  property  needs to be set  to a value greater
than or equal to this  number.  In the above example,  the number of parameters  is  four ('b1',  'b2',  'b3'
and 'b4'), whilst the number of alternatives is two. As such, S=4/(2-1)=4. If the value specified in rows
is not large enough, Ngene will again generate an error. 

When the fact property is not included in the syntax  and the number of rows is  not  equally  divisible
by all  attribute levels  specified in the utility  functions of the design,  Ngene  will  by  default  generate
designs  that  do  not  necessarily  display  attribute  level  balance.  In  the  above  example,  12  choice
situations is feasible as  this  number is  divisible without  remainder by  all  numbers  of attribute levels
(2,  3  and  4).  If  the  number  of  rows  is  not  feasible,  then  Ngene  will  generate  a  non-attribute  level
balanced design. 

6.2.3 Orthogonal fractional factorial designs

Rather  than  randomly  choosing  choice  situations  from  the  full  factorial,  choice  tasks  may
sometimes  be  chosen  in  such  a  way  that  the  attribute  levels  are  orthogonal  (i.e.,  there  are  no
correlations between the levels  of the two attributes).  The property  orth instructs  Ngene to generate
such  a  design.  Ngene  can  either  generate  a  sequential  orthogonal  design,  in  which  orthogonality
only  holds  within  each  alternative,  or  generate  a  simultaneous  orthogonal  design,  in  which
orthogonality also holds across alternatives. The properties would be:

;orth = seq

or 

;orth = sim

for  sequential  or  simultaneous  orthogonal  designs,  respectively.  Although  attribute  levels  across
alternatives  are  not  orthogonal  in  a  sequential  orthogonal  design,  the  sequential  method  of
constructing  orthogonal  designs  will  typically  lead  to  smaller  designs  in  terms  of  the  number  of
choice situations of the design. In the sequential method,  first  an orthogonal array  is  determined for
the attributes of the first alternative. Next, the attribute levels of the other alternatives are derived from
the  levels  in  the  first  alternative.  Therefore,  sequential  orthogonal  designs  can  typically  only  be
generated in cases where each utility  function has the same attributes  with the  same  levels  (i.e.,  
unlabelled  alternatives).  Where  different  alternatives  have  attributes  with  different  attributes  or
attributes  with  different  levels,  the  sequential  design  method  described  above  will  not  work.  An
alternative approach available in Ngene for generating sequential orthogonal designs for experiments
that  have  different  design  dimensions  across  alternatives  (i.e.,  certain  types  of  labeled  choice
experiments) combines separate orthogonal arrays  for  each  alternative.  That  is,  this  approach  will
generate  different  orthogonal  arrays  for  different  alternatives  and  hence,  each  alternative  can  have
different  attributes  and  attribute  levels.  Note  however  that  this  procedure  will  cause  correlations
between alternatives but not within (similar to using orth = seq).  This  procedure will  be used if in the
syntax the orth property is defined differently, namely

;orth = seq2

To  demonstrate,  consider  the  following  two  syntax  routines.  In  the  first,  we  have  requested  a
simultaneously  generated  orthogonal  design  and  in  the  second  a  sequentially  generated  design.
Both designs have requested four choice situations be generated.
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? This will generate a sequential orthogonal factorial design
Design
;alts = alt1, alt2
;rows = 4
;orth = seq
;model:
U(alt1) = b1 + b2 * A[0,1] + b3 * B[0,1] /
U(alt2) =      b2 * A      + b3 * B      $

? This will generate a simultaneous orthogonal factorial design
Design
;alts = alt1, alt2
;rows = 4
;orth = sim
;model:
U(alt1) = b1 + b2 * A[0,1] + b3 * B[0,1] /
U(alt2) =      b2 * A      + b3 * B      $

Table  6.6  shows  two  designs  generated  from  the  above  syntax  whilst  Table  6.7  reports  the
correlation structures for the two designs. In generating the simultaneous design,  Ngene was unable
to locate  a  design  in  four  rows  where  all  the  attributes,  independent  of  the  alternative  to  which  it
belongs to, are uncorrelated with each other. It should be noted that  it  cannot  be guaranteed that  an
orthogonal design can be found with the number of choice situations specified in rows.  In that  case,
Ngene will generate a warning message and attempt to locate an orthogonal design with more rows.
In some cases an orthogonal design cannot  be found at  all  (it  may not  exist  or is  unknown).  In that
case,  the  user  will  have  to  change  some  design  dimensions  (number  of  alternatives,  attributes,
attribute  levels)  and  try  again.  It  is  in  general  easier  to  find  sequential  orthogonal  designs  than
simultaneous orthogonal designs, as shown in the above example,  where a sequential design could
be located in four rows.

Table 6.6: Simultaneous versus sequential orthogonal design generation processes
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Table 6.7: Simultaneous versus sequential orthogonal correlation structures

For the example syntax,  the smallest  orthogonal  design  that  Ngene  was  able  to  locate  had  eight
choice situations. For the sequential design, Ngene was able to generate the design with four choice
situations.  Note however,  that  in doing so,  there now exist  correlations with the  attributes  between
the alternatives.

An example design using different orthogonal arrays for each alternative is given below. Note that  the
first  alternative  has  an  additional  attribute  that  is  not  included  in  the  utility  function  given  for  the
second alternative. 

? This will generate a sequential orthogonal factorial design
Design
;alts = alt1, alt2
;rows = 8
;orth = seq2
;model:
U(alt1) = b1 + b2 * A[0,1] + b3 * B[0,1]  + b4*C[0,1] /
U(alt2) =      b2 * A      + b3 * B                   $

Figure 6.4 shows Ngene output for the above syntax. 

Figure 6.4: Fractional factorial design using orth = seq2
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Often the number of choice situations needed to obtain an orthogonal design is  too high to give to a
single  respondent.  Therefore,  the  design  is  often  blocked  into  smaller  parts.  Each  block  is  not
orthogonal by  itself,  only  in  combination  with  the  other  blocks.  However,  attribute  level  balance  is
maintained within each block  as  much as is  possible.  In order to automatically  generate a blocked
(orthogonal) design in Ngene, simply add the block  property. In case of creating a design consisting
of two blocks,

;block = 3

To demonstrate the blocking procedure,  consider the following syntax.  The  syntax  will  produce  an
orthogonal fractional factorial design with 3 blocks.  

?  this  will  generate  a  simultaneous  orthogonal  factorial  design  with
three blocks
Design
;alts = alt1, alt2
;rows = 12
;orth = sim
;block = 3
;model:
U(alt1) = b1 + b2 * A[0,1,2] + b3 * B[0,1,2] /
U(alt2) =      b2 * A        + b4 * C[2,4,6] $

Note that  the number of blocks indicated in the blocking property  represents  the number  of  blocks
required  and  not  the  number  of  choice  tasks  per  block.  Thus,  the  above  syntax  will  produce  an
orthogonal blocking column with three blocks of four (12 / 3) choice sets each. An example design is
shown in Figure 6.5.
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Figure 7.5: Orthogonal fractional factorial design with orthogonal blocking column

Note that  this  may be an issue if Ngene  is  unable  to  locate  a  design  in  the  requested  number  of
rows and is forced to increase the number of rows in generating a design. In this case, the number of
blocks remains as specified but the number of choice tasks per block  will  automatically  increase.  If
such a situation arises, the user may wish to re-specify the number of rows and blocks and generate
a new design.

6.2.4 Orthogonal fractional factorial designs with two-way interactions

In case two-way interactions are important,  one could generate a foldover  design  that  will  in  many
cases make all  two-way interactions independent  of all  main effects.  Note that  this  will  not  always
work,  but  does  appear  to  work  in  many  instances.  To  create  a  foldover  design,  simply  add  the
following property to the syntax:

;foldover

In this case, the number of choice situations will be twice as large as  specified in the rows property,
but the design will be blocked in two (a blocking column will be added), such that the total number of
choice situations given to a single respondent does not increase. For example,

? use of the foldover property
Design
;alts = alt1, alt2
;rows = 8
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;orth = sim
;foldover
;model:
U(alt1) = b1 + b2 * A[0,1] + b3 * B[0,1]   /
U(alt2) =      b2 * A      + b4 * C[0,1]   $

will result in a design similar to that shown in Figure 6.6.

Figure 6.6: Orthogonal fractional factorial design with foldover

In  Figure  6.6,  it  can  be  seen  that  the  resulting  design  produces  two-way  interactions  that  are
uncorrelated  within  each  alternative,  but  which  are  perfectly  correlated  between  alternatives.  For  
unlabeled choice experiments, such correlation structures do not matter.

Rather than use foldover designs,  the user may wish to specify  specific  interaction effects  that  are
uncorrelated  with  both  the  main  effects  and  other  specified  interaction  effects.  For  orthogonal
designs,  Ngene  allows  the  user  to  do  so  for  two-way  interaction  effects.  To  specify  a  two-way
interaction  effect,  the  user  first  specifies  a  parameter  estimate  and  then  nominates  which  two
attributes of the design to generate the interaction for. For example, 

b3 * x1 * x2

will generate a design that will attempt to locate an uncorrelated two way interaction effect  for the x1
and x2 attributes which must also be specified in the utility function of the model property.  Note that
in constructing designs for two way interactions, Ngene employs a search process and that  there is
no guarantee that such an uncorrelated interaction effect  will  be located.  In such a case,  Ngene will
display  the design with the requested interaction effects  that  have the  minimal  level  of  correlations
that  are  possible  within  the  search  domain.  Example  syntax  of  how  to  construct  an  orthogonal
fractional factorial design with a two way interaction effect is given below. Figure 6.7 shows a screen
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capture  of  a  design  generated  using  this  syntax.  In  the  screen  capture,  we  have  highlighted  the
requested interaction effect  to  demonstrate  that  Ngene  was  able  to  locate  the  requested  two-way
interaction effect.

? use of interactions specified in the model
Design
;alts = alt1, alt2, alt3
;rows = 8
;orth = sim
;model:
U(alt1) = b01 + b1 * x1[0,1] + b2 * x2[0,1] + b3 * x1 * x2 /
U(alt2) = b02 + b1 * x1      + b2 * x2                     /
U(alt3) =       b1 * x1      + b2 * x2                     $

Figure 6.7: Orthogonal fractional factorial design with specified two-way interaction effects
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6.3 Orthogonal optimal in the difference fractional factorial designs

A special type of a sequential orthogonal design is  a so-called optimal orthogonal in the differences
(OOD) design,  following the design principles  of Street  et  al.  These  researchers  have  identified  an
alternative optimality criteria to that  used in generating efficient  SC designs.  As well as  maintaining
orthogonality,  these  researchers  suggest  that  SC  experiments  should  be  constructed  such  that
attributes common across alternatives should never take the same level over the experiment  (see e.
g.,  Burgers  and Street,  2005;  Street  and Burgess,  2004;  Street  et  al.,  2001,  2005).  Such  designs
are  known  as  D-optimal  designs.  The  argument  for  using  this  approach  is  that  respondents  are
forced to trade on all attributes in the experiment, whilst the orthogonality  of the design ensures that
independent  influence  each  attribute  has  upon  choice  can  be  determined.  Optimality  under  this
definition  differs  from  that  of  D-efficient  designs,  in  that  D-optimal  designs  attempt  to  maximize
attribute  level  differences  whereas  D-efficient  designs  attempt  to  minimize  the  elements  that  are
likely  to be contained within the AVC matrices  of models  estimated  from  data  collected  using  the
design.  As  such,  a  D-optimal  design  need  not  be  optimal  in  terms  of  the  criteria  set  out  for  D-
efficient designs, with the opposite also being true. Indeed, the two optimality criteria are likely  to be
incompatible  with  one  another  for  all  but  a  small  number  of  cases.  Note  that  for  constructing  D-
optimal  designs,  no prior parameters  are  used  (i.e..,  we  assume  the  priors  are  all  zeros),  as  one
concentrates  on  the  attribute  level  differences,  hence  efficiency  will  be  lost  in  practice  since  the
parameters are typically not equal to zero. For the interested reader, the specific steps in generating
these types of designs (taken from Street et al., 2005) are outlined in detail in Appendix 6B.

In order to create these designs in Ngene, the orth property can be set as

;orth = ood

Optimal orthogonal in the difference choice designs suffer  from  a  number  of  issues  which  has  not
been  widely  discussed  within  the  literature.  Firstly,  these  designs  may  only  be  constructed  for  
unlabeled  SC  experiments.  Labeled  choice  experiments  where  attributes  may  not  be  common
across alternatives,  or where attribute  levels  may  differ  for  common  attributes  are  not  possible  for
such  designs,  as  such  designs  are  not  covered  by  the  definition  of  optimality  offered.  Secondly,
these  designs  may  promote  certain  forms  of  behavioral  response,  such  as  lexicographic  choice
behavior. By forcing each attribute to be different across alternatives, a particularly dominant attribute

level may govern the entire experiment3. 

Example syntax used to construct an OOD design is given below.

Design
;alts = alt1, alt2
;rows = 9
;orth = ood
;model:
U(alt1) = b1 * A[0,1,2] + b2 * B[0,1,2]  /
U(alt2) = b1 * A        + b2 * C[0,1,2]  $

Figure  6.8  presents  a  design  generated  using  Ngene  for  the  above  syntax.  Ngene  will  report  a
number of additional output  for OOD type designs.  This  output  can be accessed by clicking on the
OOD tree structure located on the left hand side of the output  screen.  By clicking on the OOD click
box, as shown in Figure 6.8, Ngene will report the D-efficiency value of the design (see Appendix  6B
). This  value represents  the percentage of optimality  of the design.  Ngene also reports  a number of
matrices upon request. These matrices are used in the calculation of the D-efficiency measure.   For
information on what purpose these matrices serve, see Appendix 6B.
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Figure 6.8: Orthogonal optimal in the difference fractional factorial design

6.4 Appendix 6A Correlation measures

Table  6A.1,  adapted  from  Hensher  and  Smith,  1984,  shows  the  appropriate  formulae  to  use  for
different scaled data. 

Table 6A.1: Appropriate correlation formula

Random variable scale definitions: R: Ratio; I: Interval, O: Ordinal; D: Dichotomous; N, nominal

Scale Pair
(X1, X2)

Formula
1, 2, …, N observations
1, 2, …, m levels
X1, X2 = random variables Test Name
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R,R or R, I Pearson  product
moment
correlation

coefficient [ρ]

D,D

where
A = sum of positive agreeing responses (X

1
 = +ve, X

2
 = +ve)

B = sum of negative agreeing responses (X
1
 = -ve, X

2
 = -ve)

C = sum of non-agreeing responses (X
1
 = -ve, X

2
 = +ve)

D = sum of non-agreeing responses (X
1
 = +ve, X

2
 = -ve)

When the dichotomous variable (0, 1) is coded (-1, +1)

G index [G]

N,N or N,D

where 

and d
x
 = number of categories for X

J index [J]

O,O

where

Spearman  Rank
correlation [SR]

D,R Point  Biserial
correlation [PB]
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where   is  the  standard  deviation  of  the  ratio  scaled  random
variable  X

2
,  µ

21
 and  µ

22
 are  the  means  of  the  values  of  X

2
,

corresponding to the dichotomous X
1
 variables values 1 and 0. 

N,I

where
n

r
 is the number of individuals with Y=r

d is the number of categories of the nominal attribute

CP-coefficient
[CP]

I, I H-INDEX [H]

6.5 Appendix 6B Optimal orthogonal in the differences designs

The construction of OOD designs is  described  in  detail  by  Street  et  al.  (2005).  OOD designs  are
constructed  to  so  as  to  maximise  the  differences  in  the  attribute  levels  across  alternatives,  and
hence maximise the information obtained from respondents answering SC surveys by  forcing trading
of  all  attributes  in  the  experiment.  OOD designs  are  limited  orthogonal  designs  in  that  they  are
orthogonal within an alternative but  have (often perfect  negative) correlations across alternatives.  As
such,  the design should generally  only  be applied to studies  where all  parameters  are  likely  to  be
treated as generic (i.e., typically unlabeled choice experiments).  The design generation process,  as
described  here,  also  limits  the  experimental  design  to  problems  where  each  alternative  has  the
same  number  of  attributes,  and  each  attribute  has  the  same  number  of  levels.  Work  has  been
conducted on removing some of these constraints,  however we do not  report  on these here (see for
example, Burgess and Street 2005).  We restrict  here our discussion to generating OOD designs to
problems examining main effects only (those interested in constructing OOD designs for interactions
are referred to Street et al. (2005) for further details). The steps for generating OOD designs are now
presented.

Step 1: Construct an orthogonal design for the first  alternative of the design (using design coding;  i.
e.,  0,  1,  2,  ...,  l).  It  is  from this  initial design that  subsequent  alternatives  will  be  constructed.  The
original orthogonal design can be obtained from software,  cookbooks (e.g.,  Hahn and Shapiro 1966)
or generated from first principles (see e.g.,  Kuehl 1994).  Any orthogonal design will  suffice,  provided
it has the same dimensions required for all alternatives in the design. 
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Step 2:  Locate a suitable design  generator.  To  do  this,  create  a  sequence  of  K  values  which  are
either equal to zero or are positive integers,  where K  is  the number of attributes  per alternative and
each value in the sequence maps to an attribute of the second alternative.  For each of the K  values
in the sequence, the value assumed can be any integer up to l

k
 - 1,  where l

k
 is  the number of levels

that attribute k  assumes. 

For example,  assuming the first  attribute of an alternative has three levels  and the second attribute
has two levels, then the first value in the design generator can be zero or any integer value between
one and two (i.e.,  between 1 and 3-1 = 2),  whereas the second value in the design generator must
be either zero or one (i.e.,  non zero,  an integer and a value up to 2-1 = 1).  Thus,  for  example,  the
analyst may consider as design generators sequences 11 or 21. 

Subsequent  alternatives  are  constructed  in  a  similar  fashion,  however,  where  possible,  design
generator sequences should attempt to use unique values for each attribute of each new alternative.
Design  generators  should  also  attempt  to  avoid  using  the  value  zero  as  this  will  lead  perfectly
correlated  attributes  in  the  design.  For  example,  if  the  sequence  21  were  used  as  the  design
generator for the  second  alternative,  a  third  alternative  might  use  the  values  11  or  10.  Where  the
same attribute across two or more alternatives  have the same value in their design generators,  the
attributes will be perfectly confounded. For example,  if we apply  as  design generators  21 and 11 for
the  second  and  third  alternatives,  the  second  attribute  for  each  alternative  will  be  perfectly
confounded. Where zero is used in the generator, that attribute will  be perfectly  confounded with the
attribute in the first alternative. For example, if we apply  as  design generators  21 and 10,  then none
of  the  attributes  in  alternatives  two  and  three  will  be  confounded,  but  the  second  attribute  in
alternative three will be perfectly confounded with the second attribute of alternative one. 

Step 3:  For each choice situation,  add the sequence  of  values  of  the  design  generator  in  order  of
appearance to the attribute levels observed for the first alternative. For example,  if the attribute levels
in an alternative are 2 and 1 respectively, adding the design generator 21 results  in the values 4 and
2 respectively (using design coding).

Step 4: Apply modulo arithmetic to the values derived in step 3.  The appropriate modulo to apply  for
a particular attribute is equal to the number of levels for that attribute, l

k
. Thus, for attribute one which

has three levels,  we use mod 3 and for the second attribute with  two  levels  we  would  use  mod  2.
Using the design generator 21,  applying  mod  3  to  the  first  attribute  results  in  4  Ξ  1  (mod  3)  and
applying mod 2 to the second attribute produces 2 Ξ 0 (mod 2).  The values derived in  this  manner
represent  the levels  of the second alternative.  Subsequent  alternatives  are constructed  by  applying
the appropriate design generator to the first alternative in the design,  and applying the same modulo
arithmetic  rules.  Table  6B.1  shows  a  design  with  six  choice  situations  for  the  example  problem
above.  Note  that  we  have  used  the  full  factorial  in  constructing  the  first  alternative.  In  generating
experimental designs using this method,  one can use a fractional factorial instead and our use of a
full factorial is purely for demonstrative purposes only.

The  above  description  represents  a  rather  simplistic  discussion  on  the  construction  of  design
generators for OOD designs. The reader interested in finding out  more about  the process is  referred
to Street et al. (2005) for a more detailed description.
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Table 6B.1: Constructing a second alternative for an OOD design

Step 5:  Construct  a symmetric  matrix,  Λ.  The Λ matrix  represents  the  proportion  of  times  over  all
choice situations that  each alternative (as  represented by  its  sequence  of  attribute  levels)  appears
with  all  other  possible  alternatives  in  the  design.  The  Λ  matrix  will  be  a  square  matrix  with

dimensions  equal  to  .  Hence,  working  with  the  example  above,  the  Λ  matrix  will  be  of
dimensions 6x6 (i.e.,  (3x2)x(3x2)).  Each column and row of the matrix  relates  to a potential unique
combination of attribute levels  that  could exist  within the design.  In generating the matrix,  we  write
out the full  enumeration of attribute level combinations contained within a single alternative.  For the
above design, the combinations of attributes  within an alternative can be expressed by the following
sequences (using design coding); 00, 01, 10, 11, 20 and 21,  where the first  value in each sequence
relates to the first attribute in the design and the second value, the second attribute. 

To populate the Λ matrix,  we simply  count  the  number  of  times  a  particular  sequence  of  attribute
levels  for one alternative appears  with sequences of attribute levels  in all  other alternatives.  For  the
above  example,  the  sequence  00  appears  in  the  first  choice  situation  as  the  attribute  levels  in
alternative  1  against  the  attribute  levels  21  in  alternative  2;  The  same  sequence  also  appears  in
choice situation four,  as  the attribute levels  for alternative 2 against  the attribute level sequence  11
for alternative 1. Each time a combination appears  together anywhere in the design,  we add a -1 to
the corresponding  coordinates  in  the  Λ  matrix.  To  complete  the  matrix,  the  values  of  the  leading
diagonal are then chosen such that all rows and columns sum to zero. 

We next need to scale the Λ matrix  to account  for the number of alternatives  and choice situations

in the design. To do this, we multiple each element  of the matrix  by   where J  is  the number of
alternatives in the design, and S is the number of choice situations.  Table 6B.2 shows the Λ matrix
for the above example, both before and after scaling.

Table 6B.2: Λ matrix

Step 6: Construct a matrix of contrasts for the effects  that  are of interest  in the design (e.g.,  linear,
quadratic, cubic, etc.). This matrix we call  the B  matrix.  The number of rows of the B  matrix  will  be



85Orthogonal Designs

© 2012 ChoiceMetrics

equal to  where l
k
 -1  corresponds  to  the  number  of  effects  attribute  k  can  be  used  to

test. Hence, each row will correspond to a particular effect of interest for each attribute in the design.
The number of columns in the matrix will be exactly the same as the Λ matrix, which will be equal to

 . For the example above, the B matrix will therefore have three rows (i.e.,  (3-1) + (2-1) = 3)
and  six  columns  (i.e.,  2x3  =  6),  where  the  first  two  rows  correspond  to  the  linear  and  quadratic
effects of the first attribute (which has three levels) and the last row to the linear effect  of the second
attribute (which has two levels). 

To  populate  the  B  matrix,  we  first  begin  by  determining  what  the  coefficients  of  orthogonal
polynomials are that correspond to each of the attributes in the design.  The values that  populate the
matrix  represent  the  full  factorial  of  the  possible  combinations  of  coefficients  of  orthogonal
polynomials.  For our example, the linear coefficients  of orthogonal polynomials  for the first  attribute
are {-1,  0,  1},  and {1,  -2,  1} for the quadratic  effects.  The linear  effects  for  a  two  level  attribute  are
simply  {-1,  1}.  The linear coefficients  of orthogonal  polynomials  for  the  first  attribute  constitute  the
first row of the matrix, whilst the quadratic effects make up the second row. The final row represents
in our example,  the second attribute of the design.  This  row is  constructed such that  each  level  of
the attribute appears  against  each of the linear and quadratic  effects  of the first  attribute.  Thus,  the
matrix of coefficients of orthogonal polynomials for our example is: 

We are next required to normalise this matrix by dividing each row of the matrix by the square root of
the  sum  of  the  squares  for  each  row  of  the  non-normalised  matrix.  For  the  above,  squaring  all
elements  and  summing  each  row  produces  values  of  four,  12  and  six  for  rows  1,  2  and  3
respectively. Taking the square roots and dividing each row of the matrix  of coefficients  of orthogonal
polynomials by these values, we obtain the B matrix which we show below.

Step 7:  Calculate the information matrix,  C (El  Helbawy  and  Bradley  1978).  C  is  calculated  using
matrix algebra such that C = BΛB'.

When the C matrix  is  diagonal,  all  main effects  will  be independent,  which is  not  the case with our
example. 

Step 8:  Calculate the level of efficiency for the design.  This  requires  first  estimating  the  maximum
value the determinant of the C matrix could assume and comparing this  to the actual value of the C
matrix  for the design.  The first  step in determining the maximum value of the  determinant  of  the  C
matrix  is  to calculate the value M

k
 which represents  the largest  number of pairs  of alternatives  that

can assume different levels for each attribute, k , in a choice situation. This value for each attribute k ,
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can be established using Equation (6B.1). Note that the particular formula to adopt to calculate M
k
 is

a function of the number of alternatives in the design, J, and the number of levels of attribute k .

(6B.1)

and x and y are positive integers  that  satisfy  the equation J  =  l
k
x  +  y  for  0   y   l

k
.  For  the  case

where an attribute has levels 2 < l
k
  J,  the analyst  will  need to fit  integer values for y between zero

and l
k
 to obtain values of x that satisfies this equation. Any value of y that  results  in an integer value

of x represents a possible candidate for the design.

For our example, the design has J = 2 with l
1
 = 3 and l

2
 = 2 and S = 6. As such, for the first attribute

we obtain M
1
 = J(J-1)/2 = 2(2-1)/2 = 1 and for the second attribute, M

2
 = J2/4 = 22/4 = 1.

Once the value of M
k
 has been established for each attribute, the maximum value of the determinant

of C is calculated as:

(6B.2)

Applying Equation (6B.2) to our example,  the maximum value the determinant  of  C  could  possibly
achieve is

For OOD designs, the level of efficiency of a design is  expressed as a percentage referred to as  D-
efficiency in the literature. The D-efficiency of a design is calculated as follows: 

(6B.3)

The closer the D-efficiency to 100  percent,  the  more  efficient  the  design  is.  For  our  example,  the
determinant  of  the  C  matrix  is  0.00362.  From  Equation  (6B.3),  the  D-efficiency  for  our  design  is
calculated as
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7 Efficient Designs

7.1 Theory of efficient designs

In  this  section,  we  discuss  the  theory  underlying  efficient  designs.  Subsequent  sections  of  the
chapter outline how such designs are obtained using Ngene. 

7.1.1 Efficient designs

In  contrast  to  orthogonal  designs,  so-called  efficient  designs  do  not  merely  try  to  minimize  the
correlation in the data for estimation purposes,  but  aim  to  result  in  data  that  generates  parameter
estimates with as  small as  possible standard errors.  These designs make use of  the  fact  that  the
AVC matrix  (the  roots  of  the  diagonal  of  this  matrix  are  the  asymptotic  standard  errors)  of  the
parameters can be derived if the parameters are known. Unfortunately,  since the objective of the SC
experiment  is  to estimate these parameters,  they are unknown. However,  if  some  prior  information
about these parameters is available (e.g., parameter estimates available in the literature from similar
studies, or parameter estimates from pilot  studies),  then this  asymptotic  variance-covariance matrix
can be determined, assuming that the priors are correct.  It  can be argued that  an orthogonal design
is  efficient  only  in cases where there is  no knowledge about  the parameters,  but  whenever there is
any prior parameter information available (perhaps just  knowledge of the sign of the parameter) then
the design can be improved.

7.1.2 Definition of efficiency

An experimental design is  called  efficient  if  the  design  yields  data  that  enables  estimation  of  the
parameters  with  as  low as  possible  standard  errors.  These  standard  errors  can  be  predicted  by
determining the AVC matrix  based on the underlying experiment  and  some  prior  information  about
the parameter estimates.  The following subsection will  first  briefly  describe how to obtain this  AVC
matrix.  Then,  we will  present  several proposed efficiency measures for expressing  the  efficiency  of
an experimental design into a single value. 

7.1.3 Deriving the asymptotic variance-covariance matrix

Let  Ω
N
 denote the asymptotic  variance-covariance  matrix4  (AVC)  matrix  given  a  sample  size  of  N

respondents  (each  facing  S  choice  situations).  This  AVC  matrix  depends  in  general  on  the
experimental design, X = [X

n
],   the parameter values,  β,  and the outcomes of the survey,  Y  =  [y

jsn
],

where  y
jsn

 equals  one  if  respondent  n  chooses  alternative  j  in  choice  situation  s  and  is  zero

otherwise.  Since the parameter values β are unknown, prior parameter values   are  used  as  best
guesses for the true parameters. 

The AVC matrix  is  the negative inverse of the  expected  Fisher  Information  matrix  (e.g.,  see  Train,
2003), where the latter is equal to the second derivatives of the log-likelihood function:
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(7.1)

where  l
N
(X,  Y,  β)  is  the  Fisher  Information  matrix  with  N  respondents,  and  L

N
(X,  )  is  the  log-

likelihood function in case of N respondents defined by

(7.2)

This formulation holds for each model type (MNL, NL, or MMNL), only the choice probabilities  P
jsn

(X,

 ) are different.  Further information on these model types are given in Appendix  7A.  For the  MNL
model, the choice probabilities given in Equation (7A.5) in Appendix 7A apply. Other probabilities  are
used for other model types,  as  discussed in Appendix  7A.  There  are  two  ways  of  determining  the
AVC matrix, either by Monte Carlo simulation, or analytically. 

Most  researchers  have  relied  on  Monte  Carlo  simulation.  In  this  case,  a  sample  of  size  N  is
generated  and  parameters  are  estimated  based  on  simulated  choices  (by  simply  computing  the
observed utilities  using some  prior  parameter  estimates,  adding  random  draws  for  the  unobserved
utilities,  and then determine the chosen alternative by  assuming  that  each  respondent  selects  the
alternative with the highest utility). Such an estimation also provides the results  for the AVC matrix.
This  procedure  is  repeated  a  large  number  of  times  and  the  average  AVC matrix  gives  the  AVC
matrix. 

Many have not  realized that  the AVC matrix  can be determined analytically,  as  suggested for MNL
models  with all  generic  parameters  by  McFadden (1974).  In this  case,  the second derivative  of  the
log-likelihood function in Equation (7.2) is determined and evaluated analytically.  A potential problem
is,  that  the  vector  of  outcomes,  Y,  is  part  of  the  log-likelihood  function,  the  reason  why  most
researchers  perform Monte Carlo simulations.  However,  it  can be shown that  the outcomes Y  drop
out  when  taking  the  second  derivatives  in  case  of  the  MNL  model.  This  has  been  shown  by
McFadden  (1974)  for  models  with  all  generic  parameters,  and  in  Rose  and  Bliemer  (2005a)  for
models  with  alternative-specific  parameters,  or  a  combination.  Furthermore,  Bliemer  et  al.  (2009)
have also derived analytical expressions for the second derivatives  for the NL model.  The outcomes
Y  do not  drop out,  but  as  shown in their  paper,  they  can  be  replaced  with  probabilities  leading  to
exactly  the  same  AVC matrix,  which  has  been  confirmed  by  Monte  Carlo  simulation  outcomes.
Although more tedious, the second derivatives can also be derived for the MMNL model and a similar
procedure holds  for removing the outcome vector Y.  Note that  the MMNL model will  always require
some  simulations,  as  the  parameters  are  assumed  to  be  random  and  therefore  expected
probabilities  need  to  be  approximated  using  simulation.  However,  these  simulations  have  no
connection with the simulations mentioned earlier for determining the AVC matrix.  To conclude,  Ω

N

can be determined without knowing simulated outcomes Y,  hence the dependency on Y  disappears
in Equation (7.2).

In  the  special  (and  most  considered)  case  that  all  respondents  face  exactly  the  same  choice
situations, i.e., X

n
 = X for all n, it can be shown that (see Rose and Bliemer, 2005a)

(7.3)
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In other words, the AVC matrix corresponding to a sample size of N can be derived directly  from the
AVC matrix from a single respondent using a rate of 1/N. This means that the impact  of sample size
on  the  design  can  readily  be  investigated  (under  all  assumptions  made  so  far).  The  asymptotic

standard errors se
N
(X, ) are the roots  of the diagonal of the AVC matrix,  therefore these standard

errors decrease with a rate of 1/  of the sample size N.  This  is  also illustrated in Figure 7.1 for a
single  parameter,  clearly  indicating  a  diminishing  decreasing  asymptotic  standard  error  when  the
sample size increases. This is an important result, as it suggests that spending (much) more money
on  collecting  data  using  a  larger  sample  size  does  in  the  end  not  lead  to  significantly  better
parameter estimates,  indicated by  (*)  in  the  figure.  As  the  figure  also  suggests,  it  pays  off  much

more to determine a design with a higher efficiency (design with attribute levels  XII  instead of XI),  in
which the standard error can decrease significantly,  indicated by  (**) in the figure,  without  spending
any extra money!  

Figure 8.1: Asymptotic standard error as a function of the sample size

7.1.4 Efficiency measures

The efficiency of a design can be derived from the AVC matrix.  Instead of assessing a  whole  AVC
matrix, it is easier to assess a design based on a single value.  Therefore,  efficiency measures have
been proposed in the literature in order to calculate such an efficiency value,  typically  expressed as
an efficiency ‘error’ (i.e., a measure for the inefficiency). The objective then becomes to minimize this
efficiency error. 

The most widely used measure is called the D-error, which takes the determinant  of the AVC matrix

Ω
1
,  assuming  only  a  single  respondent5.  A  design  with  the  lowest  D-error  is  called  D-optimal.  In

practice it  is  very  difficult  to find the design with the lowest  D-error,  therefore we are satisfied if the
design has a sufficiently low D-error, called a D-efficient  design.  Different  types of D-error have been

proposed in the literature, depending on the available information on the prior parameters  .  We will
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distinguish three cases:
(a) No information is  available;  If no  information  is  available  (not  even  the  sign  of  the  parameters),

then set =0. This leads to a so-called D
z
-error (‘z’ from ‘zero’).

(b) Information is available with good approximations of β;  If the information is  relatively  accurate,  
is  set  to the best  guesses,  assuming they are correct.  This  leads  to  a  so-called  D

p
-error  (‘p’  from

‘priors’)
(c) Information is available with uncertainty about the approximations of β;

Instead of assuming fixed priors , they are assumed to be random following some given probability
distribution to express the uncertainty  about  the true value of β.  This  Bayesian approach leads to a
so-called D

b
-error (‘b’ from ‘Bayesian’).

The  D-errors  are  a  function  of  the  experimental  design  X  and  the  prior  values  (or  probability

distributions) , and can be mathematically formulated as:

  
(7.4)

  
(7.5)

  
(7.6)

where K is the number of parameters to be estimated.  Note that  the AVC matrix  is  a K  x  K  matrix.
In order to let the D-error be independent of the size of the problem, the D-error is  normalized by  the
power 1/K. We recommend removing the rows and columns corresponding to the model constants in
the AVC matrix as these parameters in general do not  have a clear meaning in a SC experiment  (in
contrast  to revealed choices).  As the standard errors  of  these  model  constants  can  become  fairly
large,  they  could  dominate  the  D-errors,  therefore  we  advise  to  remove  them  before  taking  the
determinant (and at the same time also adjust the value of K).

Equation (7.6) needs some more explanation.  In the Bayesian D-error computation the priors   are
assumed to be random variables with a joint probability density function Φ(.) with given parameters  Θ

. For example, these priors could follow normal distributions  ~ N(µ,  Σ),  or uniform distributions 
~ U(u, v), or a mix, or other distributions. Normal and uniform distributions seem to be the only  ones
used in the literature so far.

Besides the D-error,  other inefficiency measures  have  been  proposed  as  well.  Another  well-known
efficiency  error  is  called  the  A-error,  and  the  design  with  the  lowest  A-error  is  called  A-optimal.
Instead  of  taking  the  determinant,  the  A-error  takes  the  trace  of  the  AVC  matrix,  which  is  the
summation of all diagonal elements  of the matrix.  Therefore,  the A-error only  looks at  the variances
and  not  at  the  covariances.  In  order  to  normalize  the  A-error  it  is  divided  by  K  (the  same
recommendation about the model constants applies). Similar to the D-error, different  A-errors  can be
determined based on the availability of information on the parameters. The A

p
-error is  mathematically

formulated as

(7.7)

The A
z
-error and A

b
-error can be derived using formulations equivalent to Equations (7.4) to (7.6) (see
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Bliemer and Rose, 2009).  The A-error should be used with caution in case not  all  parameter values
are of equal scale.  By the simple summation of the variances it  is  likely  that  parameters  with large
values will  overshadow the other parameters.  Therefore,  we  suggest  using  a  weighted  summation.
Using weights it is  also possible to give more importance to certain parameters,  that  is,  enable the
estimating of these parameters more accurately than others. 

A completely  different  efficiency measure has been introduced by Bliemer and Rose (2005a).  They
propose  a  measure  that  is  related  to  the  sample  sizes  required  to  estimate  each  parameter
significantly.  If  the  null  hypothesis  is  that  β

k
 =  0  for  a  certain  parameter,  then  this  hypothesis  is

rejected if

(7.8)

where t
α
 is  the t-value corresponding to the (1 - α)-confidence interval (e.g.,  t

0.05
 =  1.96).  Assuming

that the priors are correct estimates for the true parameters  and assuming that  all  respondents  face
the same choice situations, i.e., Equation (7.3) holds, then Equation (7.8) can be rewritten as

(7.9)

This number provides a lower bound on the necessary  number of the sample size in order to obtain
significant  estimates  for  parameter  β

k
 (see  Bliemer  and  Rose,  2009).  The  measure  proposed  by

Bliemer and Rose (2005a, 2009) is derived from the observation that  if some parameters  need much
higher sample sizes than others, it may be better in the experiment to focus more on the parameters
that  are difficult  to estimate  significantly.  By  spreading  the  information  obtained  from  each  choice
situation  in  the  design  over  all  parameters,  the  design  can  be  optimized  for  sample  size,  and  is
termed S-optimality (see Bliemer and Rose 2005a, 2009). 

Note that Equation (7.9) merely provides a lower bound and does not guarantee significant parameter
estimates due to random choice behavior and in the case of the MNL model,  the assumption that  all
random components  are independent,  even if a single respondent  faces  multiple  choice  situations,
may also impact  upon the value derived.  This  will  lead  to  some  biases,  yielding  higher  necessary
sample sizes.  The problem of dependent  observations  in  a  SC experiment  is  a  known  problem  to
which unfortunately  no simple solution exists,  besides putting the correlation structure in a random
components  model.  Therefore,  the  S-optimality  measure  merely  gives  an  indication  in  order  to
compare different designs on lower bounds for the sample sizes. 

Several other efficiency criteria  have  been  proposed  within  the  literature  (see  e.g.,  Kessels  et  al.,
2006) and many others can be formulated. Within Ngene, aside from D-, A-, and S-error measures of
efficiency, there also exists (implemented only  for the MNL model) an additional efficiency measure
termed C-error (see Kanninen, 1993a,b and Scarpa and Rose 2008).  The C-error measure in Ngene
attempts to minimise the variance of the ratio of two parameters and as such is ideal for working with
problems dealing with willingness to pay (WTP) issues.  As shown in Scarpa and Rose (2008),  the
variance of two parameters may be approximated using Equation (8.10)

(7.10)
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The C-error criterion relates  to the minimization of such  variances.  In  most  SC experiments,  there
will exist more than one WTP, with indeed up to k -1 potential WTPs. In such cases,  the C-error has
been set  up to minimise the  sum  of  the  up  to  k -1  C-error  values,  with  the  user  able  to  nominate
which WTP values to include in the calculation.

7.1.5 Drawing from parameter distributions

In the previous section,  we saw that  there exist  multiple efficiency criteria that  one  may  use  when
generating efficient designs. We further saw that within each efficiency measure,  there exist  multiple
approaches regarding the parameter priors  assumed in generating efficient  SC experiments.  In  the
first approach, researchers have made the strong assumption that all parameter priors  for the design
are  simultaneously  equal  to  zero  (e.g.,  Burgess  and  Street  2005;  Grasshoff  and  Schwabe  2007;
Huber  and  Zwerina  1996;  Street  and  Burgess  2004;  Street  et  al.  2001).  Street  et  al.  make  this
assumption for analytical reasons,  enabling them to locate truly  optimal  (most  efficient)  orthogonal
designs. This optimality will  only  exist  under the assumption of zero parameter estimates,  which is
unlikely to hold in reality. A second approach that  has sometimes been used is  to assume that  the
parameter priors are non-zero and known with certainty  (e.g.,  Carlsson and Martinsson 2003;  Huber
and Zwerina 1996; Rose and Bliemer 2005). In such an approach, a single fixed prior is  assumed for
each  attribute.  Whilst  the  assumption  of  perfect  certainty  is  a  strong  one,  the  design  generation
process  is  such  that  researchers  are  able  to  test  its  impact  on  a  design’s  efficiency  assuming
misspecification of the priors. Sándor and Wedel (2001) introduced a third approach by  relaxing the
assumption  of  perfect  a  priori  knowledge  of  the  parameter  priors  through  adopting  a  Bayesian
approach to the design generation process. 

The  Bayesian  approach  to  constructing  efficient  SC experiments  requires  that  the  efficiency  of  a
design  be  evaluated  over  numerous  different  draws  taken  from  the  prior  parameter  distributions
assumed in generating the  design.  The  Bayesian  efficiency  of  a  design  is  then  calculated  as  the
expected value of whatever measure of efficiency is assumed over all the draws taken.  The Bayesian
approach therefore necessitates the use of simulation methods to approximate the expectations for
differing designs. 

For computing the Bayesian efficiency,  a number of different  simulation procedures are available to
researchers,  with  the  simplest  being  the  use  of  pseudo  random  draws.  In  using  pseudo  random
draws  (often  referred  to  as  pseudo  Monte  Carlo,  or  PMC,  draws),  points  from  a  distribution  are
randomly  selected.  Whilst  simple to implement  in practice,  results  obtained using  PMC draws  are
susceptible to being specific  to  the  particular  draws  taken  from  whatever  distribution  is  assumed,
with different  sets  of random draws likely  to produce different  coverage  over  the  distribution  space,
possibly leading to widely different results when calculating the expectations.  This  risk  is  especially
high with the use of a small number of draws. The precision of simulation processes may potentially
be  improved  by  using  a  more  systematic  approach  in  selecting  points  when  sampling  from  a
distribution. Such techniques are commonly  referred to within the literature as  quasi random Monte
Carlo draws  (see,  for  example,  Bhat  2001,  2003;  Hess  et  al.  2005;  Sándor  and  Train  2003).  The
potential  to  provide  better  coverage  of  the  distribution  space  for  each  prior  parameter  distribution
should  theoretically  result  in  a  lower  approximation  error  in  calculating  the  simulated  choice
probabilities for a given design. This  in turn will  result  in greater precision in generating the design’s
AVC  matrix,  resulting  in  greater  precision  in  terms  of  the  Bayesian  efficiency  measure  of  that
design. Other methods, such as Gaussian quadrature, also aim to minimize the approximation error
when calculating the Bayesian efficiency.

Independent of the type of draws used, the researcher must decide on the number of draws to use.  If
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too few draws are taken,  it  is  probable that  the resulting Bayesian measure of efficiency will  be  far
from  the  true  efficiency  for  a  given  design.  If  too  many  draws  are  used,  the  computation  time  in
generating an efficient  design will  be unnecessarily  high.  The issue  therefore  becomes  one  of  how
many  draws  should  be  used  before  the  Bayesian  measure  of  efficiency  will  converge  to  the  true
efficiency level for a given design, or alternatively, fall  within some acceptable error range around the
true value.  Unfortunately,  the  answer  to  this  question  will  likely  depend  on  the  dimensions  of  the
design itself,  the number of Bayesian priors  assumed,  the population  of  the  prior  distributions,  the
type of econometric model used, as well as the type of draws employed. Kessels et al.  (2006) argue
that  a  well-designed  systematic  20-point  sample  may  be  sufficient  to  give  a  good  enough
approximation of the Bayesian efficiency,  at  least  in a first  step of a search algorithm, although  no
claims  can  be  given  for  general  experiments.  Improvements  in  search  algorithms  and  in  faster
evaluations of the Bayesian efficiency should both lead to significantly smaller computation times for
determining  a  Bayesian  efficient  design.  From  a  search  algorithm  perspective  (for  unlabeled
experiments),  the reader is  referred to Kessels  et  al.  (2006)  and  Yu  et  al.  (2008),  which  deal  with
determining Bayesian efficient designs for the MNL and MMNL model, respectively. 

Ngene allows the use  of  the  PMC method  alongside  three  different  types  of  quasi  random  Monte
Carlo draws; namely Halton, Sobol, and Modified Latin Hypercube Sampling (MLHS) draws,  and one
Gaussian quadrature method, namely Gauss-Hermite approximation. Independent of the method, the
principles in generating efficient SC experiments remain the same:

1) first, R values are drawn from the random distribution of the prior parameter values;
2) then, for each of these parameter values, the D-error is evaluated; and
3) an average D-error is computed over these values (giving the Db-error). 

The PMC and quasi-random MC methods all take a simple (unweighted) average of the different  Db-
errors  (or any other efficiency method),  but  differ in the  way  they  take  the  draws  from  the  random
distribution. In the PMC method,  these draws are completely  random,  whereas in the quasi-random
MC methods  they  are  intelligent  and  structured,  and  in  most  cases  deterministic.  The  Gaussian
quadrature methods construct intelligent and deterministic draws as well, but also determine specific
weights for each draw and compute a weighted average. 

Sandor  and  Wedel  (2001,  2002)  suggested  that  when  generating  Bayesian  efficient  designs,  the
generalised  Asymptotic  Fisher  Information  matrix  be  used  instead  of  the  Asymptotic  Fisher
Information matrix. This  approach has also been proposed and used by  Kessels,  et  al.   (2006) and
Yu  et  al.  (2009).  The  generalised  Asymptotic  Fisher  Information  matrix  is  calculated  as

 where  Sβ  are  the  prior  parameter  variances.  Chaloner  and

Verdinelli  (1995)  argue  in  favour  of  the  common  Db-error  measure,  as  it  allows  for  different  prior

information, to be used in the design and analysis and is appealing when a non-Bayesian framework
is adopted in analysis. In addition,  the traditional Db-error is  based on an asymptotic  approximation

of the posterior, and the prior vanishes in any case.

We now discuss each of these methods in turn.  Further information on the impact  of changing  the
number of draws by type is available in Bliemer et al. (2008). 
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7.1.5.1 Pseudo-random Monte Carlo (PMC) simulation

In PMC simulation,  for each of the K  parameters,  R  independent  draws  are  taken  from  their  given
prior  distributions.  For  each  of  these  R  draws  of  the  prior  parameters,  the  Db-error  is  computed.

Finally, the average is taken of all computed efficiency measures.  Let  (r) =  [
1
(r),  ...,  

K
(r)]  denote

draw r,  r =  1,  ...,  R,   from the corresponding prior random distributions described by  the probability

density functions Φ
k
(

k
 | Θ

k
).  The approximation of the efficiency-error can be formalized as

(7.11)

The total number of efficiency evaluations is equal to R. In order to determine the draws 
k
(r),  we let

the  computer  generate  for  each  parameter  R  pseudo-random  numbers  u
k
(r)  which  are  uniformly

distributed on the interval [0,1], and then compute the draws by 

(7.12)

where  (
k

 |  Θ
k
)  denotes  the  cumulative  distribution  function  corresponding  to  the  probability

density function Φ
k
(

k
 | Θ

k
).

7.1.5.2 Quasi-random Monte Carlo simulation

Randomness of the draws is not a prerequisite in the approximation of the integral;  rather,  Winiarski
(2003)  has  argued  that  (a)  correlation  or  a  systematic  structure  between  draws  for  different
dimensions can have a positive effect on the approximation, and (b) one should aim for the draws to
be  distributed  as  uniformly  as  possible  over  the  area  of  integration.  Hence,  the  draws  can  be
selected  deterministically  so  as  to  minimize  the  integration  error,  which  is  exactly  what  quasi-
random MC simulation methods aim to do.  For  a  more  detailed  discussion  on  these  methods  we
refer to Niederreiter (1992) and Fang  and  Wang  (1994).  Quasi-random  MC simulation  methods  for
approximating say the D

b
-error are almost identical to the PMC simulation method,  except  that  they

use  deterministic  draws  for  
k
(r)  (as  opposed  to  purely  random  draws).  Instead  of  generating

pseudo-random numbers u
k
(r) ~ U(0,1), these numbers  u

k
(r) are taken from different  intelligent  quasi-

random sequences, also called low discrepancy sequences.  Using these quasi-random sequences,
faster convergence to the true value of the numerical integration  can  be  achieved.  PMC simulation

has a slow rate of convergence of ,  while quasi-random MC simulation typically  has a rate

of convergence as good as O(1/R). 6
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7.1.5.3 Modified Latin Hypercube Sampling (MLHS)

The  MLHS  method  (Hess  et  al.  2005)  produces  multi-dimensional  sequences  by  combining
randomly  shuffled  versions  of  one-dimensional  sequences  made  up  of  uniformly  spaced  points.
Formally, the individual one-dimensional sequences of length R are constructed as:

(7.13)

where  is a random number drawn between 0 and 1/R, and where a different  random draw is  used
in each of  the  K  different  dimensions.  In  the  resulting  sequence,  the  distances  between  adjacent
draws are all  equal to 1/R,  satisfying the condition  of  equal  spacing.  Multi-dimensional  sequences
are constructed by simple combination of randomly  shuffled one-dimensional sequences,  where the
shuffling disrupts the correlation between individual dimensions.

7.1.5.4 Halton sequences

Halton sequences (Halton 1960) are based on the one-dimensional Van der Corput  sequence  (Van
der  Corput,  1935)  and  are  constructed  according  to  a  deterministic  method  based  on  the  use  of
prime numbers, dividing the 0-1 space into p

k
 segments  (with p

k
 giving the prime used as the base

for parameter k ),  and by  systematically  filling in the empty  spaces,  using  cycles  of  length  p
k
 that

place one draw in each segment. Formally, the rth element in the Halton sequence based on prime p

k
 is  obtained by  taking the  radical  inverse  of  integer  r  in  base  p

k
 by  reflection  through  the  radical

point, such that 

(7.14)

where  determines the L digits used in base p
k
 in order to represent  r (i.e.,  solving

equation  (7.14)),  and  where  the  range  for  L  is  determined  by  The  draw  is  then

obtained as:7

(7.15)

To  allow  for  the  computation  of  a  simulation  error,  the  deterministic  Halton  sequence  can  be
randomized in several ways. Here, we use the approach discussed by amongst  others  Tuffin (1996),

where  the  modified  draws  are  obtained  by  adding  a  random  draw   to  the  individual  draws  in
dimension k , and by subtracting one from any draws that now fall outside the 0-1 interval.  A different
random draw is used for each dimension. 
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7.1.5.5 Sobol sequences

The  main  problem  with  Halton  sequences  is  the  fact  that  the  individual  sequences  are  highly
correlated,  leading  to  problems  with  poor  multi-dimensional  coverage  in  higher  dimensions.  Aside
from various transformations of the standard Halton sequence and other advanced methods (cf.  Hess
 et al. 2005), one approach that has received exposure in the area of discrete choice modeling is  the
Sobol sequence, used amongst others by Garrido (2003).  Like Halton sequences,  Sobol sequences
are  based  on  Van  der  Corput  sequences  (cf.  Niederreiter  1992).  However,  rather  than  in  a  K-
dimensional problem using the first K primes (as in Halton sequences),  Sobol sequences are based
on prime 2 in each dimension, where different  permutations are used to ensure that  the resulting K-
dimensional  sequence  obtains  good  coverage.  We  will  use  a  randomized  version  of  the  Sobol
sequences equivalent to the randomization in the Halton sequences by  adding a random component
to each of the draws in each dimension. 

7.1.5.6 Gaussian quadrature

Polynomial cubature methods aim to approximate integrals  using orthogonal polynomials.  Gaussian
quadrature  is  the  best-known  method,  see  e.g.  Stoer  and  Bulirsch  (2002).  In  case  of  a  single
variable,  the use of  R  draws  yields  an  exact  approximation  if  the  integrand  is  a  polynomial  up  to
degree (2R-1). General functions can be approximated by (high order) polynomials,  hence the higher
the degree (yielding more draws), the more accurate the approximation will be. 

The  principle  of  Gaussian  quadrature  is  that  not  only  the  draws  
k
(r)  for  the  priors  are  selected

intelligently, but also that weights w
k
(r) are associated with each draw. The approximation of the Db-

error using Gaussian quadrature can be formalized as

(7.16)

The  draws  for  the  priors  and  the  associated  weights  depend  on  the  random  distribution.  Different

draws 
k
(r) for each individual parameter are called abscissas.  The draws for the whole vector  (r)

 are  given  by  a  rectangular  grid  of  these  abscissas8.  In  the  case  where  
k

 ~  N(µ
k
,  σ

k
),  the

abscissas and weights can be computed using so-called Hermite polynomials. If 
k
 ~  U(a

k
,  b

k
),  the

abscissas and weights can be computed using so-called Legendre polynomials.  The abscissas and
weights for both situations are listed in Table 1 for up to 10 abscissas for each individual parameter.

The weights  always sum up to one,  i.e.,  =  1  for each k.  For each of the K  parameters,
the number of abscissas used, R

k
, can be different. 

Note that  the total number of D-error evaluations in Gaussian quadrature is  equal to R =  ,
that  is,  the total number of all  combinations of abscissas in all  dimensions.  This  number of D-error

evaluations  grows  exponentially  if  the  number  of  random  priors  increases9.  Therefore,  Gaussian
quadrature  is  typically  not  suitable  for  integrals  of  high  dimensionality,  although  it  is  extremely
powerful for low-dimensional problems.



99Efficient Designs

© 2012 ChoiceMetrics

7.1.6 Orthogonal versus efficient designs

In  case  any  information  about  the  parameters  is  available,  then  efficient  designs  will  always
outperform orthogonal designs. This is due to the fact that efficient designs use the knowledge of the
prior parameters  to optimize the design in which the  most  information  is  gained  from  each  choice
situation (e.g., dominant alternatives can be avoided as the utilities can be computed). We will  come
back  to  dominant  alternatives  when  discussing  the  (un)importance  of  utility  balancing  in  Section
7.1.8.

What  happens in the case where no information about  the parameters  is  available? In other words,

which  design  is  better,  an  orthogonal  design,  or  a  D
z
-optimal  design  (which  assumes  =0)?  As

mentioned  in  Bliemer  and  Rose  (2005b),  there  is  a  close  correspondence  between  orthogonal
designs and D

z
-optimal designs.  In fact,  in case all  model parameters  are alternative-specific,  a D

z
-

optimal  design  is  orthogonal.  In  case  all  model  parameters  are  generic,  it  is  not  necessary  to
choose  between  either  orthogonality  or  D

z
-efficiency  as  it  is  possible  to  determine  orthogonal  D

z
-

optimal designs. Street et al. (2001), Street and Burgess (2004) demonstrate how to create such D
z
-

optimal  designs  for  generic  designs  with  only  two  alternatives  and  where  each  attribute  has  a
number of levels equal to the power of two (hence, two, four, eight, etc.). In Street et al. (2005) a nice
overview is given for determining D

z
-optimal (or nearly  optimal) designs with multiple alternatives  and

different levels. However, these remain limited to models with generic parameters. 

The design principles in Street et al. (2005) have some limitations. First of all, they are limited to the
MNL  model.  Secondly,  they  are  only  optimal  in  case  all  parameters  are  equal  to  zero,  which  is
clearly not the case.  The fact  that  their designs are sub-optimal under the nonzero parameter case
is  due to the fact  that  they assume all  equal probabilities  in the MNL  model.  Finally,  if  alternative-
specific  parameters  are present,  then a simple principle that  will  lead  to  a  D

z
-optimal  design  does

not exist.

If correlations in the  design  have  a  negative  impact  on  the  parameter  estimates,  then  this  should
implicitly be reflected in the AVC matrix  of the design,  instead of explicitly  in an orthogonal design.
Hence,  an efficient  design will  to a certain degree  implicitly  minimize  the  correlations  in  a  design,
hence it is not necessary to include orthogonality as an additional criteria to efficiency.

7.1.7 Importance of prior parameter values

The purpose of the SC experiment  is  to estimate the parameters  of  the  specified  model.  But  even
without  estimating  them,  some  information  and/or  educated  guesses  regarding  parameters  are
usually  available.  Again,  we would like to stress  that  D

p
-optimal designs will  always outperform D

z
-

optimal designs in case any information about the parameters (even only the sign of the parameters)
is available. We argue that it is always possible to obtain some information on the priors.

Just  using  reasoning  alone,  it  should  be  possible  to  determine  at  minimum  the  signs  of  most
parameters.  For  example,  price  attributes  are  typically  negatively  perceived,  while  comfort  and
service  are  attributes  that  will  receive  positive  attitudes.  Instead  of  using  a  prior  parameter  value
equal to zero, already a slight positive or negative value would already improve the design. 

Many surveys have been conducted around the world,  and it  is  likely  to  find  at  least  a  few similar
parameters.  If no such studies  can  be  found,  then  it  may  be  very  useful  to  conduct  a  small  pilot
study in order to get  an initial idea about  the parameter values.  With  the  same  amount  of  money,
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one could (i) conduct a large survey using an experimental design based on priors  equal to zero (no
information case),  or (ii) conduct  a slightly  smaller  survey  using  an  experimental  design  based  on
priors  obtained  from  a  pilot  study.  As  Figure  7.1  also  suggested,  the  second  option  is  preferred,
since it can lead to significantly more reliable parameter estimates.

Obviously,  a D
p
-optimal design is  sensitive to the chosen prior parameters.  If  they  are  not  correct,

then  the  design  is  sub-optimal  (note  that   D
z
-optimal  will  therefore  always  be  sub-optimal).

Fortunately, the design can be tested for robustness in case one or more prior parameter values are
not  correct.  By taking a fixed design X  and computing the AVC matrix  as  in  Equation  (7.1)  (recall

that the outcomes Y  drop out) for different  values of ,  a sensitivity  analyses of the design can be
performed. Once the sensitivity of the efficiency of the design to each prior parameter is  known, one
can decide to either put  more effort  in determining the prior values for the  most  sensitive  priors,  or
determine a new design (which may be less efficient, but more robust). 

Another  way  of  dealing  with  uncertainty  about  prior  parameters  was  already  mentioned  when
describing  the  Bayesian  efficient  designs.  A  Bayesian  efficient  design  optimizes  the  expected
efficiency of the design over a range of prior parameter values, thereby making it  more robust  to mis-
specifying  the  priors.  Priors  with  a  higher  uncertainty  should  see  this  uncertainty  reflected  into  a
larger standard deviation or spread of its probability distribution. 

7.1.8 Utility balance

A couple of times the words “dominant alternatives” or “more information from choice situations” have
been used. Here the concept of utility  balancing,  as  suggested in (Huber and Zwerina,  1996) will  be
described.

As a simple example,  consider two choice situations in an unlabelled stated choice experiment  as
illustrated in Figure 7.2. In the first choice situation, Route A has both a lower travel time as well as
a lower toll cost, making it  clearly  the preferred alternative.  The Route A alternative therefore clearly
dominates in this choice situation, therefore no information will be gained.  In contrast,  in the second
choice situation there is no clear dominant alternative and the respondent has to make a clear trade-
off between travel time and toll cost, hence this will provide information.

The example illustrates that balancing the utilities of alternatives  (i.e.,  having no alternatives  that  are
clearly dominating the others) is of importance. At least, if it is very unbalanced,  the choice situation
does not provide information for estimating the parameters. This could lead to the understanding that
in the most  efficient  design,  all  the choice situations are perfectly  utility  balanced.  This  is  however
not  the  case.  If  all  alternatives  have  an  equal  observed  utility,  then  the  random  unobserved
component  dominates.  In other words,  then the respondent  has  no  clear  preference  for  any  of  the
alternatives  and  randomly  selects  one.  This  too  does  not  give  information.  Therefore  it  can  be
concluded that an efficient design has some degree of utility balance, but  not  too much,  and not  too
little. 
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Figure 7.2: Dominant alternative in choice situation 1

Utility balance of a choice situation and a whole design can be expressed in a percentage.  Consider
a stated choice experiment  with J  alternatives.  Consider  a  certain  choice  situation  s.  This  choice
situation would have perfect utility balance if all alternatives j  have an equal probability,  that  is,  P

js
 =

1 / J. The utility balance of choice situation s can be defined as

(7.17)

For  example,  if  J  =  3  and  all  three  alternatives  have  a  probability  of  1/3,  then  B
s
 =  100%.  If  the

probabilities are 1/2, 1/3, and 1/6, respectively, then the utility balance is B
s
 = 75%. If one or more of

the probabilities is equal to zero, then the utility balance is zero percent. The overall utility balance of
the design, B,  can be determined by averaging over all choice situations (Kessels et al., 2006):

(7.18)

The  optimal  value  for  utility  balance  of  a  design  cannot  be  given,  but  observations  of  the  utility
balance of efficient designs suggest that it  lies  in the range of 70-90 percent.  Utility  balance can be
examined  for  each  choice  situation,  thereby  investigating  if  the  design  contains  choice  situations
with  clearly  dominant  alternatives,  which  should  not  occur  in  an  efficient  design.  Hence,  utility
balance  could  be  used  in  the  algorithms  for  generating  efficient  designs.  In  Ngene,  we  refer  to
attempts to maximize utility  balance as  B-error.  Similar to the D-,  A-,  S- and C-error measures,  B-
error may be implemented using either zero, fixed or Bayesian priors.
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7.1.9 Generating efficient designs

The problem of finding an efficient design can be described as follows:
Given feasible attribute levels Λ

jk
 for all j and k , given the number of choice situations S,  and

given  the  prior  parameter  values   (or  probability  distributions  of  ),  determine  a  level
balanced design X with x

jks
  Λ

jk
 that minimizes the efficiency error in Equations (7.4),  (7.5),

(7.6), (7.7), (7.9)  or (7.10). 

Note  that  in  this  formulation  attribute  level  balance  is  added  as  a  requirement,  consistent  with
current state of practice.  It  should be stressed that  an efficient  design does not  necessarily  require
attribute level balance.  In fact,  a more efficient  design may be found by removing  the  level  balance
requirement as will be discussed in Section 8.1.

In order to solve the problem of determining the most  efficient  design,  one  could  determine  the  full
factorial  design  and  then  evaluate  each  different  combination  of  S  choice  situations  from  this  full
factorial.  The  combination  with  the  lowest  efficiency  error  is  the  optimal  design.  However,  this
procedure  is  not  feasible  in  practice  due  to  an  extremely  high  number  of  possible  designs  to
evaluate.  For  example,  consider  the  problem  of  determining  an  efficient  design  for  a  hypothetical

case  with  three  alternatives  as  shown  in  Table  7.1.  The  full  factorial  design  has  21  x  38  x  42  =
209,952 choice situations. Suppose that we would like to find an efficient  design with S  =  12 choice
situations.  Selecting 12 choice situations from this  set  of 209,952 different  choice situations yields

7.3  x  1063  possible  different  designs.  Clearly,  it  is  not  feasible  to  evaluate  all  possible  designs,
hence a smart algorithm is necessary to find an efficient as possible design. 

Table 7.1: Example dimensions for generating an efficient design

There are row based algorithms and column based algorithms for finding an efficient  design.  In a row
based algorithm choice situations are selected from a predefined candidate set  of choice situations
(either a full  factorial or a fractional factorial)  in  each  iteration.  Column  based  algorithms  (such  as
RSC algorithms)  create  a  design  by  selecting  attribute  levels  over  all  choice  situations  for  each
attribute.  Row based algorithms can easily  remove bad choice situations from the candidate set  at
the beginning (e.g.,  by  applying a utility  balance criterion),  but  it  is  more difficult  to satisfy  attribute
level balance.  The opposite holds  for  column  based  algorithms,  in  which  attribute  level  balance  is
easy to satisfy,  but  finding  good  combinations  of  attribute  levels  in  each  choice  situation  is  more
difficult.  In general column based algorithms offer more flexibility  and can  deal  with  larger  designs,
but in some cases (for unlabelled designs and for specific designs such as constrained designs,  see
 Section 8.2) row based algorithms are more suitable.

The  Modified  Federov  algorithm  (Cook  and  Nachtsheim,  1980)  is  a  row  based  algorithm  and  is
illustrated  in  Figure  7.3.  First,  a  candidate  set  is  determined,  either  the  full  factorial  (for  small
problems),  or a fractional factorial (for large  problems).  Then,  a  (attribute  level  balanced)  design  is
created by selecting choice situations from the candidate set. After that, the efficiency error (e.g.,  D-
error) is computed for this design. Finally, if this  design has a lower efficiency error than the current
best design, the design is stored as the most efficient design so far, and one continues with the next
iteration repeating the whole process again.  The algorithm terminates  if all  possible combinations of
choice situations have been evaluated (which is in general not feasible), or after a predefined number
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of iterations.  Construction of D
z
-optimal  as  described  in  Street  et  al.  (2005)  is  also  row based,  in

which in a smart way combinations of choice situations are made.

Figure 7.3: Modified Federov algorithm

RSC (Relabeling,  Swapping  &  Cycling)  algorithms  (Huber  and  Zwerina,  1996;  Sándor  and  Wedel,
2001) are column based algorithms,  illustrated in Figure 7.4.  In each iteration,  different  columns for
each attribute are created,  which  together  form  a  design.  This  design  is  evaluated  and  if  it  has  a
lower efficiency error than the current  best  design,  then  it  is  stored.  The  columns  are  not  created
randomly,  but   as  the  name  suggests   are  generated  in  a  structured  way  using  relabeling,
swapping,  and cycling techniques.  Starting with an initial design,  each column could be altered  by
relabeling  the  attribute  levels.  For  example,  if  the  attribute  levels  1  and  3  are  relabeled,  then  a
column  containing  the  levels  (1,2,1,3,2,3)  will  become  (3,2,3,1,2,1).  Swapping  means  that  some
attribute levels switch place, for example if the attribute levels  in the first  and fourth choice situation
are  swapped,  then  (1,2,1,3,2,3)  would  become  (3,2,1,1,2,3).  Finally,  cycling  replaces  all  attribute
levels in each choice situation at  the time by replacing the first  attribute level with the second level,
the second level with the third, etc. Since this impacts all columns,  cycling can only  be performed if
all  attributes  have exactly  the  same  sets  of  feasible  levels  (e.g.,  in  case  all  variables  are  dummy
coded).  Sometimes  only  swapping  is  used,  sometimes  only  relabeling  and  swapping  is  used,  as
special cases of this algorithm type. 
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Figure 7.4: RSC algorithm

If  for  some  reason  orthogonality  is  required  in  a  D
p
-efficient  design,  one  could  construct  a  single

orthogonal design,  from this  design easily  create a large (but  not  huge) number of other orthogonal
designs, and then evaluate all  these orthogonal designs and select  the most  efficient  one.  Creating
other  orthogonal  designs  from  a  single  orthogonal  design  is  relatively  simple,  as  discussed  in
Section 6.1.3.

Evaluating each design for the efficiency error is  the  most  time-consuming  part  of  each  algorithm,
therefore the number of D-error or other efficiency error evaluations should be kept  to a minimum by
putting  more  intelligence  into  the  construction  of  the  designs.  In  determining  Bayesian  efficient
designs this  becomes even more important,  as  the  integral  in  Equation  (7.6)  cannot  be  computed
analytically,  but  only  by  simulation.  Mainly  pseudo-random  Monte  Carlo  simulations  have  been
performed for determining the Bayesian D-error for each design,  which enables  the approximation of
this D-error by taking the average of all D-errors for the same design using pseudo-random draws for
the  prior  parameter  values.  This  is  clearly  a  computation  intensive  process,  such  that  finding
Bayesian efficient designs is a very time consuming task. Bliemer et al. (2006) have proposed to use
quasi-random  draws  (such  as  Halton  or  Sobol  sequences)  or  preferably  Gaussian  quadrature
methods instead of pseudo-random draws,  which require less  simulations and therefore  enable  the
evaluation of more designs in the same amount of time.

For further information on generating efficient designs, see Appendix 7B.

7.1.10 Discussion of efficient designs

Efficient or optimal designs have been embraced by more and more researchers  as  the current  best
way  of  designing  SC  experiments.  Practitioners  are  still  somewhat  hesitant  to  deviate  from
orthogonal  designs  which  have  been  claimed  to  be  best  for  a  long  time,  but  there  is  a  growing
support for such designs both in practice and within the academic literature.

Do the chosen feasible levels, determined before generating an efficient  design,  impact  the potential
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efficiency  of  the  design?  The  answer  is  ‘yes’,  they  have  a  significant  impact  on  the  efficiency.
Broadly speaking, the less attribute levels and, more importantly,  the wider the attribute level range,
the higher the efficiency of  the  design  can  be.  A  wide  attribute  level  range  usually  translates  into
smaller asymptotic  standard errors.  Therefore,  the  highest  efficiency  can  theoretically  be  obtained
using so-called end-point designs, which are two-level designs with extreme (wide range) levels.  The
disadvantage  of  this  kind  of  designs  is,  that  nonlinearities  cannot  be  estimated  (more  levels  are
needed for this purpose). Furthermore, the extreme levels should be realistic.

The number of choice situations does not seem to have a large impact  on the efficiency of a design,
as  long  as  the  number  of  choice  situations  is  not  smaller  than  K/(J-1).  Clearly,  more  choice
situations yield more data per respondent, hence the efficiency will automatically increase with more
choice situations. Compensating for this effect by normalizing the efficiency error (i.e.,  assuming the
same amount  of data),  it  does not  seem to make much difference how many choice situations are
chosen.  Therefore,  the number of  choice  situations  does  not  have  to  be  very  high  (blocking  as  in
orthogonal designs is therefore not necessary) and should mainly  depend on the intuition how many
choice  situations  respondents  can  handle.  A  higher  number  of  choice  situations  means  a  higher
task effort for the respondent.  The maximum number of choice situations depends of course on the
complexity of each choice situation, but roughly 10 to 20 choice situations should be possible.

Still, the efficient designs discussed in this section may be improved due to the somewhat  restrictive
assumptions commonly imposed. First of all,  attribute level balanced has been imposed for efficient
designs, which is typically only  required for orthogonal designs.  Attribute level balance is  viewed as
a desired property  ensuring that  all  attribute levels  appear equally  in  the  data  set,  which  intuitively
provides  a  good  basis  for  estimation.  However,  the  attribute  level  balance  requirement  is
mathematically  speaking  merely  imposing  another  constraint  on  the  problem  of  minimizing  the
efficiency error, thereby always leading to less efficient designs. By relaxing this  assumption a more
efficient design can be found (at least it is never less efficient). An optimal level unbalanced design is
likely to be (close to) an end-point design using just the two extreme levels.

Another assumption made in this  section is  the  assumption  of  independent  observations,  i.e.,  the
outcomes  of  all  choice  situations  from  the  same  respondent  are  assumed  independent.  This
assumption makes it  easy to derive analytical expressions of the AVC matrix.  However,  it  is  likely
that  the data does not  consist  of independent  observations,  as  the random unobserved  utilities  are
correlated  within  each  respondent,  and  this  has  to  be  taken  into  account.  Using  an  error
components  structure  one  could  simulate  these  correlations,  but  then  the  AVC matrix  has  to  be
computed  by  simulation  instead  of  analytically,  see  Scarpa  et  al.  (2005)  and  Ferrini  and  Scarpa
(2006).

Some other assumptions were that all respondents face the same choice situations,  and that  socio-
economic  data is  ignored.  These assumptions are  relaxed  in  the  next  section.  Instead  of  relaxing
some assumptions, it is also discussed how to deal with more constraints.

7.2 Generating efficient designs in Ngene

In contrast to orthogonal designs, more information on the model type and prior parameter values is
needed  when  dealing  with  efficient  designs.  In  the  following,  different  syntax  commands  will  be
discussed for different  model types.  We will  describe  syntax  for  the  MNL,  the  MMNL and  the  EC
models. 
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7.2.1 Efficiency measures

All model types share that  the efficiency measure to be optimized on has to be set.  In Ngene  this
can be done using the property eff,  by  defining the model type together with the efficiency measure
required for optimisation.  For example,  using the D-error measure for  finding  an  efficient  design  for
the MNL model, the following property is added to the syntax:

;eff = (mnl,d)

where  the  first  part  between  brackets  refers  to  the  model  type,  while  the  second  refers  to  the
efficiency measure. Other examples include

;eff = (ecpanel,d)
;eff =(ec,a)
;eff = (rp,s)
;eff = (rppanel,b)

where mnl refers to the multinomial logit model,  ‘rp’ and ‘rppanel’ refer to the MMNL cross sectional
and panel models, and ‘ec’ and ‘ecpanel’ to the EC cross sectional and panel models.  Furthermore,
instead of using D-error, the A-error is minimised when the second argument is set to ‘a’, the sample
size is minimised when set  to ‘s’,  and the utility  balance of the design maximized when it  is  set  to
‘b’. 

For designs that  are to be optimized based on the variance of the ratio of two  or  more  parameters
(WTP designs), the optimization routine allows for up to k -1 ratios  to be specified.  The routine then
attempts to minimize the sum of the variances of the indicated parameter ratios.  In this  way,  not  all
ratios need be used in the optimization routine.  As such,  when using the ‘wtp’ property,  the user is
required  to  also  specify  what  parameter  ratios  to  use  in  the  calculation.  This  is  handled  via  a
separate wtp property in conjunction with the eff property, as shown below. 

;eff = (mnl,wtp(ref1))
;wtp = ref1(*/b1)

where the ‘wtp’ argument  in the eff  property  indicates  that  C-error efficiency measure is  to be used
(see Section 7.1.4) and ref1 links the eff  property  to the wtp property.  For the wtp property  the user
first  specifies  a  name  (any  name  will  suffice;  we  have  used  ref1  here  for  demonstrative  purposes
only) followed by what  parameter ratios  to use in the efficiency calculation.  If an asterisk  (i.e.,  *) is
used, as in the example provided, then all parameters specified in the models utility  functions will  be
used as numerators in the calculation, save for the parameter indicated after the back slash or divide
symbol (i.e., /). The parameter named after the back slash represents  the parameter (usually  a cost
parameter)  that  will  be  used  as  the  denominator  in  the  WTP  calculations.  Rather  than  use  all
parameters in the calculation, it is also possible to specify only a subset  of parameters  as  shown in
the following example.

;eff = (mnl,wtp(wtp1))
;wtp = wtp1(b2,b3,b5/b1)

In this case, the C-error measure will only be calculated using the sum of the variances of the ratios
of the b2, b3 and b5 parameters to the b1 parameter.  Any other parameters  specified in the models
utility  specification  will  not  form  part  of  the  calculation.  Note  that  any  name  can  be  used  in
specifying the WTP measure with the  name  WTP1  now being  substituted  for  the  name  ref1  used
previously. Note also that the WTP property will only work for the MNL model.
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Efficient  designs  are  in  general  not  orthogonal.  However,  it  is  possible  to  generate  an  efficient
orthogonal design by  adding the orth property  as  described  before.  Ngene  will  then  search  for  the
most efficient design that is orthogonal.

Although  efficient  designs  typically  require  less  choice  situations  than  an  orthogonal  design,  the
number of choice situations may still be too large to give to a single respondent.  Similar to creating
blocks for orthogonal designs, add the block  property to the syntax, and Ngene will block the design
automatically  based  on  the  minimum  correlation  principle.  Basically,  it  will  try  to  minimize  the
average correlation between the blocking column and all other design columns.

It  is  possible that  one would like to have a no-choice alternative (the option of not  choosing  any  of
the other alternatives). This  alternative does not  have a utility  function (so the utility  is  basically  set
to zero for that  alternative),  but  it  does affect  the choice probabilities  and therefore the efficiency of
the design. In case one would like to add a no-choice alternative,  this  alternative should be added in
the  alts  property,  but  not  have  a  utility  function  in  the  model  property.  Ngene  automatically
recognizes the alternative without a utility function as a no-choice alternative. 

The  definition  of  the  model  property  is  different  for  each  of  the  model  types,  hence  they  will  be
discussed separately in the following. 

7.2.2 Designs for estimating multinomial logit models

The multinomial logit  (MNL) model is  the basic  logit  model with fixed parameters.  Prior parameters
need  to  be  specified  for  each  fixed  parameter,  and  this  is  done  by  adding  them  between  square
brackets in the model property  behind the parameter names.  For example,  the syntax  may look as
follows:

Design
;alts = alt1, alt2
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b1[-0.2] + b2[1.2] * A[0,1,2] + b3[2.5] * B[0,1]     /
U(alt2) =            b2      * A        + b4[1.1] * C[2,4,6,8] $

When creating an efficient  design,  each parameter must  have  a  prior  value  associated  with  it.  For
generic  parameters  like  ‘b2’,  the  prior  value  should  only  be  defined  the  first  time  the  parameter
appears  and  should  not  be  defined  again  when  the  same  parameter  appears  in  another  utility
function.

Attribute levels  can be  specified  in  an  alternative  way,  with  a  lower  and  upper  bound,  and  a  step
size.  These  three  values  are  specified  in  sequence  inside  the  square  brackets,  separated  by  a
colon. Using this syntax, the above example would be:

Design
;alts = alt1, alt2
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b1[-0.2] + b2[1.2] * A[0:2:1] + b3[2.5] * B[0:1:1]     /
U(alt2) =            b2      * A        + b4[1.1] * C[2:8:2] $
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Figure  7.5  shows  example  output  based  on  a  design  generated  using  the  above  syntax.  In
presenting the output for efficient  designs,  Ngene always first  presents  information on the efficiency
measures related to the design,  independent  of what  measure was used during optimization  of  the
design. In the example output,  the generated design has a Dp-error of 1.42,  Ap-error of 4.12,  a Bp-
error of 33.12 percent and an Sp-error of  6.18(suggesting that  given the priors  assumed,  the design
would need to be replicated at least 6.18 times for all parameters to be statistically  significant  with a
 t-ratio  of  at  least  1.96).  Note  that  these  values  assume  that  the  prior  parameters  assumed  are
correct.

Note  that  in  calculating  the  efficiency  measures,  Ngene  ignores  any  constants.  The  constant  is
typically  ignored in these kind of  studies,  since  usually  the  constant  is  of  less  importance  to  the
researcher (indeed the constant  is  often considered meaningless  in SC experiments  as  it  is  based
on the choice shares over the hypothetical situations, S). Further, in many SC studies, it is often the
ratios  of  two  parameter  values  (e.g.,  to  derive  willingness  to  pay)  that  is  of  primary  importance.
Therefore,  in  calculating  the  efficiency  for  each  design,  we  ignore  the  row  and  column  for  the
constant  in  the  AVC matrix  when  computing  the  efficiency  statistic.  If  one  wishes  to  include  the
constant in these calculations, then the con property can be added to the syntax. That is,

;con

Underneath the efficiency measures,  more detailed information related to the Sp -error is  presented
for each (non-constant) parameter estimate of the design.  The parameter  estimate  priors  and  Sp  -
errors for each of the parameters are presented here, as too are the expected t-ratios  for each of the
parameters  assuming only  a single replication of the design were  to  be  used  in  practice.  The  last
item of output presented automatically is the design itself.
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Figure 7.5: MNL design output

Additional output is also available by clicking on the check boxes located in the tree structure at  the
left  of  the  output  screen.  Figure  7.6  shows  the  additional  output  available  for  designs  generated
assuming an MNL model formulation.  Available to the researcher are the Fisher Information matrix,
AVC matrix, the utility  estimates and choice probabilities  for each choice task  contained within the
design.  The  Fisher  Information  and  AVC  matrices  are  generated  assuming  a  single  design
replication.  The  utilities  and  choice  probabilities  are  often  useful  for  diagnostic  purposes.
Examination  of  these  outputs  will  often  allow  the  user  to  observe  if  one  alternative  will  tend  to
dominate  others  within  the  design,  in  which  case  large  efficiency  measures  (and/or  small  B-error
values) will  generally  be observed indicating difficulty  in locating an efficient  design.  In the  example
output shown in Figure 7.6, examination of the choice probabilities shows that the second alternative
will tend to dominate the first in most  (but  not  all) choice situations.  Should other attribute levels  be
used or different priors be assumed, then it might be possible to locate a more efficient  design.  Note
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however that assuming a different set of priors in generating the design  might not  be ideal given that
the priors  assumed generally  have to come from some  other  source  (such  as  a  pilot  survey),  and
hence  disregarding  these  and  simply  assuming  another  set  of  priors  for  the  sake  of  statistical
efficiency may have no scientifically valid basis.  

Although not  shown here,  Ngene can calculate the correlation structure of  the  design  in  the  same
manner  as  with  orthogonal  designs.  The  various  correlation  measures  are  located  in  the  tree
structure to the left of the design output under the ‘Design’ button.  Clicking on any of the correlation
click boxes will have Ngene generate and show the requested correlation structure for the design. 
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Figure 7.6: Additional MNL design output

7.2.3 Designs for estimating random parameters models

It  is  strongly  advised  to  first  generate  a  non-Bayesian  design  with  the  MNL  model.  This  allows
problems  to  be  much  more  quickly  identified.  For  example,  the  priors  might  lead  to  extreme
choice probabilities of zero and one, and may need to be adjusted. An MNL design should always
be  generated  quickly,  so  if  it  is  not,  then  you  know  there  is  a  problem  with  your  design
specification. Random parameter and Bayesian models  are much slower to generate,  and it  may
not  be clear for some time that  there is  a problem with the design.  A good principle to follow is:
start simple, and gradually add complexity to the design.

In the mixed multinomial logit (MMNL) model, the parameters  are assumed to be random instead of
fixed as  in the MNL model.  Therefore,  the parameters  in the model  property  need to be  defined  as
distributions. For example, suppose that parameter ‘b2’ is assumed to be normally distributed with a
mean  of  1.2  and  a  standard  deviation  of  0.3  (1.2  and  0.3  are  now prior  parameter  values  for  the
random parameter distribution),  and suppose that  ‘b4’ is  uniformly  distributed between 0.5 and 1.5,
then the following syntax could be used:

? Cross sectional RP model
Design
;alts = alt1, alt2
;rows = 12
;eff = (rp,d)
;model:
U(alt1) = b1[-0.2] + b2[n,1.2,0.3] * A[0,1,2] + b3[2.5] * B[0,1]       
   /
U(alt2) =            b2            * A        + b4[u,0.5,1.5] * C
[2,4,6,8] $

Hence,  [n,1.2,0.3]  indicates  a normal  distribution  with  mean  1.2  and  standard  deviation  0.3,  while
[u,0.5,1.5] indicates a uniform distribution between 0.5 and 1.5.

For generating designs for the MMNL model,  simulations are needed for evaluating the design  over
the complete parameter distributions.  This  is  done by taking draws from the parameter distribution.
The number of draws is determined by setting the rdraws  (random draws) property.  For taking 1,000
(pseudo) random draws, the following is added to the syntax:

;rdraws = random(1000)

Not only are pseudo random draws available, but also more intelligent sequences can be used,  such
as Halton sequences,  Sobol sequences,  or modified latin hybercube sampling (MLHS).  These may
be used by adding for example:

;rdraws = halton(50)
;rdraws = sobol(100)
;rdraws = mlhs(80)

Another  approach  is  to  use  Gaussian  quadrature.  For  this  method,  the  number  of  abscissas  per
parameter is  input.  In the model described above,  there are two random parameters.  If  one  uses  5
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abscissas per parameter, the total number of Gaussian draws will be 5×5 = 25 draws.  In the syntax
this would be:

;rdraws = gauss(5)

In case of few random parameters, Gaussian quadrature is extremely efficient. For higher numbers of
random  parameters,  the  number  of  Gaussian  draws  increases  exponentially.  For  5  random
parameters with 5 abscissas each, this would yield 55 = 3,125 Gaussian draws. It  is  possible to set
different numbers of abscissas per random parameter, for example:

;rdraws = gauss(3,3,2,4,5)

where the first  two parameters  have 3 abscissas,  the third parameter 2 abscissas,  etc.  (in order of
appearance). The total number of Gaussian draws would now be 3×3×2×4×5 = 360 draws.

In  the  traditional  (cross-sectional)  MMNL  model  the  observations  from  the  choice  situations  are
treated as independent. However, in SC experiments these choice observations are not  independent
as they are faced by  the same respondent.  Ngene has a unique feature  in  which  this  dependency
can be taken into account by considering the panel MMNL model. Instead of model type ‘rp’ one can
use  ‘rppanel’  in  the  syntax.  The  evaluation  of  the  design  efficiency  for  the  panel  MMNL model  is
much more complex and time consuming than for the  cross-sectional  MMNL model  as  it  requires
sampling of respondents. The number of sampled (simulated) respondents is set by the rep property.
The higher this value, the more accurate the computations, but the higher the computation time.  The
following two properties ensure that the panel MMNL model is used:

;eff = (rppanel,d)
;rep = 500

Thus the complete syntax for a MMNL design allowing for the pseudo panel nature of the SC design
would look:

? Panel RP model
Design
;alts = alt1, alt2
;rows = 12
;eff = (rppanel,d)
;rep = 500
;rdraws = halton(250)
;model:
U(alt1) = b1[-0.2] + b2[n,1.2,0.3] * A[0,1,2] + b3[2.5]       * B[0,1] 
    /
U(alt2) =            b2            * A        + b4[u,0.5,1.5] * C
[2,4,6,8]  $

The type of output generated for a MMNL design (cross-sectional and panel formulation) is  identical
to  that  for  MNL  designs  discussed  earlier.  That  is,  Ngene  will  first  display  the  overall  efficiency
measures of the design followed by S-error measures for each of the parameter estimates (including
any standard deviation or spread parameters),  after which the design itself is  presented (see Figure
7.7 which shows a design generated using the above syntax).
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Figure 7.7: MMNL design output

Unlike  the  output  for  MNL  designs  however,  when  a  MMNL  design  is  requested,  Ngene  will
automatically  generate  additional  outputs  for  each  of  the  normally  reported  efficiency  measures
assuming other model types. This is shown in Figure 7.8 where Ngene reports  the efficiency outputs
for the same design  given  in  Figure  7.7,  assuming  MNL,  MMNL cross  sectional  (RP)  and  MMNL
panel  (RP  Panel)  model  formulations.  In  generating  the  MNL  model  outputs,  the  means  of  any
random parameter distributions are assumed as the prior parameter  inputs.  Note  that  whilst  these
values are both calculated and reported for the different model types,  only  the efficiency measure for
the model type requested in the eff property is used in the design optimization routine. 

Finally, as briefly mentioned earlier, calculation of the Fisher Information matrix  for the panel version
of designs generated for a MMNL model requires  the  generation  of  a  sample  of  respondents.  This
greatly  increases  the  time  required  to  construct  such  a  design  compared  to  designs  generated
assuming  other  model  types.  Ngene  allows  the  user  to  observe  the  sample  generated  for  these
calculations (but  only  for panel MMNL designs)  by  clicking  on  the  sample  tick  box  within  the  RP
panel  tree  structure.  An  example  sample  is  shown  in  Figure  7.8.  The  simulated  sample  of
respondents  is  set  up in such a way that  each row of data represents  an  alternative,  with  multiple
rows representing a choice task  in the design.  The parameter estimates in  the  sample  for  random
parameters  are  drawn  from  the  prior  parameter  estimates  provided  by  the  user  in  generating  the
design  using  Halton  sequences.  By  using  Halton  sequences,  the  parameter  estimates  for  each
simulated respondent is kept constant over multiple design generation iterations.  Similarly,  the EV1
error  term  is  drawn  using  Halton  sequences.  The  choice  variable  is  constructed  based  on  the
alternative that is observed to have the highest utility within each choice task.
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Figure 7.8: MMNL design output by model type
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Figure 7.9: Panel MMNL simulated sample

7.2.4 Designs for estimating error components models

In the error components  (EC) model,  the user can specifically  add error terms  (which  are  normally
distributed  with  mean  zero  and  a  given  standard  deviation)  into  the  utility  functions  in  the  model
property.  Prior values for the standard deviation  need  to  be  provided.  The  eff  property  will  need  to
reflect  the  fact  that  an  error  component  model  is  being  used,  setting  the  model  type  (the  first
argument of the eff property) to ‘ec’. In the utility functions, an error component will be recognized by
putting ‘ec’ as a first argument in the square brackets following the parameter name, e.g.  ‘s1[ec,0.2]’
indicates  that  parameter ‘s1’ represents  a normal distributed error  component  with  mean  zero  and
standard deviation 0.2. Multiple error components can be used, for example:

;eff = (ec,d)
;model:
U(alt1) = b1[-0.2] + b2[1.2] * A[0,1,2]   + s1[ec,0.2]      /
U(alt2) = b3[0.9]  + b3[0.8] * B[2,3,4,5] + s1 + s2[ec,0.5] /
U(alt3) =            b4[1.5] * C[1,2,3]        + s2   

As in the MMNL model,  draws need to be taken from the random error components,  such that  the
rdraws property needs to be set in a similar fashion. 

Similar  to  designs  for  the  MMNL model,  it  is  also  possible  to  generate  a  panel  version  of  error
components  type designs.  This  also requires  the generation of a sample of  simulated  respondents
which  is  handled  in  the  exact  same  manner  as  with  MMNL  designs,  as  shown  in  the  following
syntax. 

;eff = (ecpanel,d)
;rep = 500
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An example set  of syntax  for an EC design allowing for the pseudo panel nature of  the  SC design
might therefore look as follows.

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (ecpanel,d)
;rep = 500
;rdraws = halton(250)
;model:
U(alt1) = b1[-0.2] + b2[1.2] * A[0,1,2]   + s1[ec,0.2]      /
U(alt2) = b3[0.9]  + b3[0.8] * B[2,3,4,5] + s1 + s2[ec,0.5] /
U(alt3) =            b4[1.5] * C[1,2,3]        + s2         $

The output for EC designs is exactly the same as that reported for random parameter logits  models.
As with MMNL designs, Ngene will report the efficiency measures for the MNL, EC cross sectional,
and EC panel models  whenever an EC cross sectional or panel design is  requested.  Also,  as  with
panel  MMNL designs,  panel  EC designs  require  the  simulation  of  a  sample  of  respondents.  The
simulated sample may be viewed in a manner similar to that when dealing with panel MMNL designs
(see Section 7.2.3).

7.2.5 Designs for estimating combined random parameters and error components

In some cases,  the analyst  may wish to generate a design that  contains  both  random  parameters
and error components.  Setting the model type to ‘rpec’ lets  Ngene know that  both are  used  in  the
utility functions. In the following example, ‘b2’ and ‘b4’ are random parameters, while ‘s1’ and ‘s2’ are
error components:

Design
;eff = (rpec,d)
;model:
U(alt1) = b1[-0.2] + b2[n,1.2,0.3]  * A[0,1,2]   + s1[ec,0.2]          
    /
U(alt2) = b3[0.9]  + b3[0.8]        * B[2,3,4,5] + s1         + s2
[ec,0.5]  /
U(alt3) =            b4[u, 0.2,1.5] * C[1,2,3]                + s2 

Similar to ‘rp’, ‘ec’ and ‘rpec’ can be used in a panel approach. Setting the model type to ‘ecpanel’ or
‘rpecpanel’ and setting the rep property  will  tell  Ngene to create a sample of respondents  for  doing
the computations for the panel approach. A full example of syntax is provided below.

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (rpecpanel,d)
;rep = 500
;rdraws = halton(250)
;model:
U(alt1) = b1[-0.2] + b2[n,1.2,0.3] * A[0,1,2]   + s1[ec,0.2]           
   /
U(alt2) = b3[0.9]  + b3[0.8]       * B[2,3,4,5] + s1          +  s2
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[ec,0.5]  /
U(alt3) =            b4[u,0.2,1.5] * C[1,2,3]                + s2      
   $

In  case  the  model  specification  contains  error  components,  but  the  eff  property  indicates  an  ‘rp’
model,  then  the  error  components  will  be  ignored  in  the  efficiency  calculations.  Similarly,  if  the
model  specification  contains  random  parameters,  but  the  model  type  is  given  as  ‘ec’  in  the  eff
property,  the  random  parameters  will  be  assumed  fixed  (i.e.,  set  to  the  mean  value  of  the
distribution) when optimizing the design.

Once more, the output for this type of model is similar to that described earlier for the MMNL and EC
models, the main difference being that efficiency measures may now be obtained for all model types,
not just for MNL or MMNL or EC models. Also,  as  previously  described,  simulated samples may be
generated for the MMNL and error component panel models. 

7.2.6 Reporting efficiency measures for different model types

In  the  previous  sections,  the  example  syntax  assumed  that  the  utility  specifications  matched
perfectly the model type described in the eff property. For example, in using 

b2[n,1.2,0.3] 

to specify a random parameter, we used either 

;eff = (rppanel,d) 

or 

;eff = (rp,d)

Similarly,  when an error component  was included in the utility  function,  the  eff  property  referred  to
either a cross sectional or panel EC model form. In Ngene, it is possible however to specify one type
of model form in the set of utility functions but optimize on another type of model in the eff  property.
The  syntax  below demonstrates  one  such  case  where  the  utility  specification  assumes  random
parameters  for  b2  and  b4,  but  the  design  is  optimized  assuming  an  MNL  model  (with  fixed
parameters).

Design
;alts = alt1, alt2
;rows = 12
;eff = (mnl,d)
;rep = 500
;rdraws = halton(250)
;model:
U(alt1) = b1[-0.2] + b2[n,1.2,0.3] * A[0,1,2] + b3[2.5]       * B[0,1] 
    /
U(alt2) =            b2            * A        + b4[u,0.5,1.5] * C
[2,4,6,8]  $

In cases such as  this,  Ngene will  optimize on the model type requested in the eff  property  but  will
also report  the  efficiency  measure  outcomes  for  model  forms  outlined  in  the  utility  specifications.
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When  optimized  assuming  an  MNL  model,  Ngene  will  assume  the  average  value  of  any  random
parameter distribution as  being the true prior  value  and  ignore  any  error  components.  For  designs
generated assuming a  random  parameter  type  model,  any  error  component  will  be  ignored  in  the
optimization routine. Similarly, for EC designs, any random parameter estimate located in the utility
functions will also be ignored in optimization of the design.  The benefit  of allowing different  forms of
utility specifications from the efficiency measure being optimized is that the user can easily  examine
how the  design  is  likely  to  perform  assuming  a  different  model  type  than  that  for  which  it  was
optimized  for.  We  discuss  a  similar  concept  in  Section  7.4  when  we  discuss  the  use  of  model
averaging in the design generation process.

7.2.7 Designs with no choice alternatives

The question as  to whether or not  to include a ‘status  quo’ alternative (sometimes referred  to  as  a
‘no choice’ or ‘opt  out’ alternative in various  literatures)  in  SC studies  has  been  widely  debated  in
many discipline areas. Within the literature, significant differences in results  of SC experiments  with
and without the presence of status  quo alternatives  have been found (see e.g.,  Dhar and Simonson
2003), and in general, the recommendation has been that  status  quo alternatives  should be used in
such  experiments  (e.g.,  Louviere  et  al.  2000;  Adamowicz  and  Boxall  2001;  Bennett  and  Blamey
2001; Bateman et  al.  2003).  These recommendations have grown from a number of arguments  that
have  been  put  forward  for  the  use  of  status  quo  alternatives.  These  arguments  include  that  the
inclusion  of  a  status  quo  alternative  leads  to  an  increase  in  the  realism  of  SC  tasks  (see  e.g.,
Louviere and Woodworth 1983;  Batsell  and Louviere 1991;  Carson  et  al.  1994),  an  increase  in  the
external validity of welfare estimates derived from SC experiments  (see e.g.,  Adamozicz  and Boxall
2001) and an improvement in the statistical efficiency of parameters  estimated from discrete choice
models  (see e.g.,  Louviere et  al.  2000;  Anderson and Wiley  1992).  For  a  further  overview of  these
arguments, see e.g., Kontoleon and Yabe (2003) or Dhar and Simpson (2003).

Traditionally,  where used,  the no choice or status  quo alternative has been represented in SC data
as either being an alternative labelled as  ‘none’ and devoid of any attribute levels  or alternatively  as
an  option  labelled  as  ‘your  current  alternative’  with  attribute  levels  given  simply  as  'at  the  current
level'  (see  e.g.,  Tversky  and  Shafir  1992;  Dhar  1997;  Kontoleon  and  Yabe  2003).  Whilst  both
versions  of  the  status  quo  alternative  have  different  implications  given  different  interpretational
meanings (i.e., the ‘none’ option represents  a complete opt-out  of all  non-status  quo alternatives  by
the  respondent  whereas  the  'your  current  alternative'  option  represents  the  choice  of  an  already
experienced or known alternative and hence is  not  strictly  a no choice alternative),  it  is  the  impact
upon  respondents  of  including  such  alternatives  in  SC  experiments  that  requires  careful
consideration.  Where  a  ‘none’  option  is  used,  there  exists  little  possibility  of  interpretation
differences in terms of what the alternative means to respondents  as  the choice of selecting none of
the other alternatives  presented within a choice task  should have  the  same  meaning  for  the  entire
sample.  Where the status  quo alternative is  described simply  as  'your  current  alternative'  however,
interpretation differences may arise as  different  respondents  may have different  current  alternatives,
or in the case where all  respondents  face  the  same  status  quo  alternative,  may  possess  different
perceptions as to the current attribute levels that that alternative possesses. 

Independent  of  the  form  of  the  no  choice  alternative,  one  or  more  no  choice  alternatives  can  be
accounted for in generating a design by naming an alternative in the alts  property  but  not  specifying
a utility  function after the model property.  Note that  this  can be done for any  model  type,  and  can
also be used when generating orthogonal designs. An example of syntax for an MNL design allowing
for a no choice alternative is given below.
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Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b11[-0.2] + b2[1.2] * A[0,1,2] + b3[2.5] * B[0,1]     /
U(alt2) = b12[0.3]  + b2      * A        + b4[1.1] * C[2,4,6,8] $

In generating such designs, Ngene will assume that the utility for a no choice alternative is  zero and
that no attribute levels are attached to the alternative.  We therefore make a distinction between this
form  of  design  and  one  where  the  no  choice  alternative  does  indeed  have  attribute  levels.  For
example,  many designs employ a form of  status  quo  option,  which  we  term  reference  alternative,
which  is  similar  to  the  'at  the  current  level'  status  quo  alternative  format  but  which  involves  the
capturing  and  often  relation  back  to  respondents  as  part  of  SC  choice  tasks  of  the  (perceived)
attribute levels of respondent specific currently (or recently) experienced real life alternatives. That  is,
respondents are asked what their perceptions are of the attribute levels for a current (usually chosen)
real world alternative,  and these are used as  an alternative in the choice tasks  that  they  view.  We
discuss this specific form of design in Section 8.3.

7.2.8 Designs with dummy and effects coded attributes

Rather than estimate a single parameter for each attribute (assuming a linear  relationship  between
changes in the attribute and utility),  one can also estimate  multiple  unique  parameters  associated
with l-1 of an attribute's levels (suggesting that different levels have a different impact upon utility, and
hence  assuming  a  nonlinear  relationship).  Typically,  such  nonlinear  relationships  are  represented
using one of two data coding structures, these being dummy coding and effects coding. 

To demonstrate, consider an example where an attribute representing color can take on three levels;
blue, red and yellow. Within the utility specification, this attribute might be represented as follows. 

U(alt1) = color[0.17] * color[0,1,2]

Graphically, the marginal utility for this color attribute may be represented as per Figure 7.10.  In this
case,  the marginal utility  difference between ‘blue’ and 'red',  is  the same as the difference between
the marginal utilities for ‘red’ and ‘yellow’. This  is  because a single parameter has been assigned to
the attribute and thus has the same impact upon utility as one moves from any one level to the next
adjacent level.
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Figure 7.10: Linear relationship between color and utility

Rather  than  assume  a  linear  relationship  between  the  attribute  levels  of  an  attribute  and  utility,
dummy and effects coding requires that the analyst  create unique variables  for up to l-1 levels  of an
attribute, each of which may then be associated with distinct  parameter estimates.  As such,  rather
than  having  a  single  parameter  estimate,  the  analyst  now  has  l-1  parameter  estimates,  each  of

which represents the marginal utility associated with their corresponding attribute levels,  with the Lth

level having a marginal utility set to zero.

Dummy coding utilizes  a series  of 0s  and 1s  to relate each attribute level of the original variable to
the  newly  created  columns.  Table  7.2  demonstrates  the  dummy  coding  concept  for  the  color
example  given  above.  First,  the  analyst  creates  l-1  columns  corresponding  in  this  case  to  the
creation of 2 additional columns (3 levels  1 = 2). In this example, we relate the two new columns to
the colors  ‘blue’ and ‘red’.  Note that  it  does not  matter  which  attribute  levels  one  creates  the  new
columns for,  as  discrete choice models  produce estimates of relative  utility,  and  hence,  any  order
will  produce the same result.  Next,  every  time  an  attribute  level  appears  in  the  design  (data),  the
column corresponding to that  level receives a value of 1,  otherwise it  receives a value of 0.  For  the
attribute level with no corresponding column (in Table 7.2 this  is  represented by  the color  ‘yellow’),
for all constructed columns it  will  take the value of 0 (i.e.,  ‘blue’ and ‘red’).  In the design generation
(or  estimation  process),  the  analyst  now estimates  parameters  for  the  newly  created  l-1  dummy
variables.  

Table 7.2: Example dummy code

Figure  7.11  demonstrates  the  marginal  utilities  that  could  arise  from  the  dummy  coding  exercise
presented in Table 7.2.  Using only  the newly  created ‘blue’ and ‘red’  dummy  variables,  two  unique
parameter estimates will  be obtained,  one for each.  The ‘yellow’ level,  not  having a dummy variable
column will  automatically  have a marginal utility  of zero (hence the ‘blue’ and ‘red’  dummy  variable
parameters will be relative to this ‘base’ level). 
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Figure 7.11: Nonlinear relationship between color and utility represented using dummy
codes

Dummy coding in Ngene is  performed via minor modifications to how a parameter is  handled in the
model utility  functions.  Firstly,  in specifying  the  parameter  value,  the  analyst  will  need  to  add  the
syntax .dummy after naming the parameter, such as 

<parameter name>.dummy 

Next, the analyst needs to provide l-1 unique parameter priors  associated with the l-1 newly  created
dummy variables. This  is  done by separating l-1 parameter priors  using a | symbol.  Note that  if the
analyst  does not  specify  the attribute levels  for a dummy coded variable,  Ngene will  use  the  levels
0,1,…, L when presenting the design.  Where attribute levels  have been specified,  Ngene will  report
these  values  when  presenting  the  final  design  despite  using  the  dummy  coded  variables  in  the
design generation process. Example syntax is presented below for the color example, where the first
color level has been assigned a prior parameter value of -0.15, the second 0.45 and the final omitted
level, a value of zero.

U(alt1) = color.dummy[-0.15|0.45] * color

or

U(alt1) = color.dummy[-0.15|0.45] * color[0,1,2]

Effects coding is similar to dummy coding in that it  allows the analyst  to detect  nonlinearities  in the
marginal  utilities  for  levels  of  attributes  rather  than  assuming  a  linear  relationship  between  an
attributes levels and overall utility. However, effects coding offers  a number of theoretical advantages
over dummy coding. In particular, if two or more attributes are dummy coded,  then each will  have its
own ‘base’ level where all  dummy coded  columns  are  set  at  zero.  For  example,  if  both  color  and
gender are dummy coded, then the marginal utility  for ‘yellow’ will  have the same marginal utility  as
say ‘male’ (assuming male = 0). In this way, the ‘base’ levels  of several dummy coded variables  will
be perfectly confounded with each other, or a model constant if one is present.

Effects coding overcomes this by changing the base level in the coding structure in such a way as to
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allow for a unique estimate for that  level.  This  is  done by changing  0  to  -1  in  each  column  for  the
base attribute level, as shown in Table 7.3.  In this  way,  the base level will  not  be equal to zero,  but
rather will  be equal to minus the sum of the remaining parameter estimates.  This  is  shown both  in
Equation (7.19) and Figure 7.12. 

Table 7.3: Example dummy code

β
yellow

 = -β
red

 - β
blue (7.19)

Effects coding and dummy coding should provide the same results in terms of the estimated utilities
for each alternative as well as producing the same choice probabilities. Differences however will  exist
in the parameter priors (estimates) for the model constants as well as between the dummy or effects
coded variables. Indeed, the effects coded priors  (estimates) should be similar to the dummy coded
priors (estimates) up to some scale.

Figure 7.12: Nonlinear relationship between color and utility represented using effects
codes

In Ngene,  the process to specify  effects  codes is  similar to that  for  specifying  dummy  codes.  The
analyst must still specify l-1 parameter priors,  however rather than use the syntax  .dummy, .effects
is used instead. This is shown in the following example. As with dummy codes, the analyst need not
specify the levels of the attribute (in which case Ngene will report  the levels  as  0,1,…L in the design
output),  however  if  levels  are  provided  by  the  analyst,  these  levels  will  be  used  in  any  output
provided. Also, just like the dummy coding, the Ngene automatically codes the last  attribute level as
the base.

U(alt1) = color.effects[-0.36|0.4] * color[0,1,2]

An example syntax shown dummy codes is given below.
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Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b11[-0.2] + b2.dummy[1.2|0.8] * A[0,1,2] + b3[2.5] * B[0,1]  
  /
U(alt2) = b12[0.3]  + b2                * A        + b4[0.4]  *  C
[2,4,6,8] $

Output  showing  a  design  generated  using  the  above  syntax  is  given  in  Figure  7.13.  Note  that  in
presenting the design, Ngene does not  present  the dummy or effects  coded columns but  rather the
levels  of the design as  if they were not  dummy or effects  coded.  This  is  because,  even though  the
optimization routine treated these variables as dummy or effects coded, conversion of the design into
a choice survey is best done if the attributes are viewed as per those given in Figure 7.13.  Note once
more that even though the design is  represented as  if it  were treated as  linear in the attributes,  the
optimization routine does indeed treat the design as  if it  were dummy or effects  coded.  This  can be
confirmed by examining either the Fisher Information  matrix  or  AVC matrix,  where  additional  rows
and columns will  be present  for each dummy or effects  coded prior parameter.  This  can  be  clearly
seen in Figure 7.13 where the AVC matrix now has additional rows and columns for the two dummy
priors assumed in the syntax.



124 Ngene User Manual

© 2012 ChoiceMetrics

Figure 7.13: Example Ngene design output with a dummy coded variable

Care  should  be  taken  when  using  dummy  or  effects  codes  in  generating  designs  however.  A
commonly observed problem occurs when a dummy or effects  coded variable takes the value 1 over
the entire design  only  a  few times.  For  example,  if  a  variable  is  coded  0,1,2,4  and  the  design  is
generated with 16 choice situations, then each attribute level will appear four times over the design. If
the  variable  is  now dummy  coded  however,  then  the  value  1  will  appear  only  four  times  for  each
dummy coded variable with the remainder of the variable taking the value of 0 (i.e.,  the variable  will
have four 1s  and 12  0s  over  the  16  choice  situations).  In  this  way,  the  design  can  become  quite
sparse in terms of non-zero values, the result of which will either be an inefficient design,  or a design
with  a  near  singular  Fisher  Information  matrix  meaning  that  it  cannot  be  inverted  to  obtain  the
design’s AVC matrix. 
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7.2.9 Efficient designs with interactions

Previously,  in  Section  6.2.4,  interactions  were  introduced  in  the  context  of  orthogonal  designs.
Interactions  can  also  be  specified  for  efficient  designs.  In  fact,  Ngene  is  not  limited  to  two-way
interactions. It can handle interactions of any order.

The two-way interaction is the most basic form of interaction in Ngene.  As with two-way interactions
for  orthogonal  designs,  the  syntax  is  specified  by  introducing  a  parameter,  and  multiplying  that
parameter by  two attributes  that  have already been specified.  The key difference is  that  for efficient
designs, a parameter prior would typically  be specified for the interaction parameter.  An example is
provided below, where an interaction parameter i1,  with a prior value of 0.1,  is  introduced in the first
alternative, for the interaction of attributes A and B.

Design
;alts = alt1, alt2
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b1[-0.2] + b2[0.7] * A[0,1,2] + b3[0.8] * B[0,1]     + i1[0.1]
* A * B /
U(alt2) =            b2      * A        + b4[0.2] * C[2,4,6,8]         
        $

The interaction parameter will  be reported in the Fisher and AVC matrices,  and  be  included  in  the
calculation  of  the  efficiency  measures.  The  design  reported  will  include  two  columns  for  the
attributes, as well as an additional column for the interaction (even though this typically would not  be
shown in a survey). 

To specify  interactions of a higher  order,  simply  multiply  the  parameter  by  more  attributes.  In  the
example below, a new attribute, D, has been introduced,  and included in the interaction,  resulting in
a three-way interaction. 

Design
;alts = alt1, alt2
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b1[-0.2] + b2[0.7] * A[0,1,2] + b3[0.8] * B[0,1]     + b5
[0.05] * D[1,2] + i1[0.1] * A * B * D /
U(alt2) =            b2      * A        + b4[0.2] * C[2,4,6,8]         
                                $

In some situations, an attribute is  only  important  in an interaction term, not  as  a main effect.  As of
version 1.1, Ngene allows an attribute to be introduced in the interaction, without  first  being specified
with a parameter for a  main  effect.  The  attribute  will  still  be  reported  in  its  own  column  when  the
design levels  are reported,  however  the  level  will  only  be  used  in  the  interaction,  and  so  no  main
effect  parameter  will  be  included  in  the  Fisher  and  AVC  matrices.  The  example  below  is  a
modification of the previous example, where the attribute D has been removed as a main effect,  and
only included in the three-way interaction.

Design
;alts = alt1, alt2
;rows = 12
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;eff = (mnl,d)
;model:
U(alt1) = b1[-0.2] + b2[0.7] * A[0,1,2] + b3[0.8] * B[0,1]     + i1[0.1]
* A * B * D[1,2]  /
U(alt2) =            b2      * A        + b4[0.2] * C[2,4,6,8]         
                  $

Finally,  you  may  wish  to  specify  an  interaction  with  a  dummy  or  effects  coded  attribute.  In  this
context,  it  probably  does  not  make  sense  to  treat  the  dummy  or  effects  coded  attribute  as
continuous in the interaction.  As of version 1.1,  Ngene allows an interaction to  be  specified  with  a
specific  attribute level,  rather than all  possible  levels  of  an  attribute.  When  referencing  an  existing
dummy or effects coded attribute in the interaction, use the syntax <attribute>.dummy[<exact

level  of  attribute>].  This  will  evaluate  to  1  if  the  attribute  takes  on  the  attribute  level

specified, or 0 otherwise. This is best demonstrated using the example below.

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b11[-0.2] + b2.dummy[-0.6|-0.35] * A[1,2,3] + b3[0.8] * B[1,2]
    + i1[0.1] * A.dummy[2] * B /
U(alt2) = b12[0.3]  + b2                   * A        + b4[0.2] * C
[2,4,6,8]                            $

Here,  attribute A is  dummy coded,  with a prior of -0.6 for level 1  and  -0.35  for  level  2,  with  level  3
forming the base.  In the interaction,  A.dummy[2]  will  evaluate to 1 if attribute A is  2.  Note that  in

this example, levels were specified for attribute A (A[1,2,3]), even though each level will  be coded

as 0 or 1 internally  when evaluating the dummy coded main effect.  If  the  levels  were  not  explicitly
specified,  they  would  default  to  [0,1,2],  and  these  levels  would  need  to  be  referenced  in  the

interaction  term.  If  each  level  of  a  dummy  or  effects  coded  attribute  needs  to  be  interacted  with
another attribute, then one interaction needs to be added for each level.

Note that  dummy coding of an attribute level in an interaction does  not  require  that  that  attribute's
main effect be dummy or effects coded. The example below is the same as above, except that in the
interaction, level 2 of attribute B is dummy coded, even though it was not for the main effect.

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b11[-0.2] + b2.dummy[-0.6|-0.35] * A[1,2,3] + b3[0.8] * B[1,2]
    + i1[0.1] * A.dummy[2] * B.dummy[1] /
U(alt2) = b12[0.3]  + b2                   * A        + b4[0.2] * C
[2,4,6,8]                                     $
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7.3 Bayesian efficient designs

It  is  strongly  advised  to  first  generate  a  non-Bayesian  design  with  the  MNL  model.  This  allows
problems  to  be  much  more  quickly  identified.  For  example,  the  priors  might  lead  to  extreme
choice probabilities of zero and one, and may need to be adjusted. An MNL design should always
be  generated  quickly,  so  if  it  is  not,  then  you  know  there  is  a  problem  with  your  design
specification. Random parameter and Bayesian models  are much slower to generate,  and it  may
not  be clear for some time that  there is  a problem with the design.  A good principle to follow is:
start simple, and gradually add complexity to the design.

In  the  previously  discussed  efficient  designs  the  parameter  prior  values  are  assumed  known  and
fixed.  Since  there  is  always  some  uncertainty  about  the  true  parameter  values,  these  priors  are
never known exactly, but only by  approximation.  In order to take into account  the uncertainty  about
the parameter priors,  Bayesian  efficient  designs  have  been  developed  which  make  use  of  random
priors  instead  of  fixed  priors,  described  by  random  distributions.  All  previously  described  model
types can be used in conjunction with random  priors.  All  that  is  needed  is  to  substitute  the  fixed
prior values with random distributions in the model property. We will illustrate this  using the example
for the MNL and the MMNL models.

In  the  MNL  model,  assume  that  the  prior  value  for  parameter  ‘b3’  is  uncertain  and  that  the  prior
distribution is a normal distribution with mean 0.5 and standard deviation 0.2.  Then instead of having
[0.5]  as  a fixed prior for ‘b3’ it  is  now a random prior  denoted  by  [(n,0.5,0.2)].  Note  that  the  round
brackets within which the distribution is placed distinguishes a Bayesian parameter distribution from
a random parameter distribution. That is, the round brackets around the prior value indicate that  it  is
a Bayesian prior, which is not to be confused with a random parameter.

;eff = (mnl,d,mean)
;model:
U(alt1) = b1[-0.2] + b2[1.2] * A[0,1,2] + b3[(n,0.5,0.2)] * B[0,1]     /
U(alt2) =            b2      * A        + b4[1.1]         * C[0,1,2,3]

Observe that now in the efficiency method eff  the term ‘mean’ is  added as a third argument.  When
computing  the  Bayesian  D-error  over  different  random  draws,  one  can  choose  to  take  the  mean
value,  the  minimum  or  maximum  value  (‘min’  or  ‘max’),  or  the  median  value  (‘median’)  of  the
efficiency  measure  being  optimised.  An  additional  argument  that  can  be  used  is  ‘fixed’,  in  which
fixed priors values are assumed (set to the mean values of the distribution) instead of Bayesian prior
distributions. 

In the MMNL model, the random parameters have prior values to describe the distribution,  and these
prior values can again be Bayesian by  assuming a prior distribution.  For example,  assume that  the
‘b2’ parameter is  random, following a normal distribution with mean 1.2 and standard deviation  0.3.
These two values are not known with certainty, so we could assume prior distributions for them, e.g.,
a normal distribution for the prior mean, and a uniform distribution for the prior standard deviation:

;eff = (rp,d,median)
;model:
U(alt1) = b1[-0.2] + b2[n,(n,1.2,0.2),(u,0.1,0.3)] * A[0,1,2] + b3[0.5]
* B[0,1]     /
U(alt2) =            b2                            * A        + b4[0.4]
* C[0,1,2,3] 

In  this  case,  the  mean  of  the  random  parameter  ‘b2’  follows  a  Bayesian  normal  distribution  with
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mean 1.2 and standard deviation 0.2, while the standard deviation of this random parameter follows a
uniform distribution from 0 to 0.3. Note that negative standard deviations should not occur,  hence the
Bayesian distribution for the standard deviation prior should be chosen with care.

Similarly,  Bayesian  prior  parameter  distributions  can  be  used  for  EC  models.  For  EC  models
however, the error component term represents a normally distributed random parameter with a mean
of zero and an estimated standard deviation parameter.  As such,  only  the Bayesian prior parameter
distribution for the standard deviation parameter of the error component  need be established.  This  is
shown in the following syntax. 

;eff = (ecpanel,s,mean)
;model:
U(alt1) = b11[-0.2] + b2[1.2] * A[0,1,2] + b3[(n,0.5,0.2)] * B[0,1]   +
s1[ec,(u,0.8,1.2)]  /
U(alt2) = b12[-0.3] + b2      * A        + b4[1.1]         * C[0,1,2,3]
+ s1                /
U(alt2) =             b2      * A        + b5[0.8]         * D[0,1,2,3]
  

Similar  to  the  MMNL model,  for  the  Bayesian  efficient  designs  several  random  draws  have  to  be
taken  from  the  Bayesian  random  distributions.  This  is  defined  by  the  property  bdraws  (Bayesian
draws) and can have the same arguments as the rdraws property, e.g.,

;bdraws = halton(100)
;bdraws = gauss(3,4)

Note  that  generating  designs  for  the  MMNL  or  EC  model  with  Bayesian  priors  can  be  very
computationally  intensive,  even  more  so  if  a  panel  approach  is  applied.  Therefore,  the  number  of
random parameters, error components, and Bayesian priors should preferably be limited.

Example  syntax  demonstrating  the  use  of  fixed  parameter  priors,  Bayesian  distributions  for  fixed
parameters,  Bayesian  distributions  for  random  parameter  population  moments  and  Bayesian  prior
parameter distributions for error components is given below.

Design
;alts = alt1, alt2,alt3
;rows = 12
;eff = (rpecpanel,d,mean)
;rep = 250
;rdraws = gauss(2)
;bdraws = gauss(2)
;model:
U(alt1)  =  b1[-0.2]  +  b2[n,(n,1.2,0.2),(u,0.1,0.3)]  *  A[0,1,2]  +  b3
[(n,0.5,0.1)] * B[0,1] + s1[ec,(u,0.8,1.2)]  /
U(alt2) =            b2                            * A        + b4[0.4]
* C[0,1,2,3]     + s1                  $

In  the  above  example,  the  ‘b4’  parameter  prior  is  assumed  to  be  fixed  and  known  with  exact
certainty  (i.e.,  0.4).  The ‘b3’ parameter is  assumed  to  be  a  fixed  (i.e.,  non-random)  parameter  but
with a Bayesian prior parameter distribution assumed representing some uncertainty  as  to what  the
true population parameter will be once data is collected using the design.  The ‘b2’ parameter (which
is  also  generic  across  alternatives  ‘alt1’  and  ‘alt2’)  is  assumed  to  be  a  random  parameter  with
Bayesian prior parameter distributions for both population moments.  The  design  also  allows  for  an
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error component with a standard deviation parameter that  is  not  precisely  known a priori  and hence
draws values also from a Bayesian prior parameter distribution. 

Figure 7.14  shows  an  example  design  generated  using  the  above  syntax.  The  output  for  designs
generated  assuming  Bayesian  prior  parameter  distributions  mirrors  that  given  for  designs
constructed assuming fixed parameters  with one exception.  In  addition  to  the  efficiency  measures
assuming the fixed priors, Ngene reports the Bayesian efficiency measures used in the optimization
routine. Note that  when Gaussian quadrature is  used,  as  in this  example,  only  the mean values for
each  of  the  efficiency  measures  is  reported.  This  is  a  byproduct  of  how  Gaussian  quadrature  is
calculated. When other draw types are used, such as Halton sequences, Ngene will report additional
population moments for each of the efficiency measures, as shown in Figure 7.15.

Figure 7.14: Bayesian efficient design output screen
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Figure 7.15: Output for non-Gaussian quadrature efficient designs

Finally, note that  it  is  possible to combine Bayesian prior parameter estimates with dummy effects
coded variables. For example, 

b1.dummy[(n,-0.7,0.2)|(n,0.4,0.2)|0.8]*A[5,10,15,20]

will assign Bayesian prior parameters for dummy variables  associated with levels  ‘5’ and ‘10’,  and a
fixed prior parameter for the dummy variable associated with the attribute level ‘15’ (the attribute level
‘20’ will be the base level). Similar structures can be applied to effects coded variables.

Ngene  also  allows  the  user  to  optimise  the  design  based  on  the  generalised  Asymptotic  Fisher

Information matrix (see Section 7.1.5). To do this, the command 

;gfim

is added to the syntax. For example, the previous syntax becomes

Design
;alts = alt1, alt2,alt3
;rows = 12
;eff = (rpecpanel,d,mean)
;rep = 250
;gfim
;rdraws = gauss(2)
;bdraws = gauss(2)
;model:
U(alt1)  =  b1[-0.2]  +  b2[n,(n,1.2,0.2),(u,0.1,0.3)]  *  A[0,1,2]  +  b3
[(n,0.5,0.1)] * B[0,1] + s1[ec,(u,0.8,1.2)]  /
U(alt2) =            b2                            * A        + b4[0.4]
* C[0,1,2,3]     + s1                  $

Note that  use  of  the  generalised  Asymptotic  Fisher  Information  matrix  will  not  change  the  output

generated by Ngene, however it will affect the AVC matrix that the design is being optimised for.

7.4 Model averaging of efficient designs

Not  only  the  prior  parameter  values  are  uncertain,  the  precise  model  type  that  one  is  likely  to
estimate once data is  collected using the design may also be uncertain.  In order to provide greater
flexibility,  Ngene  is  capable  of  evaluating  different  models  at  the  same  time  for  a  single  design.
These  models  may  be  of  a  different  type,  with  different  utility  functions  and  different  priors.  Also,
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different  efficiency measures may be used in conjunction and/or  Bayesian  and  fixed  priors  can  be
taken into account.  Since a single design is  evaluated for different  models,  it  is  important  that  the
attribute  levels  specified  in  each  model  specification  are  the  same  when  referring  to  the  same
attribute. Not all attributes have to occur in each model specification,  although the design generated
will  contain  levels  for  all  attributes  (attributes  not  used  in  the  model  specification  will  simply  be
ignored when evaluating the efficiency of that model). 

As  described  by  Rose  et  al.  (2009),  Figure  7.16  schematically  demonstrates  the  model  average
approach. Given a single design, different parameter priors associated with different  model types will
result in different AVC matrices. Based on these AVC matrices,  a single combined AVC matrix  can
be  constructed  from  which  efficiency  measures  can  be  calculated.  In  constructing  the  combined
AVC matrix,  different  weights  can  be  attached  to  each  of  the  model  types  assumed,  thus  giving
different model types different degrees of emphasis in generating the overall design.

Figure 7.16: Model average approach

In Ngene, to describe different models, the model property will be set a number of times, and each
model will be given a name. For example, below in the syntax we define five models and name them
‘M1’, ‘M2’, ‘M3’, ‘M4’, ‘M5’. Note that in separating the model types, no backslash (i.e., /) is used for
the last utility function as would typically be the case.
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;model(M1):
U(Alt1) = SP1[0.7] + b1[(n,-0.7,0.2)]*A[5,10,15,20] + b2[1.2]*B[0,1,2,3]
+ b3[1.8]*C[0,1,2,3] + b4[-0.6]*D[1,2,3,4] /
U(Alt2) = SP2[0.5] + b1*A                           + b2*B             
 + b3*C               + b4*D                

;model(M2):
U(Alt1) = SP1[0.6] + b1[(n,-0.6,0.2)]*A[5,10,15,20] + b2[1]*B[0,1,2,3] +
b3[1.5]*C[0,1,2,3] + b4[-0.5]*D[1,2,3,4]  + EC[EC,(U,1,2)] /
U(Alt2) = SP2[0.4] + b1*A                           + b2*B             +
b3*C               + b4*D                 + EC 

;model(M3):
U(Alt1)  =  SP1[0.8]  +  b1[n,(n,-0.8,0.1),(u,0.1,0.2)]*A[5,10,15,20]  +  b2
[n,1.2,0.2]*B[0,1,2,3] + b3[1.2]*C[0,1,2,3] + b4[-0.7]*D[1,2,3,4]  /
U(Alt2) = SP2[0.6] + b1*A                                         + b2*B
                     + b3*C               + b4*D      

;model(M4):
U(Alt1) = SP1[10.4] + b1[n,(n,-1.2,0.1),(u,0.1,0.2)]*A[5,10,15,20] + b2
[n,1.4,0.3]*B[0,1,2,3] + b3[1]*C[0,1,2,3] + b4[-0.6]*D[1,2,3,4]  /
U(Alt2) = SP2[10.2] + b1*A                                         +
b2*B                     + b3*C             + b4*D      

;model(M5):
U(Alt1) = SP1[0.7] + b1[(n,-0.5,0.2)]*A[5,10,15,20] + b2[1.1]*B[0,1,2,3]
+ b3[1.2]*C[0,1,2,3] + b4[-0.4]*D[1,2,3,4]  + EC[EC,(U,2,3)] /
U(Alt2) = SP2[0.5] + b1*A                           + b2*B             
 + b3*C               + b4*D                 + EC          

The first model is a MNL model with some Bayesian priors, the second and fourth models are MMNL
models  whilst  the third and fifth are EC models.  Note that  the priors  for the unique  models  can  be
different,  and although not  shown here,  not  all  parameters  and  attributes  need  appear  in  all  model
utility functions.

When  generating  an  efficient  design  for  multiple  models  at  the  same  time,  a  weighted  efficiency
measure  is  computed  and  optimised  on.  The  eff  property  has  to  be  changed  to  compute  this
weighted efficiency measure, for example as follows:

;eff = M1(mnl,d,mean) + 2*M2(rppanel,d,mean) + 1.5*M3(ecpanel,d,mean) +
M4(rp,d,mean) + M5(ec,d,mean) 

The efficiency in this example consists of the Bayesian D-errors for MNL model ‘M1’,  MMNL models
‘M2’  and  ‘M4’  and  EC  models  ‘M3’  and  ‘M5’.  Whilst  it  is  possible  to  mix  different  efficiency
measures in this procedure Rose et al. (2009) suggest  against  this  as  each measure is  based on a
different  metric  which may cause one  efficiency  measure  to  dominate  all  the  others.  In  the  above
example, note how we have suggested multiplying the efficiency measure for model ‘M2’ by  two and
‘M3’ by  1.5.  In this  way,  the efficiency measures for these  models  will  be  given  these  amounts  of
weight  more  than  the  efficiency  measures  of  the  remaining  models.  Note  that  if  no  weight  is
provided, then the efficiency measure for that model is automatically weighted by one.
 
In the above  example,  all  alternatives  in  all  model  specifications  are  the  same;  each  model  uses
‘alt1’, ‘alt2’, and ‘alt3’. In general, these may be different for each model specification as  well.  In that
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case, the alts property has to be defined for each model, such as:

;alts(M1) = alt1, alt2, alt4
;alts(M2) = alt1, alt3, alt5, alt6

Other properties set in the syntax, such as rdraws, bdraws, and rep, apply to all models specified. 

Example syntax  using the  model  averaging  approach  to  generating  an  efficient  design  is  provided
below.
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Design
;alts(m1) = alt1, alt2, alt3
;alts(m2) = alt1, alt2, alt3
;alts(m3) = alt1, alt2, alt3
;alts(m4) = alt1, alt2, alt3
;alts(m5) = alt1, alt2, alt3
;rows = 16
;eff = M1(mnl,d,mean) + 2*M2(rppanel,d,mean) + 1.5*M3(ecpanel,d,mean) +
M4(rp,d,mean) + M5(ec,d,mean)
;rdraws=gauss(3)
;bdraws=gauss(3)
;rep=250

;model(M1):
U(Alt1) = SP1[-3.2] + b1[(n,-0.07,0.03)]*A[5,10,15,20] + b2[(n,1.2,0.2)]
*B[0,1,2,3] + b3[1.8]*C[0,1,2,3] + b4[-0.6]*D[1,0] /
U(Alt2) = SP2[-3.4] + b1*A                             + b2*B          
            + b3*C               + b4*D  

;model(M2):
U(Alt1) = SP1[-2.4] + b1[n,(n,-0.08,0.01),(u,0.02,0.04)]*A[5,10,15,20] +
b2[n,1.2,0.4]*B[0,1,2,3] + b3[1.2]*C[0,1,2,3] + b4[-0.7]*D[1,0]  /
U(Alt2) = SP2[-2.2] + b1*A                                             +
b2*B                     + b3*C               + b4*D

;model(M3):
U(Alt1) = SP1[-3] + b1[(n,-0.06,0.02)]*A[5,10,15,20] + b2[1]*B[0,1,2,3]+
b3[1.5]*C[0,1,2,3] + b4[-0.5]*D[1,0]  + EC[EC,(U,1,2)] /
U(Alt2) = SP2[-2.8] + b1*A                           + b2*B            +
b3*C                +b4*D             + EC 

;model(M4):
U(Alt1) = SP1[-3.2] + b1[n,(n,-0.02,0.01),(u,0.01,0.03)]*A[5,10,15,20] +
b2[n,1.4,0.3]*B[0,1,2,3] + b3[1]*C[0,1,2,3] + b4[-0.6]*D[1,0]  /
U(Alt2) = SP2[-3] + b1*A                                               +
b2*B                     + b3*C             + b4*D      

;model(m5):
U(Alt1)  =  SP1[-3.3]  +  b1[(n,-0.05,0.02)]*A[5,10,15,20]  +  b2[1.1]*B
[0,1,2,3]+ b3[1.2]*C[0,1,2,3] + b4[-0.4]*D[1,0]  + EC[EC,(U,1.5,2.5)] /
U(Alt2) = SP2[-3.2] + b1*A                             + b2*B          
   + b3*C               + b4*D             + EC 

$

Example output based on the above syntax  is  given in Figure 7.17.  Note that  the output  provided is
similar to that provided for non model average efficient designs, although Ngene now also reports  the
weights applied to the various model types in generating the design as  well as  the unweighted and
weighted efficiency measure values. 
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Figure 7.17: Model average output screen

The model averaging approach outlined here may also be used to examine different  possible  utility
specifications for the same model. For example,  the analyst  may be unsure as  to whether they will
use dummy or effects codes or not post data collection. In such a case,  the analyst  may utilize the
same  model  form  (e.g.,  MNL),  but  using  the  model  averaging  approach,  specify  linear  in  the
attributes  for  one  model  and  dummy  and/or  effects  codes  for  another  model.  For  example,  the
syntax  below  assumes  a  linear  in  the  attributes  specification  for  model  ‘M1”  but  a  nonlinear
specification  using  dummy  coding  for  model  ‘M2’.  Similarly,  one  can  use  the  same  process  to
average models with and without a no choice alternative if one is not sure what choice will be used in
the final experiment, or if a dual choice process will be used.
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Design
;alts(M1) = alt1, alt2, alt3
;alts(M2) = alt1, alt2, alt3
;rows = 20
;eff = M1(mnl,d,mean) + M2(mnl,d,mean)

;bdraws=halton(150)

;model(M1):
U(Alt1) = SP1[0.7] + b1[(n,-0.7,0.2)]*A[5,10,15,20] + b2[1.2]*B[0,1,2,3]
+ b3[1.8]*C[0,1,2,3] /
U(Alt2) = SP2[0.5] + b1*A                           + b2*B             
 + b3*C               

;model(M2):
U(Alt1)  =  SP1[1.2]  +  b1.dummy[(n,-0.7,0.2)|(n,0.4,0.2)|0.8]*A
[5,10,15,20] + b2[1.2]*B[0,1,2,3] + b3[1.8]*C[0,1,2,3] /
U(Alt2) = SP2[0.9] + b1*A                                              
 + b2*B               + b3*C               

$ 

7.5 Appendix 7A Discrete choice models

In this  section,  we outline the differences between the MNL, MMNL, and EC models.  We begin by
examining  different  conceptualizations  of  utility  specifications  that  result  in  each  of  the  different
model  formulations  before  discussing  how  these  utility  specifications  impact  upon  the  choice
probabilities and log-likelihood functions of each of the models. 

7.5.1 Utility specification

Let U
nsj

 denote the utility of alternative j perceived by respondent n in choice situation s.  U
nsj

 may be

partitioned into three separate components, an observed component of utility, V
nsj

, an unobserved (or

un-modeled) component  of utility,  η
nsj

,  and an unobserved (and un-modeled)  component,  ε
nsj

,  such

that

U
nsj

 = V
nsj

 + η
nsj

 + ε
nsj (7A.1)

The  observed  component  of  utility  is  typically  assumed  to  be  a  linear  relationship  of  observed
attribute levels  of each alternative,  x,  and their  corresponding  weights  (parameters),  β.  In  the  MNL
model,  the  parameter  weights  for  each  attribute  are  invariant  over  respondents,  such  that  the
observed component of utility may be represented as

(7A.2)
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Unlike the MNL model,  some or all  of the parameter weights  of  the  MMNL model  are  assumed  to
vary  with  density  f(β  |  Ω)  over  the  sampled  population.  Assumptions  as  to  how  these  parameter
weights vary over the population have in the past  resulted in two different  formulations of the MMNL
model.  One version of the model,  known as  the  cross  sectional  MMNL formulation,  assumes  that
the parameter weights vary with density  over both n and s  suggesting that  preference heterogeneity
exists  both within and between  individuals,  even  when  the  same  individual  is  observed  to  make  s
choices within a similar choice context. The second version of the model, known as the panel MMNL
formulation, assumes that  preferences vary  between individuals  but  not  within.  The assumption that
preferences vary  between and not  within respondents  accounts  for  the  pseudo  panel  nature  of  SP
data  (Ortúzar  and  Willumsen,  2001;  Revelt  and  Train,  1998;  Train,  2003).  Equations  (7A.3a)  and
(7A.3b)  represent  the  observed  components  of  utility  under  both  the  cross  sectional  and  panel
formulations of the MMNL model specifications. 

(7A.3a)

(7A.3b)

Like the MMNL model, the EC model involves estimation of one or more random parameters.  Unlike
the MMNL model however,  the random parameter  estimates  of  the  EC model  are  associated  with
alternatives,  j,  not  attributes,  x.  To estimate the model,  the  analyst  first  specifies  a  set  of  dummy
variables,  with  each  dummy  variable  able  to  appear  in  the  utility  specifications  of  up  to  J-1
alternatives.  Next,  generic  normally  distributed random parameters  with means normalised to  zero,
represented as   η

nsj
 in Equation (7A.1),  are estimated for each of the defined dummy variables.  By

associating  each   η
nsj

 with  different  subsets  of  alternatives,  the  parameters  (which  represent

standard deviations set around a mean of zero) capture different  common error variances associated
with  those  alternatives  for  which  they  are  estimated  for.  Note  that  utility  specifications  with
alternative specific constants and alternative specific error components will be equivalent  to a MMNL
model with normally distributed random constant terms. Also, as with the MMNL model,  the random
parameters of the EC model may be estimated with density  over both n and s  (cross  sectional EC
model) or only over n (panel EC model).

Assuming the analyst fails to specify  error components  as  part  of the utility  functions of the model,
then Equation (7A.1) will collapse to 

U
nsj

 = V
nsj

 + ε
nsj (7A.4)

which represents the most common form of utility representation within the literature.

Finally, for all logit type models, the second unobserved component of utility, ε
nsj

, are assumed to be

identically and independently extreme value type 1 (EV1) distributed. 
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7.5.2 Model probabilities

Depending  on  the  assumptions  made  about  the  utility  specifications  as  outlined  above,  different
functional forms of the logit  model will  be arrived  at.  We  now outline  in  turn  how the  assumptions
made about the different models influence the choice probabilities derived for each of the models. 

The MNL Model

The  choice  probabilities  of  the  MNL  model  are  derived  from  a  number  of  assumptions  about  the
choice behaviour of respondents.  In particular,  aside from the assumption that  ε

nsj  
are IID EV1,  the

MNL model assumes that  the marginal utilities  for the  attributes  and  variables  specified  within  the
system  of  utility  equations  are  fixed  for  the  sampled  population  and  that  η

nsj
 =  0.   Under  these

assumptions,  the probability,  P
nsj

,  that  respondent  n  chooses  alternative  j  in  choice  situation  s  is

given by

(7A.5)

MMNL and EC Models

Both the MMNL and EC models differ from the MNL model in that we now assume that (some of) the
parameters (or error components) are random, following a certain probability  distribution.  The choice
probabilities  of the MMNL model therefore depend on  the  random  parameters.  Both  models  utilize
the MNL probabilities given in Equation (7A.5),  however rather than calculate a single probability  for
each alternative, both models calculate the choice probabilities for each random draw taken from the
assumed probability  distribution(s).  In this  way,  multiple  choice  probabilities  are  obtained  for  each
alternative,  as  opposed to  a  single  set  of  probabilities  as  obtained  from  the  MNL  model.  It  is  the
expectation of these probabilities over the random draws which are calculated and used in the model
estimation process. The expected choice probabilities  for the MMNL logit  and EC models  are given
in Equations (7A.6a) and (7A.7b) respectively.

(7A.6a)

(7A.6b)

Equations (7A.6a) and (7A.6b) provide the choice probabilities  at  the level of the alternatives.  In the
cross sectional  formulations  of  the  MMNL and  EC models,  it  is  these  probabilities  that  are  used
directly  in  model  estimation.  In  the  panel  formulations  of  the  MMNL and  EC  models,  the  choice
probabilities  given  in  Equations  (7A.7a)  and  (7A.7b),  whilst  calculated,  are  not  of  direct  interest.
Rather, what are of interest are the probabilities of observing the sequence of choices made by each
respondent, not the probabilities that specific alternatives will be observed to be chosen. To this  end,

we define the probability  P
n
*  that  a certain respondent  n has  made  a  certain  sequence  of  choices

 with respect to the set of choice situations, S
n
, by
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(7A.7a)

(7A.7b)

for the MMNL and EC models respectively.

7.5.3 Model log-likelihood functions

Typically,  the parameters  β  contained  within  each  V
nsi

 are  unknown  and  must  be  estimated  from

data. Let y
nsj

 equal one if j is the chosen alternative in choice situation s shown to respondent  n,  and

zero otherwise. Then the parameters can be estimated by maximizing the likelihood function L,

(7A.8)

where N denotes  the total number of respondents  and  S
n
 is  the  set  of  choice  situations  faced  by

respondent n.

Rather  than  maximize  the  likelihood  function,  it  is  more  common  to  maximize  the  log  of  the
likelihood  function  instead.  This  is  because  taking  the  product  of  a  series  of  probabilities  will
typically produce values that are extremely small and which most  computing software packages will
be unable to adequately handle. By taking the logs of the probabilities first,  large negative values will
result,  which  when  multiplied,  produce  even  larger  negative  values.  As  such,  the  log-likelihood
function of the model, shown below, is typically preferred.  

(7A.9)

In  the  sections  that  follow,  we  attempt  to  differentiate  between  the  log-likelihood  functions  of  the
various models available in Ngene.

The MNL Model

In order to derive the log-likelihood function of the MNL model, an assumption is made that all  choice
observations  are  independent  of  each  other.  That  is,  even  in  data  where  the  same  individual  is
observed to make multiple choices, the log-likelihood function of the MNL model treats  the data as  if
the  observed  choices  have  been  made  by  separate  pseudo  individuals.  Using  the  mathematical

properties  ln(n
1
n

2
) = ln(n

1
)  +  ln(n

2
)  and  ,  and  applying  the  same  mathematical

rules  to choice tasks,  s,  and alternatives,  j,  this  independence  of  choice  observations  assumption
results in Equation (7A.9) being rewritten in the more commonly known form of



140 Ngene User Manual

© 2012 ChoiceMetrics

(7A.10)

The Log-likelihood function of the MNL model given in Equation (7A.10) will  be globally  concave  for
linear  in  the  parameters  utility  specifications  (see  McFadden  1974)  suggesting  that  there  should
exist a single set of parameter estimates that will maximise this function. 

Cross Sectional MMNL and EC Models

The log-likelihood functions of the cross sectional MMNL and EC models are derived under the same
assumptions  of  choice  observation  independence  as  made  with  the  MNL  model.  The  difference
between these two models and the MNL model however is  that  the choice probabilities  used for the
MNL  are  replaced  with  the  expected  choice  probabilities  given  in  Equations  (7A.6a)  and  (7A.6b).
Using the same mathematical rules used to derive the MNL model log-likelihood function,  and noting
additionally  that  E(n

1
n

2
) = E(n

1
)E(n

2
),  the log-likelihood functions of the cross sectional MMNL and

EC models may be represented as

(7A.11)

Panel MMNL and EC Models

The derivation of the log-likelihood functions of the panel formulations of the MMNL and EC models
differ to those of their equivalent cross sectional forms,  as  well as  to that  of the MNL model,  in that
the choice observations are no longer assumed to be independent  within each respondent  (although
the independence across respondents assumption is maintained). 

Mathematically,  this  means that  E(s
1
s

2
)  E(s

1
)E(s

2
),  and hence we are no longer able  to  invoke

the mathematical rule ln(s
1
s

2
) = ln(s

1
) + ln(s

2
).  Given this,  the  log-likelihood  functions  of  the  panel

MMNL and EC models may respectively be represented as

(7A.12a)

(7A.12a)

or

(7A.12c)

In the next section we outline the AVC matrices of each of the model types available in Ngene.
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7.5.4 Model variance-covariance matrices

The  generation  of  efficient  SC experiments  requires  first  an  estimation  of  the  AVC  matrix  of  the
design, Ω

N
.. The AVC matrix Ω

N
 can be determined as the inverse of the Fisher Information matrix,  I

N
,  which in turn can be computed using the second  derivatives  of  the  log-likelihood  function  of  the

discrete choice model to  be  estimated  (see  Train,  2003).  Mathematically,  the  AVC matrix  for  the
MNL may be represented as

(7A.13a)

whilst the AVC matrix of the MMNL and EC models becomes 

(7A.13b)

where E
N
(.) is  used to express the large sample population mean.  Hence,  the  AVC matrix  can  be

determined by calculating the Hessian matrix of the log-likelihood function for the specific model. 

As  was  seen  in  Appendix  7A.3,  different  discrete  choice  models  have  different  log-likelihood
functions. Given that  the AVC matrix  of a discrete choice model is  calculated as  the inverse of the
second derivatives  of the log-likelihood function of that  model,  it  is  clear  that  each  model  will  also
yield a different AVC matrix. In this section, we reproduce the second derivatives of the log-likelihood
functions for each of the models available in Ngene. 

The MNL Model

The second derivatives  of the log-likelihood function  of  the  MNL  depend  on  whether  the  parameter

estimates  are  generic  or  alternative  specific  (see  Bliemer  and  Rose,  2005b).  Let  x*
nsj

 and  x
nsj

represent  attributes  for  which  generic,  given  as  β*,  and  alternative  specific,  represented  by  β
j
,

parameters  are  to  be  estimated  for  respectively.  Assuming  that  all  respondents  face  the  same
choice situations,  s,  the  second  derivatives  of  the  MNL  log-likelihood  function  yields  the  following
expressions (see Rose and Bliemer, 2005b)

(7A.14a)

(7A.14b)
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(7A.14b)

Note  that  the  choice  index,  y
nsj

,  drops  out  of  the  second  derivatives  of  the  MNL  log-likelihood

function,  with  only  the  design,  x,  and  choice  probabilities  remaining.  Given  this  result,  it  is  not
necessary to know a prior what  alternatives  will  be chosen in the sample data in order to calculate
the  expected  AVC matrix  of  the  model.  All  the  analyst  requires  to  know  is  the  design,  and  the
choice probabilities.  Given that  the choice probabilities  are a function of  the  design  as  well  as  the
parameter estimates (see Equation (7A.5)), in generating an efficient  design,  the analyst  is  required
to make certain assumptions regarding the parameter estimates in advance.

Cross Sectional MMNL and EC Models

The AVC matrix  of the MMNL and EC models  are  somewhat  more  complicated  than  those  of  the
MNL  model  given  that  the  parameter  and  error  component  estimates  are  now  assume  to  be
randomly distributed. Let  M

k
 represent  a vector of parameters  related to the probability  distributions

of the k  (either random or error component) parameters, β
k
, denoted by Θ

k
 = [Θ

km
], where m = 1,  ...,

 M
k
. The second derivatives of this model is given as 

(7A.15)

Unfortunately,  unlike  the  MNL  model,  the  choice  index,  y
nsj

,  does  not  drop  out  when  taking  the

second  derivatives  of  the  log-likelihood  function  of  this  model.  Thus,  in  order  to  derive  Equation
(7A.15), we are forced to rely  on asymptotic  theory  and substitute E

N
(y

nsj
) = E(P

nsj
),  where E

N
(.) is

again  the  large  sample  mean.  In  this  way,  Equation  (7A.15)  becomes  equivalent  to  that  given  in
Sándor and Wedel (2002).

Panel MMNL and EC Models

Relative to the other models explored herein, the second derivatives  of the log-likelihood functions of
the panel MMNL and EC models are far more complex to compute as  a result  of the product  terms
resident in Equations (7A.12a) to (7A.12b). Nevertheless, such derivations are possible.  Bliemer and
Rose (2009) show that the second derivatives of Equation (7A.12c) is
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(7A.16)

where

(7A.17)

and

(7A.18)

and where  is the first derivative of the MNL probability,

(7A.19)

As with the cross sectional MMNL and EC models,  the choice index,   y
nsj

,  does not  drop out  when

taking the second derivatives of the log-likelihood function of this  model.  Nevertheless,  it  is  possible
once more to for the choice outcomes to be replaced by probabilities, since E

N
(y

nsj
) = P

nsj
  (y follows

a multinomial distribution).  However,  E
N
(P

N
*) cannot  be approximated that  easily,  as  it  describes  a

generalized  multinomial  distribution  (Beaulieu,  1991).  It  is  therefore  necessary,  unlike  for  designs
generated specifically for the MNL and cross sectional MMNL and EC models, to simulate a sample
based on the design x in order to calculate the second derivatives  of the model.  To do this,  for each
respondent  n,  we  first  draw a  random  parameter  β

k
 from  each  given  parameter  distribution,  then

determine the observed utility V
nsj

 for each choice situation s based on design x. Next  we separately

draw random values for the unobserved component  ε
nsj

 for each alternative in each choice situation,

and determine y
nsj

 by  selecting the alternative with the highest  utility  in each choice situation.  Note

that  the  same  random  draw  for  β
k

 is  used  over  all  choice  situations  for  each  respondent,

representing the panel formulation.
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7.6 Appendix 7B Steps in generating efficient stated choice
designs

Designs which attempt to minimise the elements contained within the AVC matrix  are referred to as
efficient  choice  designs.  We  now  go  on  to  discuss  the  generation  process  for  efficient  choice
designs.

Step 1: Specify the utility specification for the likely  final model to be estimated from data collected
using the SC design.  This  involves  determining  (i)  what  parameters  will  be  generic  and  alternative
specific;  (ii) whether attributes  will  enter the utility  function as  dummy/effects  codes or  some  other
format;  (iii) whether main  effects  only  or  interaction  terms  will  be  estimated;  (iv)  the  values  of  the
parameter  estimates  likely  to  be  obtained  once  the  model  is  estimated;  and  (v)  the  precise
econometric model that is likely to be estimated from data collected using the experimental design.
Points  (i)  to  (iii)  impact  directly  upon  the  design  matrix  X,  whereas  point  (iv)  influences  the  AVC
matrix via the choice probabilities and point (v) via the choice probabilities  as  well as  influencing the
dimensionality of the AVC matrix itself. 

Point  (iv)  represents  the  most  divisive  aspect  of  generating  efficient  choice  designs.  In  order  to
estimate the AVC matrix of a design, point  (iv) suggests  that  the analyst  is  required to have a priori
knowledge of the parameter estimates that will be achieved using the design, even though the design
has not yet been constructed. Fortunately, the analyst does not have to assume exact  knowledge of
these parameter priors  (e.g.,  the  price  parameter  will  be  -0.4),  but  can  use  Bayesian  methods  to
reflect  imperfect  knowledge of the exact  parameter value  (e.g.,  the  price  parameter  may  be  drawn
from a  normal  distribution  with  a  mean  of  -0.4  and  a  standard  deviation  of  0.2,  or  from  a  uniform
distribution  with  a  range  between  -1  and  zero;  see  for  example  Sándor  and  Wedel  2001).
Independent  of  how  the  priors  are  treated,  two  methods,  namely  numerically  by  simulation  or
analytical derivation (discussed in step 4) can be used to approximate the AVC matrix. 

Point (v), determining the econometric  model influences the AVC matrix  not  via the X matrix,  but  in
terms  of  the  parameter  estimates  represented  within  the  AVC  matrix.  For  example,  designs
assuming MNL will require only parameters related to each of the design attributes  whereas designs
generated for NL models will require consideration of the scale parameters  and designs constructed
for MMNL models  will  require elements  in the AVC to be associated with the standard deviation  or
spread parameters.  Given  interdependencies  between  the  values  that  populate  the  AVC matrix  of
discrete  choice  models,  one  cannot  simply  assume  that  a  design  that  minimises  the  elements
contained within the AVC for one model form will  necessarily  minimise the AVC matrix  for  another
model form. 

Step 2:  Randomly  populate the design matrix,  X,  to create an initial  design.  Unlike  OOD designs,
the  initial  design  need  not  be  orthogonal,  although  if  the  analyst  wishes  to  retain  orthogonally  it
should be. The initial design, however, should incorporate all  the constraints  that  the analyst  wishes
to impose upon the final design outcome. For example,  if the analyst  wishes to retain attribute level
balance,  then the initial design should display  this  property.  The  initial  design  can  be  constructed
with the desired number of rows, however the number of rows should be greater than or equal to K/(J
-1).  The  utility  specification  expressed  in  step  1  should  act  as  a  handy  guide  in  determining  the
minimum number of choice situations to use. Similarly,  step 1 should help determine the number of
columns that  make up the X matrix;  one for each attribute (or attribute level minus one in terms of
dummy or effects coded attributes). In constructing the X matrix, the precise levels that  will  likely  be
used later during estimation should be used.  That  is,  if an attribute is  likely  to be dummy coded in
estimation,  then  the  X  matrix  should  reflect  this.  Similarly,  if  a  quantitative  attribute  is  to  be
estimated exactly  as  shown to a respondent  during the survey (e.g.,  a price attribute takes  on  the
levels $2, $4 and $6), then these values should be used to populate the X  matrix.  Note that  different
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attributes  may take on different  coding  schemes.  Typically,  a  single  design  would  be  constructed
that  will  be applied to the entire sample population;  however,  multiple  designs  might  be  generated
corresponding  to  different  sub  segments  of  the  sampled  population  (see  e.g.,  Sándor  and  Wedel
2005 and Rose and Bliemer 2006).

Step 3:  For the design,  calculate the choice probabilities  for each alternative in the design.  For the
MNL  and  NL  models  calculating  the  choice  probabilities  is  relatively  straightforward  when  fixed
parameter priors are used (e.g., the price parameter is  -0.4).  When parameter priors  are drawn from
Bayesian  distributions,  the  analyst  is  required  to  take  a  number  of  draws  from  the  given  random
distributions  and  calculate  the  choice  probability  for  each  set  of  draws.  Unlike  the  estimation
process  of  the  MMNL  model,  the  average  probability  is  not  calculated,  but  rather  the  average
efficiency measure is used (as calculated in step 5). 

For  designs  assuming  a  MMNL,  EC or  probit  model  form,  draws  must  be  taken  using  the  same
procedures as when estimating the parameters in order to calculate the choice probabilities  at  each
draw.  When  draws  are  taken  from  a  Bayesian  distribution  for  such  models  however,  different
distributions  may  be  required  for  each  random  parameter  population  moment  (e.g.,  mean  and
standard deviation). Bliemer et  al.  (2008) examined the use of various types of draws when drawing
from Bayesian parameter distributions.  They conclude that  the  predominantly  employed  method  of
using  pseudo  Monte  Carlo  draws  is  unlikely  to  result  in  leading  to  truly  Bayesian  efficient  SC
designs  and  that  quasi  Monte  Carlo  methods  (e.g.,  using  Halton  or  Sobol  draws),  Modified  Latin
Hypercube Sampling, or polynomial cubature methods should be employed instead. 

Step 4:  Once the choice probabilities  have been calculated,  the next  step is  to construct  the  AVC
matrix  for the design.  Let  Ω

N
 denote the AVC matrix  given  a  sample  size  of  N  respondents  (each

facing S choice situations). This AVC matrix depends in general on the experimental design,  X,  the
parameter values, β, and the outcomes of the survey,  Y  =  [y

jsn
],  where y

jsn
 equals  one if respondent

n chooses alternative j in choice situation s and is zero otherwise.  Since the parameter values β are

unknown, prior parameter values  are used as best guesses for the true parameters. 

The AVC matrix  is  the negative inverse of the  expected  Fisher  Information  matrix  (e.g.,  see  Train,
2003), where the latter is equal to the second derivatives of the log-likelihood function:

(7B.1)

where l
N
(X,  Y,  β) is  the Fisher Information matrix  with N respondents,  and  L

N
(X,  Y,  )  is  the  log-

likelihood function in case of N respondents defined by

(7B.2)

This formulation holds for each model type (MNL, MMNL or EC), only the choice probabilities  P
jsn

(X,

 )  are  different.  There  are  two  ways  of  determining  the  AVC  matrix,  either  by  Monte  Carlo
simulation, or analytically. 

Most  researchers  have  relied  on  Monte  Carlo  simulation.  In  this  case,  a  sample  of  size  N  is
generated  and  parameters  are  estimated  based  on  simulated  choices  (by  simply  computing  the
observed utilities  using some  prior  parameter  estimates,  adding  random  draws  for  the  unobserved
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utilities,  and then determine the chosen alternative by  assuming  that  each  respondent  selects  the
alternative  with  the  highest  utility).  Such  an  estimation  also  provides  the  results  for  the  variance-
covariance  matrix.  This  procedure  is  repeated  a  large  number  of  times  and  the  average  variance-
covariance matrix gives the AVC matrix. 

Many have not  realized that  the AVC matrix  can be determined analytically,  as  suggested for MNL
models  with all  generic  parameters  by  McFadden (1974).  In this  case,  the second derivative  of  the
log-likelihood  function  in  Equation  (7B.2)  is  determined  and  evaluated  analytically.  A  potential
problem is, that the vector of outcomes, Y, is part of the log-likelihood function, the reason why most
researchers  perform Monte Carlo simulations.  However,  it  can be shown that  the outcomes Y  drop
out  when  taking  the  second  derivatives  in  case  of  the  MNL  model.  This  has  been  shown  by
McFadden  (1974)  for  models  with  all  generic  parameters,  and  in  Rose  and  Bliemer  (2005a)  for
models  with  alternative-specific  parameters,  or  a  combination.  Furthermore,  Bliemer  et  al.  (2009)
have also derived analytical expressions for the second derivatives  for the NL model.  The outcomes
Y do not drop out, but as shown Bliemer et al. (2009), they can be replaced with probabilities leading
to exactly  the same AVC matrix,  which has been confirmed by Monte Carlo  simulation  outcomes.
Although more tedious, the second derivatives can also be derived for the MMNL model and a similar
procedure holds  for removing the outcome vector Y.  Note that  the MMNL model will  always require
some  simulations,  as  the  parameters  are  assumed  to  be  random  and  therefore  expected
probabilities  need  to  be  approximated  using  simulation.  However,  these  simulations  have  no
connection with the simulations mentioned earlier for determining the AVC matrix.  To conclude,  Ω

N

can  be  determined  without  knowing  the  simulated  outcomes  Y,  hence,  the  dependency  on  Y
disappears in Equation (7B.1). 

Step 5: The next step is to evaluate the statistical efficiency of the design. Efficiency measures have
been proposed in the literature in order to calculate  an  efficiency  value  based  on  the  AVC matrix,
typically  expressed as in efficiency ‘error’  (i.e.,  a  measure  for  the  inefficiency).  The  objective  then
becomes to minimize this  efficiency error.  The most  widely  used measure is  called the D-error (not
to be confused  with  the  D-efficiency  measure  of  OOD designs  (equation  (7B.3)),  which  takes  the

determinant  of  the  AVC matrix  Ω
1
,  assuming  only  a  single  respondent10.  Other  measures  exist,

such  as  the  A-error,  which  takes  the  trace  (sum  of  the  diagonal  elements)  of  the  AVC  matrix.
However,  in  contrast  to  the  D-error,  the  A-error  is  sensitive  to  scaling  of  the  parameters  and
attributes, hence here only the D-error will be discussed.

The  D-errors  are  a  function  of  the  experimental  design  X and  the  prior  values  (or  prior  probability

distributions) , and can be mathematically formulated as:

(7B.3)

(7B.4)

(7B.5)

where K  is  the  number  of  parameters  to  be  estimated.  It  is  common  to  normalize  the  D-error  by
taking the power 1/K.  Within the literature,  designs which are optimized without  any information on

the  priors  (i.e.,  assuming  =0)  are  referred  to  as  D
z
–optimal  designs  (Equation  (7B.3),  whereas

designs optimized for specific fixed (non-zero) prior parameters are referred to as D
p
–optimal designs

(Equation (7B.4)). In (Bayesian) D
b
–optimal designs (Equation (7B.5)),  the priors   are assumed to

be random variables with a joint probability density function Φ(.) with given parameters Θ.
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Step 6: In step 2, we began with a random start design. The next stage in generating efficient  choice
designs is  to change  the  design(s)  and  repeat  steps  3  to  5  up  to  R  number  of  times,  each  time
recoding  the  designs  relative  level  of  statistical  efficiency.  By  changing  the  design  R  number  of
times,  the  analyst  is  in  effect  able  to  compare  the  efficiency  of  each  of  the  R  different  design
matrices. It is important to note that for only the smallest of designs will  it  be possible to search the

full enumeration of possible designs11. As  such,  it  is  common to turn to algorithms to determine as
many  different  designs  with  low efficiency  errors  as  possible.  A  number  of  algorithms  have  been
proposed  and  implemented  within  the  literature  for  determining  how  best  to  change  the  attribute
levels  in locating efficient  choice designs.  Primarily,  these consist  of row based and column based
algorithms. In a row based algorithm  choice situations are selected from a predefined candidate set
of choice situations (either a full  factorial  or  a  fractional  factorial)  in  each  iteration.  Column  based
algorithms  create a design by  selecting attribute levels  over all  choice situations for each  attribute.
Row based algorithms can easily  remove dominated choice situations from the canditure set  at  the
beginning (e.g., by applying some utility  balance criterion),  but  it  is  more difficult  to satisfy  attribute
level balance.  The opposite holds  for  column  based  algorithms,  in  which  attribute  level  balance  is
easy to satisfy,  but  finding  good  combinations  of  attribute  levels  in  each  choice  situation  is  more
difficult.  In general column based algorithms offer more flexibility  and can  deal  with  larger  designs,
but  in  some  cases  (e.g.,  for  unlabelled  designs  and  for  specific  designs  such  as  constrained
designs) row based algorithms are more suitable.

The Modified Federov algorithm  (Cook and Nachtsheim, 1980) is  the  most  widely  used  row based
algorithm. The algorithm first  constructs  a candidature set  of choice situations which may either be
the full  factorial (for small problems) or a fractional factorial (for large problems)  drawn  from  the  full
enumeration of choice situations possible for the problem. Next, a (attribute level balanced) design is
created by selecting choice situations from the candidature set, after which the efficiency error (e.g.,
D-error) is  computed for the design.  If this  design has a lower efficiency error than the current  best
design,  the design is  stored as  the  most  efficient  design  so  far,  and  one  continues  with  the  next
iteration repeating the whole process again.  The algorithm terminates  if all  possible combinations of
choice situations have been evaluated (which is in general not feasible), or after a predefined number
of iterations.

RSC (Relabeling,  Swapping  &  Cycling)  algorithms  (Huber  and  Zwerina,  1996;  Sándor  and  Wedel,
2001)  represent  the  predominant  column  based  algorithms  in  use  today.  Each  iteration  of  the
algorithm creates  different  columns for each attribute,  which together form a design.  This  design  is
evaluated and if it  has a lower efficiency  error  than  the  current  best  design,  then  it  is  stored.  The
columns are not created randomly, but are generated in a structured way using relabeling, swapping,
and  cycling  techniques.  Relabeling  involves  switching  all  the  attribute  levels  of  an  attribute.  For
example,  if  the  attribute  levels  1  and  3  are  relabeled,  then  a  column  containing  the  levels
(1,2,1,3,2,3)  will  become  (3,2,3,1,2,1).  Rather  than  switch  all  attribute  levels  within  an  attribute,
swapping involves switching only  a few attribute levels  within an attribute at  a time.  For example,  if
the attribute levels in the first  and fourth choice situation are swapped,  then (1,2,1,3,2,3) would now
become (3,2,1,1,2,3). Finally, cycling works  by  replacing all  attribute levels  in each choice situation
at the same time by replacing the first attribute level with the second level,  the second level with the
third, etc. Since this impacts all columns, cycling can only be performed if all attributes have exactly
the same sets  of feasible levels  (e.g.,  in case  all  variables  are  dummy  coded).  Note  that  it  is  not
necessary to use all three methods simultaneously,  such that  only  relabelling,  swapping or cycling,
or combinations thereof can be used. 
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8 Advanced Features in Generating Efficient Designs

So  far  we  discussed  orthogonal  designs  which  remain  the  mainstream  design  type  used  by
practitioners, and efficient designs that  have theoretical and practical advantages and are envisaged
to  be  used  more  and  more  by  practitioners.  In  this  section,  several  advanced  designs  will  be
discussed.  These designs are actually  special efficient  designs in which some of  the  assumptions
are relaxed to allow more flexibility  in the design,  or in which more constraints  are  added,  both  for
practical reasons.  It  is  important  to note that  the designs discussed in this  section are the  current
state-of-the-art  and  certainly  not  state-of-the-practice,  although  practitioners  may  be  highly
interested  in  these  advanced  designs.  We  note  that  there  still  remains  a  significant  amount  of
research to be done in this area.

8.1 Attribute level balance and fractional factorial designs

As  mentioned  in  Section  6.2.2,  most  designs  in  Ngene  default  to  the  property  of  attribute  level
balance,  meaning  that  for  each  attribute,  each  level  appears  an  equal  number  of  times  over  the
choice situations.  This  will  guarantee an even distribution of the levels,  such that  not  just  primarily
high or low levels are faced by  respondents.  However,  like orthogonality,  attribute level balance puts
another restriction on the design, such that some efficiency may be lost.  Letting go of attribute level
balance  typically  produces  more  efficient  designs,  although  in  practice  most  people  maintain
attribute level balance in their design as a desired property.

Ngene allows two methods to overcome the attribute level balance restriction in the types of designs
discussed  to  date.  We  briefly  discussed  the  first  method  in  Section  6.2.2.  This  involved  designs
where the number of rows specified is  greater  than  or  equal  to  K/(J-1),  but  such  that  they  do  not
allow for attribute level balance. An example of this is given in the following syntax where the number
of rows specified is eight, but attribute A is specified with three levels. 

Design
;alts = alt1, alt2
;eff=(mnl,d)
;rows = 8
;model:
U(alt1) = b1[-0.2] + b2[0.2] * A[0,1,2] + b3[-0.3] * B[0,1]     /
U(alt2) =            b2      * A        + b4[-0.4] * C[2,4,6,8] $

In this case, Ngene will generate a design but in doing so provide the following warning.
 
“Warning: One or more attributes will not have level balance with the number of  rows specified:  alt1.
a, alt2.a”

In such cases, Ngene will  generate a design while attempting to maintain attribute level balance as
much as possible. This is shown in Figure 8.1. When the number of attribute levels  specified is  less
than the number of rows,  Ngene will  ensure  that  each  attribute  level  appears  at  least  once  in  the
design. If the number of attribute levels for any given attribute exceeds the number of rows specified,
it  becomes impossible for Ngene to ensure that  each attribute level appears  at  least  once over  the
course of the design,  forcing Ngene to select  those levels  that  will  maximize  the  efficiency  criteria
selected.  The  following  utility  functions  demonstrate  this  idea  assuming  the  analyst  maintained  a
desire to generate the design in eight rows.
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;model:
U(alt1) = b1[-0.2] + b2[0.2] * A[0,1,2,3,4,5,6,7,8] + b3[-0.3] * B[0,1]
/
U(alt2) =            b2      * A           + b4[-0.4] * C[2,4,6,8]     
$

Figure 9.1: A non attribute level balanced design generated using Method 1

An alternative method for letting go of attribute level balance involves the user having to specify  how
many times each level needs to  occur  within  the  design,  by  indicating  a  minimum  and  maximum
number. This is done by specifying this  minimum and maximum in a range after the attribute levels
(using round brackets,  and a dash,  ‘-’,  for indicating a  range).  This  allows  more  flexibility  than  the
first method of letting go of attribute level balance by allowing the user to specify the number of times
an attribute level will appear (within some range) rather than have Ngene attempt to enforce attribute
level balance as much as is possible. Example syntax of this method is shown below.
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Design
;alts = alt1, alt2
;eff = (mnl,d)
;rows = 9
;model:
U(alt1) = b1[1.1] + b2[-0.2] * A[2,4,6](1-4,4,2-4)   + b3[0.8]* B[0,1,2]
/
U(alt2) =           b4[-0.3] * C[0,3,6](0-9,2-9,0-9) + b3     * B      
 $

In this example, a design will  be generated with nine choice situations,  where the levels  of attribute
‘A’ do not necessarily have to be attribute level balanced (i.e., each of the three levels  does not  have
to appear exactly three times). In fact, the first level (2) has to appear 1 to 4 times,  the second level
(4) exactly 4 times, and the third level (6) has to appear 2 to 4 times.  Attribute ‘C’ does not  put  any
restrictions on the number of times each attribute level  has  to  appear,  indicated  by  a  minimum  of
appearing not at all (0) to appearing in all choice situations (9). 

Figure 8.2 shows a  design  generated  using  the  above  syntax.  Although  not  always  the  case,  we
note that for designs with attributes with more than two levels, if the user allows non-end point  levels
to appear zero times (i.e.,  the minimum number of times the middle attribute  levels  are  allowed  to
appear is set at zero; e.g., 0-9) then typically the most efficient design will be one that  will  have only
the  two  end  point  levels.  As  stated  above,  this  need  not  be  the  case,  as  it  depends  upon  the
attribute levels and priors assumed in generating the design,  however our experience is  that  this  will
be the case in many instances.
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Figure 8.2: A non attribute level balanced design generated using Method 2

8.2 Constraints and fractional factorial designs

8.2.1 Constrained designs

Sometimes  certain  combinations  of  attribute  levels  in  a  choice  situation  are  not  feasible.  These
infeasible choice situations need to be avoided by adding constraints. 

Level  constrained  designs  are  most  apparent  in  applications  in  health  economics.  For  example,
consider  two  alternatives,  treating  and  not  treating  a  patient.  Then  the  attribute  ‘age  of  death’  in
these alternatives should be such that in each choice situation this  age for the treating alternative is
never lower than the non-treating alternative, and the attribute ‘current age’ cannot be higher than the
‘age of death’.  In transportation,  one could think  of route alternatives  with different  departure  times,
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free-flow travel times,  and arrival times.  Clearly,  the arrival times should be later than the  departure
times,  and the difference between the arrival and departure time should be greater than or equal  to
the free-flow travel time. 

There  are  different  ways  of  including  these  constraints.  A  straightforward  way,  implemented  in
Ngene, is using an extended version of the modified Federov algorithm. After having determined the
candidate set,  choice situations that  do not  satisfy  the constraints  are removed from this  set.  This
ensures that all designs generated from this candidate set will be feasible. 

Note that it may be hard or even impossible to find an attribute level balanced design satisfying the
constraints, especially when the constraints impose many restrictions. Also note that in theory  RSC
algorithms can also be used, but that after each relabeling, swapping, or cycling all choice situations
need to be checked for feasibility.  Ensuring that  all  choice situations are feasible could be difficult,
hence RSC algorithms may not be suitable.

8.2.2 Constrained designs in Ngene

In order to avoid designs with choice situations that are not  feasible,  Ngene allows constraints  to be
put  on  the  attribute  levels.  Constraints  can  be  included  by  specifying  conditions  for  the  attribute
levels.  The  cond  property  can  be  used  to  include  these  conditions,  which  are  basically  if-then
statements.

A first  type of constraint  is  called ‘nesting’.  If  a  specific  attribute  has  a  certain  level,  then  another
attribute has to have a certain level as well (or perhaps is limited to a set of levels). For example,

;cond:
if(alt1.A = 0, alt2.B = 1) ,
if(alt1.A = [1,2], alt2.B = [2,3])

Each  line  contains  a  condition,  and  the  conditions  are  separated  with  a  comma,  ‘,’.  The  first
condition  states  that  if  the  attribute  level  of  attribute  ‘A’  of  alternative  ‘alt1’  equals  zero,  than  the
attribute level of attribute ‘B’ of alternative ‘alt2’ should be equal to one.  The second condition states
that  if  the  level  of  attribute  ‘A’  in  alternative  ‘alt1’  is  either  one  or  two,  than  the  allowed  levels  of
attribute ‘B’ in alternative ‘alt2’ are  two  or  three.  Note  that  nesting  will  overrule  the  attribute  levels
(and also possible ranges) defined in the model property.

Besides nesting constraints,  more general constraints  can be included in the cond property.  Some
examples are:

;cond:
if(alt1.A + alt1.B > alt1.C, alt2.A = alt1.A) ,
if(alt1.A = alt2.A and alt1.B < 3, alt2.B = [2,3]) ,
if(alt1.A <> alt2.A or alt1.A = 0, alt2.A > 3)

Note that the operations ‘=’ (equal to), ‘>’ (greater than),  ‘<’ (less  than),  ‘<=” (less  than or equal to),
‘>=” (greater than or equal to),  ‘<>’ (not  equal to),  ‘and’ (logical and),  ‘or’ (logical or) can be used in
order to make logical expressions. This offers great flexibility in dealing with almost any constraints.

Important to keep in mind is  that  if the constraints  are too strong,  Ngene may not  be able to find a
design that satisfies all constraints. Furthermore, it is very difficult (and often even impossible) to find
an attribute level balanced design when constraints  are  specified,  such  that  Ngene  aims  to  find  a
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design that is as much attribute level balanced as possible. Note that in case of nesting constraints,
only  the  nested  attributes  will  not  be  attribute  level  balanced  (such  as  ‘alt2.B’  in  the  example
mentioned  above);  all  other  attribute  will  be.  Also  note  that  the  cond  property  will  only  work  if  a
swapping algorithm is used. It will not work for example if a Modified Federov algorithm is  applied to
the design.

A  further  complication  can  arise  if  a  large  number  of  attributes  are  'related'  through  multiple
conditions that  'overlap'.  Ngene will  attempt to generate a full  factorial  of  all  combinations  of  levels
from the related attributes  that  do not  violate the conditions.  This  can lead to memory  problems.  A
warning  will  be  provided  if  this  problem  is  likely  to  occur.  The  solution  is  to  add  to  the  comma
separated list in the cond property  the following:  fractional=X%.  A sufficiently  low value of X will

solve the memory problem, although several attempts may be required to find a suitable value.

A fully complete example of syntax employing two constraints is shown below.

Design
;alts = A, B, C
;rows = 24
;eff = (mnl, d) 
;cond: 
if(a.att1=2, b.att1=[4,6]),   
if(a.att2<3, b.att2=[3,5])
;model:
U(A) = A0[-0.1] + G1[-0.4] * att1[2,4,6]  + G2[-0.3] * att2[1,3,5] + A1
[0.7]  * att3[2.5,3,3.5]  + A2[0.6]  * att4[4,6,8] /
U(B) = B0[-0.2] + G1       * att1         + G2       * att2        + B1
[-0.4] * att7[2.5,4,5.5]  + B2[0.7]  * att8[4,6,8] $

A screenshot  of an example design  generated  using  the  above  syntax  is  given  in  Figure  8.3.  We
leave it  to the reader to verify  that  the conditions specified have actually  been meet  as  well  as  the
degree of attribute  level  balance  of  the  design  shown  (a  good  starting  point  would  be  to  examine
attribute b.att2).
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Figure 8.3: Example design with constraints 

Similar  to  the  cond  property,  users  may  use  the  require  property  to  force  certain  attribute  level
combinations  to  be  present  within  the  design  within  all  choice  situations.  The  require  property
constructs a set of candidate choice situations that meet some criteria in terms of the attribute level
combinations allowed within each choice situation.  All  other choice situations that  do not  meet  the
required choice criteria are then  rejected  from  the  design.  Note  that  this  method,  unlike  the  cond
property, cannot be used in conjunction with any form of swapping algorithm but  rather requires  use
of the  Modified  Federov algorithm  or  factorial  design.  Note  also  that  the  require  property  will  also
likely  not  display  the  attribute  level  balance  property  for  the  generated  design  unless  the  user
specifically restricts the number of times each level appears within the design in a manner similar to
that discussed in Section 8.1. However, a combination of these restrictions may result  in an inability
to locate a design, or even if a design can be located, the efficiency level of the design is  likely  to be
poor. 

An example of the require property  is  shown below. In this  property,  the  design  would  require  that
attribute  a.att1  be  greater  than  or  equal  to  that  of  attribute  b.att1  for  all  choice  situations  in  the
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design.

;require:
a.att1 >= b.att1

Note that the operations ‘=’ (equal to), ‘>’ (greater than),  ‘<’ (less  than),  ‘<=” (less  than or equal to),
‘>=” (greater than or equal to),  ‘<>’ (not  equal to),  ‘and’ (logical and),  ‘or’ (logical or) can be used in
order to make logical expressions, as per the cond property. Note also that unlike the cond property,
the require property does not use if statements. 

Design
;alts = A, B, C
;rows = 24
;eff = (mnl, d) 
;alg = mfederov
;require:
a.att1 >= b.att1
;model:
U(A) =  A0[-0.1] + G1[-0.4] * att1[2,4,6]  + G2[-0.3] * att2[1,3,5] + A1
[0.7]  * att3[2,3,4] /
U(B) =  B0[-0.2] + G1       * att1         + G2       * att2        + B1
[-0.4] * att7[3,4,5] $

In  addition  to  using  the  cond  and  require  properties,  Ngene  also  allows  users  to  use  the  reject
property to force attribute level constraints within a design. Whereas the cond and require properties
force the attributes  within the design to meet  certain criteria,  the reject  property  disallows a design
from  having  choice  situations  in  which  the  attributes  can  take  on  certain  combinations  of  levels.
Unlike the cond property, but as with the require property, the reject property  does not  allow the use
if statements.

;reject:
a.att1 > a.att2

Example syntax  using the reject  property  is  given below. Figure 8.4 provides a screen capture of a
design generated  using  this  syntax,  demonstrating  that  the  attribute  levels  of  the  design  met  the
required restrictions set.

Design
;alts = Alt1, Alt2
;rows = 6
;eff = (mnl, d)
;alg = mfederov
;reject:
Alt1.X1 > Alt2.X3
;model:
U(Alt1)  =  b1[-0.2]  +  b2[0.3]  *  X1[2,4,6](1-3,1-3,1-3)  +  b3[0.4]  *  X2
[1,3,5](1-3,1-3,1-3) /
U(Alt2) =            b2      * X3[2,4,6](1-3,1-3,1-3) + b4[0.3] * X4
[1,2,3](1-3,1-3,1-3) $
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Figure 8.4: Example design with constraints using the reject property

8.3 Reference or pivot (customized) designs

8.3.1 Pivot designs

So far we have assumed that all respondents face the same choice situations.  From a cognitive and
contextual  point  of  view,  this  may  not  be  optimal.  The  use  of  a  respondent’s  knowledge  base  to
derive the attribute levels of the experiment has come about in recognition of a number of supporting
theories  in  behavioral  and  cognitive  psychology,  and  economics,  such  as  prospect  theory,  case-
based decisions theory  and minimum-regret  theory.  This  leads to the notion  of  so-called  reference
alternatives, which may be different for each respondent. As Starmer (2000,  p.  353) remarks:  “While
some  economists  might  be  tempted  to  think  that  questions  about  how  reference  points  are
determined sound more like psychological than economic  issues,  recent  research  is  showing  that
understanding  the  role  of  reference  points  may  be  an  important  step  in  explaining  real  economic
behavior in the field.” Reference alternatives  in stated choice experiments  act  to frame the decision
context  of the choice task  within some existing memory  schema of the individual respondents  and
hence make preference-revelation more meaningful at the level of the individual.

In a pivot design the attribute levels shown to the respondents are pivoted from reference alternatives
of  each  respondent.  In  Table  8.1  an  example  is  shown,  where  for  compactness  only  the  first
alternative  is  presented.  The  actual  underlying  design  is  shown  in  grey,  where  the  attributes  are
either a relative pivot  (as  in the travel time),  or an absolute pivot  (as  in  the  toll  cost).  The  attribute
levels  shown  in  the  stated  choice  experiment  are  based  on  the  reference  alternative  of  the
respondents.  For example,  suppose that  respondent  1  has  answered  in  an  earlier  question  in  the
survey that  he or she currently  has a travel time of 10 minutes  and pays $2 toll,  then  the  attribute
levels for the first  alternative in the first  choice situation will  be determined as  10-1 = 9 minutes  (10
percent less travel time),  and a toll  cost  of 2+2 = $4 ($2 extra).  Therefore,  this  choice situation will
be different  from the choice situation presented to respondent  2 (facing a travel time of  27  minutes
and a toll of $5 for the first alternative in the first choice situation). 
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Table 8.1: Designs pivoted from a reference alternative

Hence,  instead of creating a design with  the  actual  attribute  levels,  a  pivot  design  is  created  with
relative or absolute deviations from references.  Suppose  that  a  single  pivot  design  is  created.  The
efficiency  of  this  design  depends  on  the  references  of  the  respondents,  as  these  determine  the
actual attribute levels in the choice situations and therefore the AVC matrix. However, in advance the
references of the respondents  are typically  not  available.  Rose et  al.  (2008) have compared several
different approaches for finding efficient pivot designs:

(a) Use the population average as the reference (yields a single design);
(b) Segment the population based on a finite set of different references (yields multiple designs);
(c) Determine an efficient design on the fly (yields a separate design for each respondent); and
(d) Use a two-stage process in which the references are captured in the first stage and the design is

created in the second stage (yields a single design).

Intuitively,  approach (a) should give the lowest  efficiency (individual reference alternatives  may differ
widely  from  those  assumed  in  generating  the  design),  while  the  last  approach  should  yield  the
highest  efficiency (likely  to  produce  truly  efficient  data).  This  was  also  the  outcome  of  the  study.
Approach (a) worked relatively well, and approach (b) only  performed marginally  better.  Approach (c)
and  (d)  performed  best.  The  outcomes  were  also  compared  with  an  orthogonal  design,  which
performed  poorly.  Pivot  designs  for  approaches  (a)  and  (b)  are  relatively  easy  to  generate,  for
approaches (c) and (d) more effort  is  needed.  Approach (c) requires  a CAPI or internet  survey,  and
an efficient  design is  generated while the respondent  is  answering other questions.  Approach (d) is
sensitive  to  drop-outs,  as  the  design  will  only  be  optimal  if  all  respondents  in  the  second  stage
participate again in the survey.

8.3.2 Pivot designs in Ngene

Instead of a traditional no-choice alternative, one may want to generate a design with a reference (or
status-quo) alternative. Similar to the traditional no-choice alternative,  the reference alternative has a
fixed  utility  across  choice  situations  (at  least  fixed  within  all  choice  situations  for  a  single
respondent).  However,  unlike  the  traditional  no-choice  alternative,  the  attribute  levels  of  the
alternative need not be absent and hence the utility  need not  be equal to zero.  Figure 8.5 shows an
example  of  a  SC  questionnaire  involving  a  reference  alternative,  where  the  attributes  of  the  first
alternative are non-zero and fixed across choice situations. 
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Figure 8.5: Example choice situations based on a pivot design

In the simplest  case,  where all  respondents  observe the  same  reference  or  status  quo  alternative,
Ngene is able to construct pivot style designs quite easily  via the utility  specifications of the model.
For example, the attribute levels  of the reference alternative can be assigned a single attribute level
rather than multiple levels as in 

b2[-0.1] * B[5]
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Next,  the  attribute  levels  of  the  non-reference  alternatives  can  then  be  chosen  so  that  they  vary
either by some absolute value from the reference alternative, or by some percentage.  For example,  if
the  non-reference  alternative  levels  are  to  vary  by  0%  and  ±25%  from  the  reference  level,  then
assuming the reference level is  5 (as  above),  then the levels  3.75,  5 and 6.25 could be assigned to
the common attribute of the non-reference alternative.  The syntax  below demonstrates  this  concept
with the attribute A1 varying by  fixed amounts  of -1,  0 and 1 around the reference attribute A (=  2)
and attribute B1 varying by -25%, 0% and 25% around the reference attribute B (=5).

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b1[0.6] * A[2]      + b2[-0.1] * B[5] /
U(alt2) = b1      * A1[1,2,3] + b2 * B1[3.75,5,6.25] /
U(alt3) = b1      * A1[1,2,3] + b2 * B1[3.75,5,6.25] $

Figure 8.6: Example pivot design assuming everyone observes the same reference
alternative (method 1)

Rather than having to calculate the attribute levels  of the non-reference alternatives  manually  (e.g.,  -
25% of 5 is 3.75) and insert these as the attribute levels of the non-reference alternatives, Ngene has
available syntax  that  will  automatically  do this  for you.  This  first  requires  the  user  to  specify  what
attributes represent a reference attribute and which represent  those which should be pivoted around
the reference attribute. This is handled by adding either the suffix .ref or .piv after an attributes  name.
For example B.ref is used to specify attribute ‘B’ as a reference alternative,  whereas B.piv  would

be used to specify the same attribute (but  for another alternative) as  an attribute that  will  be pivoted
around  the  previously  specified  reference  attribute.  In  specifying  the  reference  alternative,  only  a
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single attribute level is required. (e.g., B.ref[5]). For the pivoted attribute, the analyst  may specify

either absolute pivot  levels  or percentage pivot  levels.  For  absolute  pivot  levels,  the  analyst  simply
places the levels, + or -, that are to be pivoted around the reference attribute (e.g.,  B.piv[-2,0,1]

).  For pivoted attributes  which are to be a percentage change from the reference attribute level,  the
analyst  simply  specifies  the percentages,  + or -,  that  are required (e.g.,  B.piv[-25%,0%,25%]).

Example  syntax  showing  the  use  of  both  absolute  and  percentage  change  pivot  levels  is  given
below. 

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b1[0.6] * A.ref[2]         + b2[-0.1] * B.ref[5]           /
U(alt2) = b1         * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1         * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] $

Figure 8.7 provides example output produced using the above syntax.  Note that  the output  differs  to
that  shown  previously,  in  that  the  actual  levels  for  the  non-reference  attributes  are  not  given,  but
rather  the  absolute  or  percentage  changes.  This  may  be  useful  where  the  attribute  levels  of  the
reference alternative are not fixed over respondents,  but  in generating the design a ‘sample average’
is  assumed  to  generate  a  design  that  will  be  applied  to  all  individuals  irrespective  of  their  real
reference alternative.

Figure 8.7: Example pivot design assuming everyone observes the same reference
alternative (method 2)

The  above  two  methods  generate  designs  assuming  all  respondents  have  the  same  reference
alternative  in  terms  of  the  attribute  levels  shown.  In  many  cases,  different  respondents  will  have
reference  alternatives  with  different  attribute  levels.  In  Ngene,  the  analyst  is  able  to  generate  i)  a
single design that  can  be  applied  to  different  respondent  segments,  despite  the  segments  having
different attribute levels for their reference alternatives,  or ii) different  designs for different  respondent
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segments based on the fact the different segments  face attributes  with different  reference attributes.
We  call  the  first  type  of  design  a  ‘homogenous  pivot  design’  and  the  second  type  of  design  a
‘heterogeneous  pivot  design’.  Both  types  of  designs  require  additional  syntax  to  generate  the
required design. 

To demonstrate the  syntax  requirements  for  these  two  types  of  pivot  designs,  assume  that  there
exist  three different  respondent  segments.  To generate both homogenous  and  heterogeneous  pivot
designs,  syntax  for  the  utility  specifications  is  employed  similar  that  used  to  generate  model
averaging designs as  described in Section 7.4.   That  is,  separate utility  specifications  are  required
for  each  data  segment.  For  example,  assuming  three  segments,  small,  medium  and  large,  the
following utility specifications might be used.  Note that  as  with the model averaging approach,  each
segment must be given a unique name, and that  the last  utility  specification for all  but  the last  data
segment does not end in a / or $.

;model(small):
U(alt1) = b1[0.6] * A.ref[2]      + b2[-0.1] * B.ref[5]           /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] 

;model(Medium):
U(alt1) = b1[0.6] * A.ref[4]      + b2[-0.1] * B.ref[10]          /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] 

;model(Large):
U(alt1) = b1[0.6] * A.ref[6]      + b2[-0.1] * B.ref[15]          /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] $

Next the user is required to use the fisher property to specify  i) homogenous or heterogeneous pivot
designs is required,  and ii) how much weight  each data segment  should be given in calculating the
overall  Fisher Information  matrix  (and  hence  AVC matrix)  of  the  design.  In  generating  the  design,
only a single Fisher Information matrix  (and hence AVC matrix) is  constructed to represent  the fact
that the data segments are to be combined into a single data set post data collection.  If the different
segments  are  to  be  treated  separately  in  data  estimation,  then  separate  designs  should  be
generated as shown at the beginning of this section. 

The fisher property requires several items of information in order to function properly. Firstly, the user
is required to give the Fisher Information matrix  a name (n.b.,  any name can be used).  Next,  in the
case of a homogenous pivot designs, the user is required to provide a name for the design that  is  to
be generated. In the case of heterogeneous pivot design, separate names must  be provided for each
data  segment  specific  design  required.  In  either  design  type,  the  user  may  use  any  name  to
designate the designs. Finally, the analyst is required to specify the weights that each segment is to
have in calculating the Fisher Information matrix in generating the designs. 

In order to generate a homogenous pivot  design,  each  segment  name  is  associated  with  a  single
design, separated by commas. This is done by placing all  segment  names and attached weights  in
round brackets after the design name. This is shown below for up to k  data segments. 

;fisher(<Fisher Information matrix name>) = <design name>(<model 1 name>
[<model  1  weight>],  <model  2  name>[<model  2  weight>],  ...,  <model  k
name>[<model k weight>])
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In  specifying  the  segment  weights,  the  model  names  must  be  those  provided  in  the  utility
specifications. Also, it is important to note that the weights must sum to one.  Thus,  given the above
system of utility functions, the fisher property might look something like

;fisher(fish) = design1(small[0.33], medium[0.33], large[0.34])

In the above syntax, we have called the Fisher Information matrix  ‘fish’ and the design ‘design1’.  All
designs have been associated with design1 as they are included in the round brackets  linked to this
design.  For  the  first  segment,  represented  by  the  utility  specifications  given  in  the  ‘small’  model
segment,  we have assigned the segment  a 0.33 weight  in calculating the overall  Fisher Information
matrix. Similarly, we have applied the same weight to the second data segment ‘medium’. In order to
make the weights sum to one, we have assigned a weight of 0.34 to the last data segment, ‘large’.

To construct a heterogeneous pivot design, the different  model data segments  are linked to designs
with different names. Rather than separate the different model data segments with a comma, + signs
are used. This is shown below.

;fisher(<Fisher Information matrix name>) = <design name>(<model 1 name>
[<model 1 weight>]) + <model 2 name>([<model 2 weight>]) + ... + <model
k name>([<model k weight>])

An  example  fisher  property  for  generating  a  heterogeneous  pivot  design  for  our  three  segment
example is given below.

;fisher(Fish)  =  des1(small[0.33])  +  des2(medium[0.33])  +  des3(large
[0.34])

In the above syntax, the small model data segment  is  linked to a design which we have designated
‘des1’,  whereas the medium and large model data segments  are linked to  different  designs,  ‘des2’
and  ‘des3’  respectively.  As  such,  different  designs  will  be  generated  for  each  of  the  model  data
segments. As per the homogenous pivot designs, each model data segment must  be given a weight
in calculating the overall design Fisher Information matrix.

Note that it is also possible to generate designs which both specify  that  different  data segments  be
generated  with  both  homogenous  and  heterogeneous  pivot  designs  over  different  subsets  of  data
segments, as in

;fisher(Fish) = des1(small[0.33]) + des2(medium[0.33], large[0.34])

In addition to the fisher property, additional syntax is required for the efficiency measure. Rather than
optimize on a single Fisher Information matrix  (the inverse of the AVC matrix),  the design is  now to
be optimized based on the weighted average Fisher Information matrix  named in the fisher property.
To handle this,  the name  of  the  Fisher  Information  matrix  is  added  to  the  eff  property,  much  like
different  models  are  added  to  the  eff  property  in  the  model  averaging  process.  For  the  above
example, the eff property would look as follows.

;eff = fish(mnl,d)

Although we show a design specifically generated for an MNL model, the pivot design syntax  can be
applied to any model type available in Ngene.  The complete syntax  for a homogeneous pivot  design
is given below. 
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Design
;alts(small)  = alt1, alt2, alt3
;alts(medium) = alt1, alt2, alt3
;alts(large)  = alt1, alt2, alt3
;rows = 12
;eff = fish(mnl,d)
;fisher(fish) = design1(small[0.33], medium[0.33], large[0.34])

;model(small):
U(alt1) = b1[0.6] * A.ref[2]      + b2[-0.1] * B.ref[5]           /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] 

;model(Medium):
U(alt1) = b1[0.6] * A.ref[4]      + b2[-0.1] * B.ref[10]          /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] 

;model(Large):
U(alt1) = b1[0.6] * A.ref[6]      + b2[-0.1] * B.ref[15]          /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] $

Figure 8.8 shows output  generated for the above syntax.  From the output  screen,  it  can be  clearly
seen that  despite the reference alternatives  taking on different  attribute levels,  the design itself  has
been constrained to be the same  across  each  segment.  Although  not  shown,  the  analyst  is  also
able to examine the design properties  as  related to each data segment  by  clicking on  the  relevant
click boxes located on the left of the output screen.
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Figure 8.8: Homogeneous pivot design output screen

For the same data segments, the following syntax will generate a heterogeneous design. 
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Design
;alts(small)  = alt1, alt2, alt3
;alts(medium) = alt1, alt2, alt3
;alts(large)  = alt1, alt2, alt3
;rows = 12
;eff = fish(mnl,d)
;fisher(Fish)  =  des1(small[0.33])  +  des2(medium[0.33])  +  des3(large
[0.34])

;model(small):
U(alt1) = b1[0.6] * A.ref[2]      + b2[-0.1] * B.ref[5]           /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] 

;model(Medium):
U(alt1) = b1[0.6] * A.ref[4]      + b2[-0.1] * B.ref[10]          /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] 

;model(Large):
U(alt1) = b1[0.6] * A.ref[6]      + b2[-0.1] * B.ref[15]          /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] $

Output  generated  using  the  above  syntax  is  shown  in  Figure  8.9.  Examination  of  the  output
demonstrates  that  the  non-reference  alternatives  are  indeed  different  across  the  different  data
segments, meaning that each data segment has its own unique design. 
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Figure 8.9: Heterogeneous pivot design output screen

The optimization process for generating pivot  designs requires  that  each  data  segment  be  given  a
weight in calculating the overall design Fisher Information matrix.  The previous syntax  assumed that
the  analyst  knew a  priori  the  proportions  that  each  segment  will  appear  within  the  sample.  It  is
possible  however  to  not  only  optimize  the  efficiency  of  a  design,  but  also  simultaneously  the
proportions of various segments  that  should be exposed to  the  design.  As  described  in  Rose  and
Bliemer (2006), the optimization routine first  generates  a random design (using whatever algorithm),
and then searches over different  segment  proportions to determine if the overall  efficiency level  can
be improved.  If the efficiency level cannot  be improved  beyond  the  current  best  level,  then  another
design is then examined. 

This is handled in the weighting section of the fisher property.  Rather than assign a single weight  to
each data segment, the analyst may specify a range of weights.  This  is  done by separating a lower
weight bound from an upper weight  bound by a colon.  For example,  the syntax  small[0.1:0.6]
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will allow the small data segment to have a weight anywhere between 0.1 and 0.6 in the optimization
of the overall  design Fisher Information matrix.  Note that  for this  to work,  the  upper  weight  bounds
provided must sum to one or more. Note also, that this function may be applied to both homogenous
and heterogeneous pivot designs. Example syntax for this is given below.

Design
;alts(small)  = alt1, alt2, alt3
;alts(medium) = alt1, alt2, alt3
;alts(large)  = alt1, alt2, alt3

;rows = 12
;eff = Fish(mnl,d)
;fisher(Fish)  =  des1(small[0.1:0.6])  +  des2(medium[0.1:0.6],  large
[0.1:0.6])
;model(small):
U(alt1) = b1[0.6] * A.ref[2]      + b2[-0.1] * B.ref[5]           /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] 

;model(Medium):
U(alt1) = b1[0.6] * A.ref[4]      + b2[-0.1] * B.ref[10]          /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] 

;model(Large):
U(alt1) = b1[0.6] * A.ref[6]      + b2[-0.1] * B.ref[15]          /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] $

Figure  8.10  shows  design  generated  using  the  above  syntax.  Based  on  this  design,  the  output
suggests that the most efficient results will be obtained if the first segment is represented by  10% of
the final sample, whereas the remaining two segments should make up 45.5% and 44.5% of the final
sample.  In this  way,  if there exists  only  enough budget  to collect  data from 200 respondents,  then
20 respondents should be sampled from segment 1 (i.e., the ‘small’ segment), 91 from segment 2 (i.
e., the ‘medium’ segment), and the remaining 89 from segment 3 (i.e., the ‘large’ segment). 
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Figure 8.10: Heterogeneous pivot design output screen

8.4 Including covariates in generating efficient designs

8.4.1 Designs with covariates

Including covariates (e.g., socio-economic data such as  income, gender,  car-ownership,  etc.) in the
model  estimation  may  result  in  loss  of  efficiency  when  the  design  was  generated  ignoring  these
covariates. So far, only attributes have been considered in the model specification,  but  it  is  common
to  include  covariates  in  the  estimation  process.  Analysts  should  primarily  be  interested  in  the
efficiency of the SC data collected rather than being concerned about the efficiency of the underlying
SC design. Designs should be constructing in a manner that will reflect the final data to be collected,
including any possible covariates. 

Rose and Bliemer (2006) demonstrate how efficient SC experiments  may be constructed to account
for  covariates,  and  how  minimum  quotas  may  be  established  in  order  to  retain  a  fixed  level  of
efficiency.  The  procedures  for  doing  this  are  not  much  different  for  constructing  efficient  designs
without considering any covariates. Assuming categorical covariates (or continuous covariates coded
categorically),  it  is  possible  to  calculate  the  AVC matrix  for  a  SC study  by  constructing  a  set  of
segments  based on combinations  of  covariates,  and  assigning  to  each  segment  one  or  more  SC
designs. If multiple covariates are to be analyzed, the analyst may wish to construct a full factorial or
fractional  factorial  of  the  possible  combinations  formed  by  the  covariates  and  assign  to  each  the
generated design.  Next  the analyst  may generate segment  specific  efficient  designs  that  minimize
the AVC matrix for the pooled data. Procedures similar to those discussed here may be used to do
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this, however, rather than having one design,  the analyst  now has to deal with multiple ‘stacked’ or
pooled designs. 

Figure 8.11 shows two different designs; the one on the left generated without a gender covariate and
the  one  on  the  right  with.  Below each  of  the  design  are  the  AVC  matrices  for  the  two  designs
assuming that  gender either is  or is  not  included in the model utility  function during  the  estimation
process.  Examination  of  the  different  AVC  matrices  highlights  the  fact  that  an  efficient  design
generated  without  accounting  for  possible  covariates  may  potentially  lose  efficiency  when  the
covariate is included in the estimation process.  This  is  because any covariate will  impact  upon the 
choice probabilities of the design and hence will impact upon the elements contained within the AVC
matrix. 

Figure 8.11: Comparison of efficient design with and without accounting for covariates

If the covariates  are continuous in nature,  then the above methods cannot  be handled easily.  If  the
above procedure is  to be employed,  then the number of  segments  that  can  be  formed  may  be  so
large as to not be computationally possible to handle. If this  is  the case,  then the analyst  may have
to resort  to  Monte  Carlo  simulations  to  simulate  the  likely  data  that  is  expected  to  be  collected.
Whilst  this  will  generally  take  much  longer  to  locate  an  efficient  design  than  when  using  the  true
analytical AVC matrix,  given the full  factorial of possible covariate  combinations  that  may  possibly
be formed by combining certain covariates, the use of Monte Carlo simulations may actually  require
much less time in this instance.

In Ngene,  covariates  are handled similarly  to pivot  type designs in that  they  require  the  use  of  the
fisher  property.  As  with  pivot  style  designs,  the  fisher  property  may  be  used  to  generate
homogenous or heterogeneous covariate style designs. Also, similar to pivot  designs,  the analyst  is
required to nominate a weight  representing the proportion that  each covariate will  appear in the final
sample. For example, assuming that the analyst wishes to construct  a design allowing for a gender
covariate  (male  =  1)  and  assuming  that  the  analyst  believes  that  males  and  females  should  be
sampled equally, the fisher property for a homogeneous covariate design might look thus

;fisher(F1) = des1(Male[0.5], Female[0.5])

Similarly, the fisher property for a heterogeneous covariate design for the same example might look

;fisher(F1) = des1(Male[0.5]) + des2(Female[0.5])
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Also similar  to  pivot  designs,  the  analyst  is  required  to  inform  Ngene  what  variables  in  the  utility
specification are covariates. For covariates, the suffix  .covar is  added after an attributes  name (e.g.,
gender.covar). 

Within a single model,  a number of rules  exist  related  to  the  specification  of  covariates.  Firstly,  a
covariate can only have one level per model (e.g.,  gender.covar[1]).  As  such,  different  levels  of

the covariate design must be assigned over models. Secondly, covariates can only be assigned to J-
1 alternatives.

Example syntax for a homogeneous covariate design is  represented below. Note that  in setting out
the  utility  specifications,  both  of  the  above  mentioned  rules  are  met.  For  example,  the  gender
covariate appears in only 2 of the three utility  functions within each model.  Secondly,  the two levels
of the gender variable are spread over the two models (‘male’ and ‘female’).

Design
;alts(Male) = Alt1, Alt2, Alt3
;alts(Female) = Alt1, Alt2, Alt3
;rows = 12
;eff = F1(rp,d)
;fisher(F1) = des1(Male[0.5], Female[0.5])
;rdraws = Halton(150)
;con

;model(Male):
U(Alt1) = Con1[1.2] + A[n,-0.6,0.1] * A[6,8,10,12] + B[-0.4] * B[4,8] +
C1[0.3] * C1[0,1] + gender[n,-0.6,0.1]*gender.covar[1] /
U(Alt2) = Con2[0.8] + A             * A            + B       * B      +
C2[0.8] * C2[0,1] + gender[n,-0.6,0.1]*gender.covar[1] /
U(Alt3) =             A             * A                               +
C3[-1.0] * C3[0,1] 

;model(Female):
U(Alt1) = Con1[1.2] + A[n,-0.6,0.1] * A[6,8,10,12] + B[-0.4] * B[4,8] +
C1[0.3] * C1[0,1] + gender[n,-0.6,0.1]*gender.covar[0] /
U(Alt2) = Con2[0.8] + A             * A            + B       * B      +
C2[0.8] * C2[0,1] + gender[n,-0.6,0.1]*gender.covar[0] /
U(Alt3) =             A             * A                               +
C3[-1.0] * C3[0,1] $

Figure 8.12 shows a design generated using the above syntax.  In presenting the output,  design for
the gender equal to zero (female) can be seen to be shown second,  with  the  associated  covariate
columns  taking  the  value  zero  for  all  choice  situations.  Similarly,  the  design  for  ‘male’  is  shown
taking the value 1 for the associated covariate columns for all choice situations. 

Also,  as  with pivot  designs,  Ngene allows for the simultaneous  optimization  of  the  design  and  the
proportions of the covariates required within the final sample collected. Once more, this is  handled in
the weighting section of the fisher property.  Rather  than  assign  a  single  weight  to  each  level  of  a
covariate,  the analyst  may specify  a  range  of  weights.  This  is  done  by  separating  a  lower  weight
bound from an upper weight  bound  by  a  colon.  For  example,  the  syntax  female[0.1:0.6]  will

allow the proportion of females in the final data set to have a weight anywhere between 0.1 and 0.6 in
the optimization of the overall design Fisher Information matrix.  Note that  for this  to work,  the upper
weight  bounds provided must  sum to one or more.  Note also,  that  this  function  may  be  applied  to
both  homogenous  and  heterogeneous  covariate  designs.  For  more  information  on  this,  see  the
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earlier discussion on pivot designs (Section 8.3.2).

Figure 8.12: An example covariate design

8.5 Designs within designs: Designs with scenarios in Ngene

Typically, in presenting SC experiments to respondents,  the analyst  must  first  construct  a scenario
to frame the experiment. In most studies, the constructed scenarios  are fixed over choice situations
and  respondents.  Figure  8.13  shows  an  example  choice  situation  for  a  health  study.  Above  the
choice situation, respondents are presented with a scenario of confronting a 30 year old patient  with
congenital heart  disease.  In most  studies,  this  scenario would be replicated (i.e.,  it  would not  vary)
over repeated choice situations.
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Figure 8.13:  Example choice situation with a fixed scenario

Often however, the analyst may wish to vary  the scenario from one choice situation to the next.  An
example of this  is  presented in Figure 8.14 where the characteristics  of the  patient  are  varied  over
two  different  choice  tasks.  In  varying  the  characteristics  of  the  scenario  over  the  different  choice
tasks,  it  should be  noted  that  within  any  given  choice  task,  the  levels  shown  in  the  scenario  are
constants  across all  J  alternatives.  That  is,  the patient  remains 30 years  of  age  for  the  ‘Brand  A’,
‘Brand B’  and  ‘none’  alternatives.  In  this  way,  when  setting  up  the  experimental  design,  scenario
characteristics  should  be  treated  in  the  same  manner  as  covariate  attributes  in  terms  of  being
entered into only J-1 utility functions (alternatively, one could interact them with design attributes).
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Figure 8.14:  Example choice situation with changing scenarios

In Ngene, it is possible to force an attribute level to be the same for two or more different  alternatives
via  a  slight  variation  in  the  usual  utility  function  specification.  Typically,  in  a  utility  function,  the
values supplied after an attribute’s  name will  represent  the  levels  that  that  attribute  may  take.  For
example,  age[20,30,40,50],  suggests  that  the age variable may take the values 20,  30,  40  or

50.  In  Ngene,  if  the  age  variable  appears  in  a  second  alternative,  it  is  possible  to  reference  the
original attribute and constrain the value that  the attribute level in the second alternative takes to be
the  same  as  the  level  in  the  first  alternative.  This  is  done  by  specifying  the  name  of  the  original
attribute  rather  than  providing  attribute  levels  when  writing  out  the  utility  function  for  the  second
attribute. For example,

U(Alt1) = A[-0.6] * age[20,30,40,50]
U(Alt2) = A       * age[age]        

In the second alternative, the age attribute references the level provided in the first alternative and will
constrain the level to be the same across the two alternatives.  This  is  precisely  what  is  required for
designs where the analyst  wishes  to  vary  levels  in  the  scenarios  presented  to  respondents.  Note
that  in  setting  out  the  syntax  in  this  manner,  the  age  characteristics  will  vary  from  one  choice
situation to the next (taking the values 20, 30,  40 or 50),  but  take the same value for the commonly
named  attribute  across  the  two  (or  more)  alternatives  within  the  same  choice  situation.  Note
however,  as  previously  mentioned,  such  variables  may  only  be  entered  into  J-1  utility  functions
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unless they are to be specified as  interaction effects.  Thus,  whilst  the attribute may appear  in  any
choice  situation  presented  to  a  respondent  across  all  J  alternatives  (as  per  Figure  8.14),  in  the
actual  modeling  process,  the  variable  will  need  to  be  treated  similar  to  any  socio-demographic
variable.  Thus in the example given in Figure  8.14,  the  patient  characteristics  could  be  treated  as
factors  differentiating  between  a  respondent  choosing  to  prescribe  medication  (either  ‘Brand  A’  or
‘Brand B’) relative to not prescribing any medication.

Example syntax showing the full set of syntax  for the above example is  given below. In this  syntax,
we have two such scenario attributes.

Design
;alts = alt1, alt2, alt3
;rows = 20
;eff= (mnl,d,mean)
;bdraws= halton(150)
;model:
U(Alt1) = SP1[3.2] + b1[(n,0.07,0.03)] * A[5,10,15,20] + b2[(n,1.2,0.3)]
* B[0,1,2,3] + b3[1.8] * C[0,1,2,3] 
+ b4[0.6]*D[0,1] + age[-0.06]*age[20,30,40,50] + condition[0.4]  * cond
[0,1,2,3]   /  
U(Alt2) = SP1[3.4] + b1                * A             + b2            
 * B          + b3      * C          
+ b4     * D     + age       * age[age]        + condition      * cond
[cond]       $

Figure 8.15 shows output based on the above output. In the figure, we have highlighted the ‘age’ and
‘cond’ variables  as  they  appear  in  the  design  to  demonstrate  that  they  are  indeed  constrained  to
take the same levels  across alternatives.  Figure 8.16 shows the AVC matrix  for the design given in
Figure 8.15. Note that the ‘age’ and ‘cond’ variables are represented in this matrix.
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Figure 8.15:  Example design output with constrained attribute levels

Figure 8.16:  Example design output with constrained attribute levels

8.6 Algorithms for generating designs in Ngene

When executing the syntax (see Chapter 4), Ngene will generate a design according to the specified
properties.  Different  search  algorithms  have  been  implemented  in  order  to  generate  a  design.
Depending on the properties set, different algorithms will be defaulted by  Ngene.  If using the default,
no algorithm has to be specified in the syntax.  However,  if one would like to overrule the default,  or
change settings of the algorithms, then one could add the alg property in the syntax. 

For different  types of designs (e.g.,  orthogonal,  efficient,  orthogonal efficient,  with  constraints,  etc.)
different  algorithms  are  used,  including  RSC  (relabelling-swapping-cycling)  algorithms,  swapping
algorithms,  and  Modified  Federov algorithms.  For  efficient  designs,  the  swapping  algorithm  is  the



177Advanced Features in Generating Efficient Designs

© 2012 ChoiceMetrics

default.  The  parameters  for  this  algorithm  can  be  changed,  or  even  a  different  algorithm  can  be
selected.

If one would like to use a specific  algorithm, one can specify  this  in the  alg  property,  by  choosing
one of the following:

;alg = swap
;alg = rsc
;alg = mfederov

Note that for the RSC algorithm, different combinations of the individual aspects  of the algorithm can
be employed. For example, one could employ only the relabeling and cycling methods by  specifying
only the appropriate letters in the alg property. This is shown below.

;alg = rsc

For example

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (mnl,d)
;alg = rc
;model:
U(alt1) = b11[-0.2] + b2[1.2] * A[0,1,2] + b3[2.5] * B[0,1]     /
U(alt2) = b12[0.3]  + b2      * A        + b4[1.1] * C[2,4,6,8] $

will use only relabeling and cycling in searching for an efficient design.

Each algorithm also has a number  of  default  settings.  One  can  overrule  these  default  settings  by
changing the settings in the alg property. For example,

;alg  =  swap(random  =  50,  swap  =  10,  swaponimprov  =  20,  reset  =  200,
resetinc = 50)

For  a  more  detailed  explanation  of  all  the  algorithm  settings  we  refer  to  the  alg  property  in  the
Syntax Reference.

It is also possible to use an existing design as  the initial starting design for the algorithm (which for
example can be used as a starting point for the swapping algorithm),  one can add the start  property
to the syntax,  defining the filename of the initial design.  First,  the design should  be  present  in  the
project, either by importing a Microsoft Excel file (*.xls, *.xlsx, *.xlsm) or importing an Ngene design
file (*.ngd), see Section 3.3. Then it can be used as an initial design in the algorithm, for example:

;start = efficient design.xls

or 

;start = design.ngs

Note that spaces are allowed in the filename.

Most  algorithms  will  keep  running  indefinitely.  It  is  possible  to  force  an  algorithm  to  stop  after  a
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certain amount of time, or a certain number of iterations. For example,

;alg = swap(stop=total(10 mins))

will run the swapping algorithm for a total of 10 minutes, and 

;alg = mfederov(stop=total(100000 iterations))

will  run  the  Modified  Federov algorithm  for  a  total  of  100000  iterations.  An  algorithm  can  also  be
instructed  to  stop  after  a  specified  amount  of  time  or  number  of  iterations  since  the  latest
improvement was found. For example

;alg = swap(stop=noimprov(80 secs))

will run the swapping algorithm until 80 seconds have elapsed since an improvement was found.

It is also possible to run several algorithms one after the other,  so long as  all  but  the last  algorithm
have stopping criteria. The best design found from the previous algorithm will  be used as  the starting
design  of  the  current  algorithm.  Specify  a  single  alg  property,  and  place  a  comma  between  the
algorithms you wish to run. For example:

;alg = mfederov(stop=total(10 secs)), swap

Finally, for very small designs, it may be possible to sequentially  evaluate all  possible designs.  This
can  be  achieved  by  specifying  ;alg=all  .  However  it  is  only  feasible  for  very  small  designs.  The
percentage of all possible designs evaluated so far is shown below the trace in the output  window, in
addition to the current evaluation. 

;alg = all

8.7 Evaluating existing designs in Ngene

Instead  of  generating  a  new design,  one  may  be  interested  in  evaluating  an  existing  design,  for
example to check the efficiency under certain model assumptions. Similar as to using a start  design
in an algorithm, we can read in an existing design that  is  currently  in the project  (importing again a
Microsoft Excel file or an Ngene design file),  and refer to this  file in the eval  property.  This  property
overrules  the  alg  property,  in  the  sense  that  it  will  not  search  for  a  better  design,  but  merely
evaluates the design and then finishes. For example,

;eval = efficient design.ngd

Instead of just  evaluating the design,  it  is  also possible to block  an existing design (independent  of
whether  it  was  originally  blocked  or  not).  If  the  block  property  has  been  specified  in  the  syntax,
Ngene will  use this  to block  the design that  is  being evaluated.  If a blocking column already exists
(possibly  with  a  different  number  of  blocks),  it  will  be  replaced  with  a  new  blocking  column.  For
example,

;block = 3
;eval = efficient design.ngd

Ngene will  read in the design,  evaluate it  (with whatever model and efficiency  measure  specified  in
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the syntax), and also block the design in 3 blocks by  adding (or replacing) a blocking column in the
design.

Note that if the design was saved using an evaluation version of Ngene, the number 0 was inserted in
place of all design levels, and so you will be unable to use the eval property.

8.8 Handling unlabeled alternatives

Stated choice experiments can contain either labeled or unlabeled alternatives.  Labeled alternatives
occur where a heading conveys some meaning to the respondent  beyond the order of the alternative
shown,  for  example,  bus,  car  and  train  (see  Figure  8.17a).  Unlabeled  alternatives  occur  where
headings  convey  no  pertinent  meaning  beyond  the  order  of  the  alternatives  shown,  for  example,
Option  A,  Option  B,  etc  (see  Figure  8.17b  for  an  example).  Labeled  and  unlabeled  choice
experiments  are  typically  used  for  different  purposes  and  to  achieve  different  outcomes.  For
forecasting purposes where brand may influence preference,  labeled  alternatives  may  be  preferred.
Labeled experiments may also be preferred when one wishes to generate brand specific  willingness
to pay values.  Where forecasting  is  not  the  main  objective  of  the  study,  but  where  understanding
preferences  is,  unlabeled  experiments  may  be  preferred  as  such  experiments  remove  brand
influences from the choice  and  hence  focus  the  trade-offs  upon  the  attributes  in  the  study.  There
exist advantages and disadvantages for each type of experiment and the interested reader is  referred
to Hensher et al. (2005) for a full discussion. 
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(a)

(b)
Figure 8.17: Example labeled and unlabeled stated choice tasks

When  generating  an  experimental  design,  the  distinction  between  labeled  and  unlabeled
experiments  may  be  an  important  one.  To  understand  why,  consider  the  labeled  and  unlabeled
choice tasks shown in Figure 8.18.  In both cases we have  used  the  same  attributes  and  attribute
levels, with the only difference being the headings of the alternatives.  Two things stand out  in terms
of  the  attribute  levels  we  have  chosen.  Firstly,  the  attribute  levels  of  the  first  two  alternatives  are
exactly the same. Secondly, the attribute levels of the last alternative are always the same, or worse
than the first  two alternatives.  When we consider the labeled experiment  example,  the fact  that  the
train and bus alternatives  have the same attribute levels  is  not  too problematic  in  that  respondents
may still differentiate between the two alternatives based on the fact  that  one is  a train and one is  a
bus.  As such,  any respondent  observed to choose the train alternative is  revealing a preference  for
train over bus,  all  other things being constant.  Similarly,  a respondent  observed to choose  the  bus
alternative is revealing a preference for bus over train,  all  other things being constant.  Consider now
the  fact  that  the  attribute  levels  of  the  car  alternative  are  never  better  than  the  other  alternatives.
Such  a  situation  does  not  preclude  the  possibility  of  a  respondent  rationally  selecting  the  car
alternative if both the unobserved and observed effects  combined (i.e.,  the overall  utility) associated
with car is  greater than that  of both train and bus.  In terms of  generating  the  experimental  design,
this situation may manifest itself via a larger positive alternative specific constant associated with the
car alternative than for the train or bus alternatives.
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(a)

(b)
Figure 8.18: Examples of problematic labeled and unlabeled stated choice tasks

Now consider the unlabeled choice task.  The two issues discussed above,  that  is,  two alternatives
taking the same attribute levels, and the fact that one alternative is  never better on any attribute,  will
now have a different  impact  upon how respondents  would be  expected  to  react  to  the  experiment.
Taking the case of the first two alternatives being the same, any respondent  facing this  situation will
not  be  able  to  distinguish  between  the  two  alternatives  and  hence  the  choice  becomes  purely
random (however this  may strictly  not  be true,  as  most  people read left  to right  and  hence  the  left
most  alternative,  option A in this  case,  is  more  likely  to  be  selected).  Thinking  about  the  second
issue presented in the choice task,  that  is  the fact  that  the  last  alternative  is  never  better  on  any
attribute,  then there  exists  no  rational  explanation  for  a  respondent  to  select  this  alternative  (i.e.,
other than left to right bias in answering the question, there is  no reason that  the unobserved effects
of the option should be any better or worse than the other alternatives,  that  is  unless  the respondent
has a fetish for the words option  C,  a  highly  improbable  circumstance).  We  call  such  alternatives
dominated  alternatives.  As  such,  issues  of  alternatives  being  dominated  and  the  repetition  of  all
attribute  levels  across  alternatives  may  have  a  larger  bearing  on  generating  unlabeled  choice
experiments than when generating labeled ones. This is not to suggest that  dominance and attribute
level  repetition  may  not  be  important  for  labeled  choice  experiments.  Indeed,  labeled  choice
experiments  may have dominated alternatives,  however the dominance occurs  purely  as  a result  of
preferences  for  the  labeled  alternatives  and  not  purely  as  an  artefact  of  the  attribute  levels  being
dominated.

An additional concern typically associated with unlabeled choice experiments relates to the fact  that
the order of combination of the attributes  associated with alternatives  matters  over the experimental
design,  much more so  than  with  labeled  choice  experiments.  To  see  why,  consider  the  series  of
choice tasks shown in Figure 8.19.  Assume that  we were to present  the two labeled  choice  tasks
given in Figure 8.19a to a respondent. Examination of the two choice tasks reveals  that  the bundles
of attribute levels we have used are the same, however the alternatives  that  we have assigned these
bundles of attributes to are different across the two choice tasks. In this  instance,  rotating the entire
bundle of attributes  across the alternatives  has not  impacted upon how sensible  the  overall  survey
would be to any given respondent.  As such,  the order of bundles  of  attribute  levels  is  not  likely  to
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have  a  behavioural  impact  upon  the  design  (it  might  have  a  statistical  impact  however  depending
upon the parameter priors).
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Task 1

Task 2

(a)

Task 1

Task 2

(b)
Figure 8.19: Example of choice tasks with repeated alternatives

Now consider the two unlabeled choice tasks shown in Figure 8.19b. As with the two labeled choice
tasks, we have simply rotated the bundles of attribute levels that make up the alternatives  of the first
choice task to make up the new choice task. Now, given the unlabeled nature of the experiment,  the
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order  that  the  attribute  level  bundles  appear  do  matter.  This  is  because  if  the  respondent
demonstrated  a  preference  for  the  bundle  of  attribute  levels  associated  with  Option  B  in  the  first
choice task, then clearly they should prefer Option A in the second choice task  (again,  ignoring any
preference  the  respondent  may  have  for  the  words  ‘Option  B’).  As  such,  when  a  particular
combination of attribute levels  is  repeated  in  an  unlabeled  choice  experiment,  even  if  the  attribute
level  bundles  are  associated  with  different  alternatives,  no  additional  information  is  theoretically
obtained from the respondent.

It  is  possible  to  prevent  these  problems  from  occurring  in  Ngene.  This  is  achieved  via  the  alts
property, by placing an asterisk next to the names of the alternatives  that  one wants  to prevent  from
having 
i) within choice task alternative repetition, 
ii) strict attribute level dominance and 
iii) choice task repetition given attribute bundle ordering. 
Whilst  this  may apply  to labeled choice experiments,  it  is  more likely  to prove useful in generating
unlabeled choice experiments. To demonstrate the property, consider

;alts = alt1*, alt2*, alt3*

Note that several other conditions must be met in the specification of the utility  expressions to allow
the checks to take place.  To prevent  within choice task  alternative repetition (i),  and to prevent  row
repetition in unlabeled choice situations (iii), all  attribute names must  be identical in the alternatives
that  are to be compared.  Every  attribute specified in one alternative must  be specified in the other,
and vice versa. Failure to do this  for any alternative pair will  result  in the alternative repetition check
not  being  performed  for  that  alternative  pair,  and  a  warning  being  issued.  The  order  in  which  the
attributes  are  specified  must  not  vary  across  alternatives.  The  presence  of  an  alternative  specific
constant,  while unusual for unlabeled alternatives,  will  not  affect  the check for repeated alternatives
or row repetitions.

This design would be checked for alternative repetition:
Design 
;alts = alt1*, alt2*
;rows=9
;eff=(mnl,d) 
;model: 
U(alt1) = a[-0.1]*A[96,114,126,144] + b[-0.5]*B[25,28,31,34] + c[0.1]*C
[20,40,60,80] / 
U(alt2) = a*A                       + b*B                    + c*C     
                              
$ 

while this would not:
Design 
;alts = alt1*, alt2*
;rows=9
;eff=(mnl,d) 
;model: 
U(alt1) = a[-0.1]*A[96,114,126,144] + b[-0.5]*B[25,28,31,34] + c[0.1]*C
[20,40,60,80] / 
U(alt2) = a*A                       + b*B                    + c*D
[25,45,65,85]                                      
$ 
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To prevent dominance, all prior names must be identical in the alternatives  that  are to be compared.
Every  prior specified in one alternative must  be specified in the other,  and vice versa.  Failure  to  do
this for any alternative pair will result in the dominance check not  being performed for that  alternative
pair,  and a warning being issued.  The order in which the priors  are specified  must  not  vary  across
alternatives.  If  multiple  model  specifications  are  provided  for  the  same  underlying  design,  the
dominance check will be performed for each model specification. Failure of the dominance check by
a choice situation on any of the model specifications will result in the design being rejected.

8.9 Handling probabilities and other attributes that must sum to a
number

In some situations, it is necessary  to ensure that  the attribute levels  of multiple attributes  sum to a
certain number,  within each choice alternative.  A key application is  when probabilities  are attached
to various outcomes. 

Consider for example an SC choice scenario which contains  two alternative travel routes.  The travel
times via these routes vary from one trip to the next,  resulting in what  could broadly  be called early,
on time, and late trips, where each of these times may be experienced with a certain probability. The
travel times will  be attributes  in the choice scenario,  but  so too will  the probabilities.  The challenge
then is to constrain the probabilities to sum to one.
 
In Ngene,  such a constraint  cannot  readily  be achieved with mechanisms such as  the ;cond  and  ;
reject properties. An alternative approach is to specify  levels  for all  probabilities  bar one,  then define
the final probability  as  one minus the sum of all  other probabilities.  This  can be achieved using the
attribute level function feature,  by  placing 'fcn()' within the square  brackets  that  define  the  attribute
levels,  and  placing  an  expression  within  these  round  brackets.  Syntax  for  the  above  example  is
provided below:
Design
;alts = alt1, alt2
;rows = 12
;eff = (mnl,d)
;alg = swap
;model:
U(alt1) = b1[0.5] * prEarly[0.2,0.4] * Early[10,12,14]  +
          b2[0.2] * prOntime[0.5,0.3] * Ontime[20,22,24] +
          b3[-0.4] * prLate[fcn(1 - alt1.prEarly - alt1.prOntime)] 
                   * Late[25,27,29] /
U(alt2) = b1 * prEarly * Early +   
          b2 * prOntime * Ontime +
          b3 * prLate[fcn(1 - alt2.prEarly - alt2.prOntime)] * Late 
$

Care must be taken to ensure that no combination of explicitly defined probabilities can exceed one.
Note that each attribute in the function is defined by both the alternative and attribute names, with a
full stop placed in between. Also, in this example, the probability attributes enter the utility
expression only within an interaction (possible since version 1.1), although they could also enter the
utility expression as a main effect. At this point in time, only constants, attributes, and plus and
minus symbols can enter the expression. When functions are employed, only column based
algorithms can be used. This excludes the modified Federov and RSC algorithms, orthogonal
designs, and optimal orthogonal in the difference (OOD) designs.



Chapter 9

Designs With Continuous Attribute
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9 Designs With Continuous Attribute Levels

9.1 Theory of designs with continuous levels

Simply  put,  any  constraint  one  places  on  a  design  will  impact  upon  the  overall  efficiency  of  that
design (where efficiency is defined in the terms outlined in Chapter 7).  Orthogonality,  as  traditionally
viewed within  the  literature  (see  Chapter  6),  represents  one  such  constraint.  A  second  constraint
often imposed on designs is attribute level balance. Attribute level balance occurs when each level of
an attribute is forced to occur an equal number of times in the design.  This  constraint  is  imposed so
that each point in preference space (represented by  the attribute levels) is  covered an equal number
of times.  The attribute level balance constraint  is  often imposed  on  efficient  designs,  although  this
need not be the case.  Typically,  when this  constraint  is  relaxed,  a minimum number of times each
level must appear is imposed, otherwise the levels of the design will tend to all go to the extremes of
the attribute level range,  thus not  allowing for tests  of non-linearity  in preference (e.g.,  see  Section
8.1).

Where such a constraint is  maintained,  the overall  efficiency of a design may be impacted upon as
changing  one  attribute  level  in  one  choice  situation  may  result  in  an  overall  improvement  in  the
design, but such a change would require that  another attribute level be changed somewhere else in
the design,  possibly  resulting in an overall  worsening of overall  level of efficiency of the design.  For
example, consider an efficient design constructed using the following syntax. 

design
;alts = alt1, alt2, alt3
;rows = 8
;eff = (mnl,d,fixed)
;con
;model:
U(alt1) = b1[1.2] + b2[-0.6]*A[6,8,10,12] + b3[-0.4]*B[4,8] + b4[0.3] *C
[0,1] /
U(alt2) = b5[0.6] + b2         *A         + b3      *B      + b6[0.8] *C
      /
U(alt3) =           b2         *A         + b7[-1.0]*C                 
     $

Table 9.1 presents  an efficient  design generated based on the above syntax.  The overall  D
p
-error of

the  design  is  0.799.  In  Table  9.1,  we  have  highlighted  the  attribute  level  for  the  first  attribute  for
alternative  3  in  choice  situation  2.  Keeping  the  remainder  of  the  design  fixed,  if  we  change  this
attribute level from  a  value  of  8  to  a  value  of  10,  the  D

p
-error  of  the  design  will  improve  to  0.789,

however  in  doing  this,  this  attribute  will  no  longer  exhibit  the  attribute  level  balance  property  (10
would now appear three times whilst 8 would now appear only once over the eight  choice situations).
As  such,  to  maintain  attribute  level  balance,  we  would  be  required  to  change  one  of  the  already
existing attribute levels of 10 to a value of 8. If we change the level 10 in choice situation three,  then
the overall D

p
-error of the design will  worsen to a value of 0.820.  If we change the level 10 in choice

situation seven to 8, then the overall  D
p
-error of the design worsens to 0.829.  Thus,  whilst  changing

the  original  value  led  to  an  overall  improvement  in  the  efficiency  of  the  design,  the  attribute  level
balance property,  which requires  us  to change another level in another choice situation somewhere
else in the design, prevents  us  from maintaining this  gain,  and in fact,  results  in a worsening in the
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designs statistical efficiency.  As such,  we would  prefer  the  existing  design  shown  in  Table  9.1  to
one where we swap the attribute levels as discussed above. 

Table 9.1: Attribute level balance and efficient designs

Toner et  al.  (1999),  Fowkes (2000) and Kanninen (2002) offer a number of different  design methods
which  we  collectively  call  optimal  choice  probability  designs  that  are  designed  to  overcome  this
problem. Both Toner et al. and Kanninen show analytically that utility or probability balance in choice
tasks represent an undesirable property, and in doing so suggest rules that  minimize the variance of
estimates  in  an  optimal  manner,  based  on  desirable  or  what  Toner  et  al.  refer  to  as  magic  p’s.
Although using a different set of arguments, Fowkes (2000) arrived at  a similar conclusion deriving a
set  of  designs  he  termed  boundary  value  designs.  In  each  case,  K-1  attribute  levels  are  first
generated for each J alternatives,  typically  using an orthogonal or optimal orthogonal approach.  The

last  Kth  attribute  for  each  alternative  is  then  generated  as  a  continuous  variable  (usually  a  price
attribute).  The  values  of  these  continuous  variables  are  chosen  such  that  the  choice  probabilities
take certain values that minimize the elements of the AVC matrix  under the assumption of non-zero
prior parameters.  Toner et  al.  (1999)  achieves  a  similar  result  to  those  reported  by  Kanninen  and
Fowkes.  The  boundary  value  method  of  Fowkes  is  somewhat  different  in  derivation  although  the
implications remain the same.  Toner et  al.  (1999),  Kanninen (2002) and Johnson et  al.  (2006) have
determined  the  desirable  probabilities  for  a  limited  number  of  designs  (i.e.,  those  involving  two
alternatives), although non-linear programming may be used to determine these for a wider number of
designs.  The  boundary  value  method  of  Fowkes  is  somewhat  different  in  derivation  although  the
implications remain the same. Appendix  9A outlines the  steps  required  for  generating  this  form  of
design.  We  now  discuss  how  to  generate  these  designs  in  Ngene.  In  all  cases  however,  prior
parameters are still required to generate this class of designs.

9.2 Designs with continuous levels in Ngene

In order to generate an optimal choice probability design,  the first  step is  to generate a design with
non-continuous  attribute  levels.  This  initial  design  should  have  the  same  number  of  design
dimensions (i.e., alternatives, attributes, attribute levels  and choice situations) with the exception of

the  Kth  attribute  which  is  to  be  treated  as  continuous.  For  this  attribute,  any  the  levels  can  be
provided as long as they do not violate attribute level balance and hence require a different  number of
rows be generated. For example, assuming the price attribute as  the attribute to be later treated as
continuous,  assigning it  two attribute levels  for a design to be generated in nine rows will  require  a
change in the number of rows required.  Also,  whilst  not  necessary,  the  specific  levels  chosen  are
best  selected if they are within the range that  will  be allowed when the attribute is  later  treated  as
continuous.  For example,  if in the final design,  the analyst  will  allow the price attribute to take any
value between $0 and $20, then the attribute levels for price in the initial design should be within this
range  also.  In  generating  the  initial  design,  any  type  of  design  can  be  constructed.  Note  that,  in
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generating the design with continuous attribute levels, only the attributes  that  are allowed to take on
continuous  levels  will  be  changed.  That  is,  all  other  attributes  will  be  fixed  based  on  the  initial
design. Kanninen (2002) and Johnson et al. (2006) suggest  using optimal orthogonal designs as  the
initial  start  design,  however  other  design  types  might  provide  more  efficient  results,  particularly  if
they are closer to the ‘optimal’ level of statistical efficiency.

To demonstrate, consider the following two sets  of syntax  used to generate potential start  designs.
The first  generates  an  optimal  orthogonal  design  whilst  the  second  creates  an  efficient  design.  In
specifying  the  optimal  orthogonal  design,  no  priors  are  required,  whilst  priors  are  required  for  the
efficient design. We will use both to construct initial start designs using both sets of syntax.

Design
;alts = Alt1, Alt2
;rows = 12
;orth = ood
;model:
U(Alt1) = b1 * X1[2,4,6] + b2 * X2[1,3,5] + b3 * X3[2,5,8] /
U(Alt2) = b1 * X1        + b2 * X2        + b3 * X3        $

Design
;alts = Alt1, Alt2
;rows = 12
;eff = (mnl, d) 
;model:
U(Alt1) = b1[-0.2] + b2[0.3] * X1[2,4,6] + b3[0.4]  *  X2[1,3,5]  +  b4[-
0.6] * X3[2,5,8] /
U(Alt2) =            b2      * X1        + b3      * X2        + b4    
  * X3        $

Figure 9.1 shows the two designs generated using the above syntax.  Both designs have been saved
as part  of a project  as  can be seen by their appearance in the ‘Output’ tab of  the  project  bar.  The
designs were saved as ‘Initial OOD.ngs’ and ‘Initial Efficient.ngs’ respectively.  Although not  shown,
the D

p
-error of the efficient  design was 0.058  versus  a  D

p
-error  of  0.154  for  the  optimal  orthogonal

design based on the set or priors assumed in generating the efficient design.
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Figure 9.1: Two different initial designs

The next step in generating optimal choice probability designs is  to construct  the design,  using the
initial design as the start  point.  As discussed in Section 8.6,  an already saved design can be used
as  the  initial  design  when  searching  for  a  more  efficient  design  via  the  start  property.  Thus  for
example, to use the already saved ‘Initial OOD.ngd’ design as the start design, we would specify

;start = initial OOD.ngd

Kanninen (2002) and Johnson et al. (2006) derived analytically, a set of probabilities that will result  in
an ‘optimal’ MNL design (i.e., the most  efficient  design possible,  with the smallest  standard errors).
These derivations however apply  only  to  designs  generated  for  MNL  models  as  well  as  for  only  a
small subset of possible design dimensions (e.g., these probabilities are known only for designs with
two  alternatives  with  between  two  and  eight  attributes,  and  are  limited  to  designs  with  generic
parameters;  see Appendix  9A).  Rather than limit  the  type  of  model  and  dimensions  of  the  design
allowed, Ngene uses a search algorithm known as the Nelder-Mead algorithm to determine the final
attribute levels  for the attribute that  is  to be treated  as  continuous  (see  Appendix  9B).  Whilst  this
means that the design cannot be guaranteed to be ‘optimal’, the resulting design should be close to
optimal. In any case,  the user must  specify  that  they wish to use the Nelder-Mead algorithm when
generating designs with continuous variables. This is done via the alg property (see Section 8.6). The
syntax to do this is 

;alg = neldermead

The Nelder-Mead algorithm has a number of associated parameters that may be useful in limiting the
amount of output reported. Unlike efficient designs, when one allows for continuous attribute levels  in
a design,  the number of possible designs effectively  becomes infinite (e.g.,  an  attribute  might  take
the  value  2.21421452  or  2.21421453  or  2.21421454)  with  very  slight  changes  producing
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improvements  in statistical efficiency.  Specific  parameters  for the Nelder-Mead  algorithm  are  listed
below. Note that these are option parameters, and the syntax above will work without them. 

neldermead(converge=<float>, runs=<integer>, nointerim, seed=<integer>)

where 

converge: minimum distance required between the best  and other all  candidate solutions in order to
terminate (default=0.001). Distance is relative to attribute level lower and upper bounds.

runs: the number of runs to perform (default=1). Each run is  an independent  trial and begins  with an
entirely new set of random allocations to the continuous attributes. The sole exception is the first run
where one copy of the original design is maintained.

nointerim: only report improved designs upon convergence,  not  as  they are found (which is  default).
Duplicate designs will be reported if there is no improvement between restarts.

seed:  a number  to  initialize  the  pseudo-random  number  generator.  This  allows  experiments  to  be
repeated if so desired.

Note,  that  where  specified,  not  all  parameters  are  required.  Thus  for  example,  the  analyst  may
specify  a  convergence  criteria  in  addition  to  the  nointerim  criteria  but  omit  the  runs  and  seed
parameters.
Note also that in addition to these parameters,  stoping criteria,  as  reported in Section 8.6 may also
be applied to the Nelder-Mead algorithm. Thus, for example the following syntax may be used.

;alg = neldermead(nointerim=0, stop=total(5000 iterations))

The  final  syntax  used  to  generate  a  design  with  continuous  variables  is  handled  within  the  utility
specifications.  In  generating  a  design  with  continuous  attribute  levels,  the  analyst  must  specify
which attributes  are to be treated as  continuous as  well as  place a range  on  the  levels  that  these
attribute may take.  Traditionally,  attribute levels  in Ngene are specified in square brackets  after the
attribute name, with different levels separated by commas (e.g.,  X3[2,5,8]).  Where an attribute is

to be treated as  a continuous variable,  the analyst  must  specify  the lower and  upper  values  of  the
range separated by  a colon (for example,  X3[2:10]  would allow the attribute  levels  of  X3  to  take

any value, between 2 and 10). Note that adding a second colon will generate discrete attribute levels,
from the lower  bound  to  the  upper  bound,  with  a  step  size  specified  after  the  second  colon  (e.g.
[2:10:0.5]). Complete syntax for generating a design with continuous levels is given below. In the

syntax  shown, the start  design is  given as  the ‘Initial OOD.ngs’ design.  This  syntax  can  be  easily
changed to use the ‘Initial Efficient.ngs’ as the initial start design.

Design
;alts = Alt1, Alt2
;rows = 12
;eff = (mnl, d)
;alg = neldermead(nointerim=0, stop=total(5000 iterations))
;start = initial OOD.ngd
;model:
U(Alt1) = b1[-0.2] + b2[0.3] * X1[2,4,6] + b3[0.4]  *  X2[1,3,5]  +  b4[-
0.6] * X3[2:10] /
U(Alt2) =            b2      * X1        + b3      * X2        + b4    
  * X3[2:10] $ 
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Figure  9.2  shows  the  resulting  design  based  on  the  above  output,  whilst  Figure  9.3  shows  the
resulting design based on using ‘Initial Efficient.ngs’ as the initial design. A comparison of these two
Figures  suggests  that  using  the  efficient  design  as  the  initial  design  resulted  in  a  lower  D

p
-error

(0.058)  than  the  optimal  orthogonal  design  (D
p
-error  =  0.072),  hence  hinting  at  the  fact  that  the

results may be sensitive to the initial design assumed. The primary reason for this  sensitivity  lays  in
the fact that ‘optimality’ is linked to the choice probabilities and by imposing too narrower a range on
the values that  a continuous  variable  might  take,  the  algorithm  may  not  be  able  to  achieve  these
desirable probabilities. In any case, it need not hold that using an efficient design as the start  design
will  always  be  a  better  choice  than  using  a  non-efficient  design.  Nevertheless,  this  result  does
highlight that for the specific example chosen,  there appears  greater room for improvement  in terms
of statistical efficiency for the initial optimal orthogonal design (D

p
-error = 0.154 to 0.072) then there

was for the initial efficient design (D
p
-error = 0.058 to 0.057).  

Examination of Figures 9.2 and 9.3 reveals  that  the attribute levels  for  the  attributes  that  were  not
allowed to take continuous levels are the same as those assumed in the initial designs (see Figure
9.1).  The  attribute  levels  of  attribute  X3  however  are  now  no  longer  fixed  integers,  but  rather
continuous levels fixed within the range specified in the syntax. 

Figure 9.2: Continuous level design based using an optimal orthogonal design as the start
design
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Figure 9.3: Continuous level design based using an efficient design as the start design

Figure 9.4 show the choice probabilities for the continuous attribute level design shown in Figure 9.2.
Whilst  the  choice  probabilities  are  not  exactly  the  same  within  each  choice  situation  (as  should
occur if one used the analytical choice probabilities to design the experiment),  there does appear to
be certain probabilities that re-occur over the design. This  once more highlights  problems with trying
to  impose  utility  or  probability  balance  in  a  design  (see  Section  7.1.8),  as  such  probabilities  will
typically result in a significant loss of statistical efficiency. 
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Figure 9.4: Choice probabilities for a continuous level design 

The examples shown above are for MNL designs with  only  two  alternatives  and  generic  parameter
estimates. As suggested however, the Nelder-Mead algorithm is not limited to problems dealing with
MNL designs or to problems involving only  two  alternatives.  Indeed,  the  procedures  outlined  above
may be applied to any model type,  as  well as  to experimental design problems with any number of
alternatives.  Further,  the  method  can  also  be  applied  with  Bayesian  prior  parameter  distributions.
Figure 9.5 shows a design generated with continuous attribute levels  for a panel MMNL with generic
and  alternative  specific  parameters  allowing  for  Bayesian  prior  parameters  based  on  the  syntax
below.  We present this Figure to demonstrate the flexibility of the approach.

Design
;alts = Alt1, Alt2, Alt3
;rows = 12
;eff = (rppanel, d) 
;bdraws = gauss(2)
;rdraws = gauss(2)
;model:
U(Alt1) = b1[-0.2]  +  b2[n,0.3,0.1]  *  X1[2,4,6]  +  b3[(n,0.4,0.1)]  *  X2
[1,3,5] + b5[-0.6] * X3[2,5,8] /
U(Alt2) =            b2            * X1        + b4[(n,0.3,0.1)] * X2  
     + b5       * X3        $ 

Design
;alts = Alt1, Alt2, alt3
;rows = 12
;eff = (rppanel, d) 
;bdraws = gauss(2)
;rdraws = gauss(2)
;alg=neldermead
;start= RP panel efficient.ngd
;model:
U(Alt1) = b1[-0.2]  +  b2[n,0.3,0.1]  *  X1[2,4,6]  +  b3[(n,0.4,0.1)]  *  X2
[1,3,5] + b5[-0.6] * X3[2:10] /
U(Alt2) =            b2            * X1        + b4[(n,0.3,0.1)] * X2  
     + b5       * X3[2:10] $
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Figure 9.5: Choice probability design with continuous attribute levels for a panel MMNL
model 

9.3 Appendix 9A Steps in generating choice designs with
continuous attribute levels

There exist three main steps in generating CP types of designs. We now outline these steps.

Step 1: Generate an initial start  design.  Kanninen (2002,  2005) and Johnson et  al.  (2006) suggests
that  this  initial design be such that  it  represents  only  k -1 attributes  (i.e.,  the  initial  design  omits  a

single (common across alternatives) attribute for each of the alternatives). The kth omitted attribute in
CP  designs  must  be  continuous  in  nature,  otherwise  the  method  will  not  work.  Given  that  most

choice  problems  will  contain  a  price  or  cost  attribute,  Kanninen  suggests  that  the  k th  omitted
attribute be that attribute (in transport problems, time attributes will often also be present,  and hence
may also be used in generating CP designs).  For best  results,  Johnson et  al.  (2006)  recommends
that the initial design be orthogonal and in the case of two alternatives  with all  attributes  taking two
levels, that the second alternative be constructed using the foldover of the first alternative. 

Step 2: Select attribute levels for the k th omitted attribute such that  the choice probabilities  for each
choice  situation  in  the  design  assume  certain  values.  Note  that  as  with  efficient  designs,  the
generation of CP designs  requires  the  use  of  prior  parameter  estimates  in  order  to  determine  the
choice probabilities  over the design.  If  zero-valued  priors  are  assumed,  as  with  optimal  orthogonal
designs,  then the choice probabilities  will  simply  be fixed and equal to 1/J  and hence it  will  not  be
possible to generate the design.  In allocating the attribute levels,  the  desirable  choice  probabilities
that the analyst should attempt to aim for are shown in Table 9A.1 for a small number of designs.  In
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generating values for the k th attribute,  the analyst  may have to let  go  of  the  attribute  level  balance
assumption common in generating designs,  and further,  may have to let  go of the assumption  that
the attribute can only take on integer values. 

Table 9A.1: Optimal Choice probability values for specific designs (adapted Johnson et al.
2006)

The  probabilities  shown  in  Table  9A.1  were  derived  analytically.  Rather  than  rely  on  these
probabilities which are known only for designs generated for MNL models, as well as for only  a small
subset of cases, Ngene uses the Nelder Mead algorithm to search for an optimal design.  The Nelder
Mead algorithm is discussed in Appendix 9B.

Step 3: The final stage, advocated by Kanninen, is to update the prior parameter values and attribute
levels  so  as  to  optimise  the  AVC  matrix  for  the  data.  Seeing  that  discrete  choice  modelling  is
undertaken on choice  data  and  not  on  choice  designs,  Johnson  et  al.   (2006)  advocates  using  a
large pilot or pretest sample, and/or stopping the main sample partway through so as  to update the
prior parameter values used in generating the original design. With the new updated priors,  the levels
of the changing attribute can be reworked so as  to produce the desired choice probabilities  for  the
data.  As  such,  over  the  course  of  data  collection,  different  respondents  may  be  given  different
versions  of  the  design,  at  least  in  terms  of  what  they  observe  for  the  attribute  that  is  allowed  to
change.

9.4 Appendix 9B The Nelder Mead algorithm

9B.1 Introduction

The Nelder-Mead method (Nelder & Mead,  1965) is  a computational technique for solving non-linear
optimisation problems. The method is what is known as a local search technique (also referred to as
an incomplete method).  This  means that  although  the  method  will  locate  a  solution  to  a  problem,
that  solution may only  be locally optimal rather than  globally  optimal  (so  there  may  exist  a  better
solution  that  the  method  fails  to  find).  The  motivation  for  the  use  of  local  methods  is  that
guaranteeing the optimality  of a solution is  for  many  problems  too  computationally  intensive  to  be
feasible  and  is  often  of  little  practical  benefit.  Although  in  theory  there  are  situations  where  the
Nelder-Mead  method  will  not  terminate,  in  practice  the  finite  precision  and  bounds  of  the  floating
point  numbers  used in digital  computers  guarantee  that  the  method  will  (eventually)  converge  and
terminate.

9B.2 Operation

The method maintains a set of tentative solutions.  The size of this  set  is  determined by  the number
of unknowns in the problem. For a problem with N unknowns, a set of N+1 tentative solutions will  be
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maintained.  With  respect  to  optimising  SP  experimental  designs  with  continuous  attributes,  the
number of unknowns is the number of continuous attributes  multiplied by  the number of rows in the
design. For the initial set of solutions, the levels for the continuous attributes are allocated randomly.
Following  the  initial  random  allocation  of  attribute  levels,  the  algorithm  iteratively  either  improves
upon the current worst  tentative solution or shrinks  all  tentative solutions towards the best  solution.
The specific process is as follows.

9B.3 Reflection/Extension

The centroid of the set of tentative solutions (excluding the worst) is  first  calculated.  A new tentative
solution is  obtained  by  reflecting  the  worst  solution  through  this  centroid,  the  rationale  being  that
moving away from the worst solution towards the others  should result  in an improved solution.  If the
reflected solution does not improve upon the objective value of the worst solution the procedure skips
to contraction.  Otherwise,  if the new solution is  an improvement,  a further extension away from the
worst  solution is  considered.  When  the  worst  solution  is  a  distance  d  from  the  centroid  then  the
reflected and extended solutions are a distance of 2d and  3d  respectively  from  the  worst  solution.
The better of these two solutions replaces the worst tentative solution and the iteration is complete.

9B.4 Contraction 

If reflection does not result in an improved solution,  alternate solutions involving smaller changes are
considered. Two solutions are considered:  one halfway between the current  worst  and the centroid,
the  second  halfway  between  the  centroid  and  the  reflected  solution.  Continuing  the  previous
discussion, these solutions will be distances of 0.5d and 1.5d from the worst  solution respectively.  If
neither of these solutions improves upon the worst the method instead applies  shrinking.  Otherwise,
the contracted solution with the better objective function valuation is  adopted in place of the current
worst and the iteration is complete.

9B.5 Shrinking

If neither of the above steps has produced an improved solution, then all tentative solutions (including
the worst) are moved towards the best  solution by  a factor of 0.5,  irrespective of whether this  leads
to improvements in their respective objective function valuations. This concludes the iteration.

Unless  the  procedure  exhausts  its  computational  resources  (i.e.  a  specified  time  or  number  of
iterations has elapsed) it will continue to iterate until all tentative solutions are within a distance  of
the best solution. For a design with N rows and K continuous attributes,  is defined to be:

where α  is  a  user-definable  value  within  the  range  0  <  α  <  1.  Smaller  values  of  a  lead  to  tighter
convergence criteria and hence more iterations prior to convergence.

9B.6 Multiple Runs and Tries

As with most  local search algorithms,  the solution obtained  will  depend  on  the  starting  conditions
(the  initial  set  of  random  tentative  solutions).  Running  the  procedure  multiple  times  from  different
starting  locations  ensures  that  a  single  bad  starting  location  does  not  unduly  prejudice  the  final
outcome. The version of the Nelder-Mead procedure implemented in Ngene allows multiple repeated
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runs and tries for this reason.

Each run is entirely independent  and may involve multiple tries.  Tries  are not  independent.  Within a
run, the best solution from each try is conveyed to the subsequent  try  (as  one of the initial tentative
solutions) so only the first  try  of a run uses an entirely  random set  of initial solutions.  This  ensures
that each try within a run produces an improved (or at least not worsened) solution.  A try  ends when
computational  resources  are  exhausted  or  the  tentative  solutions  converge.  If  computational
resources remain, a new try begins.

As runs are independent, additional runs do not necessarily  lead to improved solutions.  It  must  also
be noted that on the first run, a single copy of the design that  is  initially  passed to the procedure is
preserved as a tentative solution, meaning that on this run only, the solution set for the first try  is  not
entirely random.



Chapter 10
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10 Formatting experiments

The purpose of generating an experimental design is to create attribute levels for choice situations in
a  survey.  The  respondent  cannot  be  directly  faced  with  the  experimental  design,  as  a  matrix  of
numbers  does not  have  any  meaning  for  the  respondent.  Instead,  the  experimental  design  matrix
has to be converted to choice situations that make sense to the respondent. 

Ngene has the capability  of transforming the design matrix  to actual choice  situations  that  can  be
shown to respondents. In the design window, clicking on the “Formatted scenarios” tab brings up a
new screen  in  which  the  choice  situations  in  the  design  are  presented  in  a  format  that  can  be
understood by respondents (see Figure 10.1). Each row in the design will  be put  in a separate table
that presents the alternatives and attributes in a choice setting. 

Figure 10.1:  Moving from the design matrix to actual choice situations
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Different  style sheets  can be applied,  changing the  colors  and  fonts.  Users  can  create  their  own  
stylesheets (*.css files) and put them in the Stylesheets  folder found within the Ngene install  folder.
An example of a different style sheet being applied is shown in Figure 10.2.

Figure 10.2:  Style sheets change the look of the choice situations

Clicking on the “Configure scenario formatting” button  brings  up  the  scenario  formatting  screen  as
shown in Figure 10.3. 
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Figure 10.3:  Scenario formatting screen

The user can enter titles, headers and footers to the choice screens.  Furthermore,  the names of the
alternatives  and  attributes  presented  to  the  respondent  can  be  entered,  changing  the  names
obtained from the syntax file. This is shown in Figure 10.4.
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Figure 10.4:  Entering title, header and footer text, and change names of alternatives and
attributes

In case the user would like to change the order of the attributes  or alternatives,  the appropriate cell
can  be  selected,  and  from  the  pull-down  list  the  required  alternative/attribute  combination  can  be
selected, see Figure 10.5.

Figure 10.5:  Changing attribute order

To include radio  buttons  for  the  respondent  to  be  able  to  select  the  preferred  alternative,  choices
have to be added.  In the lower left  corner,  a  choice  can  be  added  and  named.  Once  at  least  one
choice has been added, it can be selected from the pull-down menu,  see Figure 10.6.  Choices with
the same name are grouped,  i.e.  only  one of the radio buttons in such a group can be selected.  In
some cases, multiple choices are required (such as  a forced and an unforced choice if a no-choice
alternative is included).
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Figure 10.6:  Including choices in the choice experiment

Finally, the attribute levels can be formatted by clicking on the “Edit” button on the left,  which brings
up the attribute formatting window, see Figures 10.7 and 10.8. For each attribute in each alternative,
the format  of the attribute levels  can be altered,  such that  it  does not  show just  numbers  (coding),
but  shows the true levels  to be presented to the respondent.  The levels  can  be  formatted  for  each
attribute  separately,  or  for  multiple  attributes  at  the  same  time.  For  this  purpose,  select  multiple
attributes  on the left  hand side (using <shift>-click  to  select  a  whole  range,  or  <ctrl>-click  to  add
extra attributes).  The numerical levels  from  the  design  and  the  actual  formatted  levels  are  shown.
Using the “#” symbol in the format adds the (numerical) level.  Instead of numerical levels,  words can
be used, etc.
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Figure 10.7:  Formatting attribute levels (using numbers)

Figure 10.8:  Formatting attribute levels (using text or symbols)

While formatting the scenarios, the result can be previewed by clicking the “Preview” tab,  see Figure
10.9.
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Figure 10.9:  Previewing the formatted scenarios

After formatting the scenarios, the scenario formatting screen can be closed by  pressing “OK”.  One
can  go  back  to  the  design  and  display  the  final  formatted  choice  screens  (with  functional  radio
buttons). The design is formatted using HTML coding, which can be viewed by clicking on the “HTML
source  code”  tab,  see  Figure  10.10.  This  way,  one  can  more  readily  implement  the  choice
experiment as an internet survey,  although adding extra questions,  managing multiple screens,  and
storing the results in a database requires extra work.
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Figure 10.10:  Final formatted choice scenarios and HTML source code

If the design is  saved,  the design formatting will  be included in the syntax  so that  the formatting is
preserved  when  the  design  is  reopened.  Clicking  on  the  “Syntax”  tab  shows  the  syntax  in  which
extra lines  have been added to describe the formatting,  see  Figure  10.11.  It  is  recommended  that
these properties not be altered directly from the syntax, but through the above tools  instead.  Directly
altering the properties might cause Ngene to crash.
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Figure 10.11:  Formatting syntax

Note that currently only the first design will be shown with scenario formatting. So if multiple designs
are specified with the fisher property, only the first will be shown. 



Chapter 11

Syntax Reference
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11 Syntax Reference

The following is an alphabetically ordered list of commands and properties for each command.

11.1 Definitions of syntax components

Routine
A routine consists of a single command and one or more properties.  When a routine is  run,  a single
task is performed. Below is an example routine, which will be referred to in the following definitions.

Design
;alts(model1) = car, bus, train
;rows = 12
;eff = model1(d)
;alg = swap(reset=10000, resetinc=5000)
;model(model1):
 U(car)   =   /
 U(bus)   =   /
 U(train) = 
$

Command 
(e.g. Design)

A command instructs  Ngene to run a particular type of task.  It  needs to be configured  with  one  or
more properties.

Property 
(e.g. alts, rows)

A property  provides Ngene with information on how to run the task  specified  in  the  command.  The
property word is specified immediately after a semicolon.

Property value
(e.g. 12, car)

A property value is a piece of information assigned to a property.

Property qualification 
(e.g. (model1))

Some  properties  can  be  specified  more  than  once.  When  this  happens,  each  property  that  is
repeated needs to be qualified by  a label that  is  specified  between  brackets  immediately  after  the
property.

Label 
(e.g. car,  model1)

A label is a user specified word that is used to identify something that has been defined in syntax.  In
the above example,  the label 'car' identifies  one of the alternatives,  while 'model1' identifies  a single
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model specification. Labels cannot be reserved words.

Directive
(e.g. ;rows = 12)

A directive is  the  combination  of  a  property  and  a  property  value.  Any  configured  property  will  be
referred to as a directive in the manual and in error messages to improve clarity.

Parameter
(e.g. reset=10000)

Some properties  allow additional information to be specified.  These  are  specified  in  brackets  as  a
series  of  comma  separated  parameter  name-parameter  value  pairs.  In  the  above  example,  the
alg=swap directive has two parameters specified that provide additional information.

11.2 How this manual specifies syntax

Some of the Ngene syntax  is  very  complex,  and hence we have adopted some conventions in how
we prescribe the syntax, so as to avoid ambiguity.

Syntax in italics is optional

User specified values
In many instances, the user will  need to enter their own value into the syntax.  e.g.  12 in ;rows=12.
These user specified values will be treated as follows in our syntax prescription:
<data type(label)>

where data type can be:
integer - a whole number
decimal - a number with any level of precision
string - a text value

The label will be a very  concise description of what  the user specified value is  for,  and will  typically
be referred to in the comments section using italics ("label").

Text colour
Blue text is used to represent syntax that must be specified verbatim. e.g. ;con

Red text  is  used for other instructions,  and should not  be entered as  is.  Examples  include  user

specified values,  [mutually | exclusive | alternatives]  (see  below),  and  repetition  (

..., see below).

Mutually exclusive alternatives
Sometimes several options  are  available,  but  only  one  can  be  applied.  In  this  case,  the  mutually
exclusive options are surrounded by red square brackets  ("[]"),  and separated by  red pipe symbols
("|"). The orth property is a good example:
;orth = [ sim
        | seq
        | seq2
        | ood ]

where the four possible cases are:
;orth = sim
;orth = seq
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;orth = seq2
;orth = ood

It is also possible to have multiple levels of square brackets, nested inside each other.

Repetition
Often,  several items,  each with the same syntax  rules,  can be specified in some sort  of  list.  They
may  be  separated  by  commas,  plus  symbols,  pipe  symbols  or  forward  slashes.  Rather  than
repeatedly  list  the same syntax  prescription,  the ...  symbol is  inserted  after  the  relevant  separator
symbol. The actual syntax that can be repeated will be highlighted in a colour, as will the associated
... symbol and the separation character that immediately precedes it.

In the first example, the syntax that can be repeated is entirely highlighted:
<decimal(weight)> * <string(parameter)> , ...

This could be expanded to:
0.4*G1, 0.6*B1, 1.2*B2

In the second example, all rows of syntax that can be repeated are spanned a vertical line of colour:
 [ <string(parameter)>[<PRIOR>]
 | <string(parameter)>.d[<PRIOR> |...]
 | <string(parameter)>.e[<PRIOR> |...] 
 ]
 * 
 <string(attribute name)><LEVELS>
 * ...
+ ...

This could be expanded to:
G1[0.4] * att1[2,4,6] * att2[3,5,7] + G2.d[0.6|0.8] * att3 + G3[-1.7] *
att4[1,2,3]

Examples
Finally,  the syntax  prescription,  while unambiguous,  can appear very  confusing.  Closely  examining
examples is a useful way to become familiar with how the syntax is applied.

11.3 Design

Used to generate designs.

11.3.1 alg

description: Specifies what algorithm to use when generating efficient designs.

values: ;alg  =   [  swap(random=<integer>,  swap=<integer>,
swaponimprov=<integer>,  reset=<integer>,  resetinc=
<integer>, <STOP>)
        | rsc(<STOP>)
        | rs(<STOP>)
        | rc(<STOP>)
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        | sc(<STOP>)
        | r(<STOP>)
        | s(<STOP>)
        | c(<STOP>)
        | all
        | mfederov(candidates=<integer>, <STOP>) 
        | neldermead(converge=<float>, runs=<integer>,
nointerim, seed=<integer>)
        | eval(<string(name or path)>) ]

where
<STOP> is
stop = [ total(<integer> [secs | mins | iterations])
       | noimprov(<integer> [secs | mins | iterations])
]

default: If the property is not specified, an efficient design search (;eff) will use
;alg=swap.

;alg  =  swap(random=500,  swap=1,  swaponimprov=40,  reset=10000,
resetinc=5000) (MNL model)
;alg  =  swap(random=500,  swap=1,  swaponimprov=40,  reset=10000,
resetinc=5000) (RP model)
;alg  =  swap(random=500,  swap=1,  swaponimprov=40,  reset=10000,
resetinc=5000) (RP panel model)
;alg  =  swap(random=500,  swap=1,  swaponimprov=40,  reset=10000,
resetinc=5000) (EC model)
;alg  =  swap(random=500,  swap=1,  swaponimprov=40,  reset=10000,
resetinc=5000) (EC panel model)
;alg  =  swap(random=500,  swap=1,  swaponimprov=40,  reset=10000,
resetinc=5000) (RPEC model)
;alg  =  swap(random=500,  swap=1,  swaponimprov=40,  reset=10000,
resetinc=5000) (RPEC panel model)
;alg  =  swap(random=500,  swap=1,  swaponimprov=40,  reset=10000,
resetinc=5000) (model averaging)

;alg = mfederov(candidates=200000)

;alg = neldermead(converge=0.001, runs=1)

If the stop parameter is  not  specified,  the  algorithm  will  run  indefinitely,  and
will only terminate when the user chooses Stop.

comments: ;alg = swap
Elaborate swapping algorithm. 

random:  How many  seed  iterations  to  perform  during  the  initial  phase  of
complete design randomization.
swap: How many swaps to perform for each attribute.
swaponimprov:  How  many  swaps  to  perform  for  each  attribute  after  an
improvement has been found by modifying that attribute.
reset: How many iterations with no improvement  must  elapse before a new
starting point with complete design randomization is generated.
resetinc:  How many  iterations  to  increase  'reset'  by  after  each  complete
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design randomization.

;alg = rsc (rs, rc, sc, r, s, c)
Relabelling(r),  swapping(s) and  cycling(c)  algorithm.  And  combination  of  the
three techniques can be specified.

;alg = all
Attempt to evaluate all  possible designs.  This  is  only  feasible  for  very  small
designs.  The  percentage  of  all  possible  designs  evaluated  so  far  is  shown
below the trace in the output window, in addition to the current evaluation. 

;alg = mfederov
Modified Federov algorithm.

candidates: The maximum size of the candidate set.

;alg = neldermead
Performs  a  local-search  to  allocate  the  continuous  attributes  of  a  design.
Discrete attributes  will  not  be  changed.  Note:  this  algorithm  requires  that  a
pre-existing design be loaded using ;eval first.

converge:  minimum  distance  required  between  the  best  and  all  other
candidate  solutions  in  order  to  terminate.  Distance  is  relative  to  attribute
level lower and upper bounds.
runs:  the number of runs to perform. Each run is  an  independent  trial  and
begins  with  an  entirely  new set  of  random  allocations  to  the  continuous
attributes. The sole exception is the first run where one copy of the original
design is maintained.
nointerim: only report improved designs upon convergence,  not  as  they are
found  (which  is  default).  Duplicate  designs  will  be  reported  if  there  is  no
improvement between restarts.
seed:  a  number  to  initialize  the  pseudo-random  number  generator.  This
allows experiments to be repeated if so desired.

;alg = eval
Evaluates an existing design (does not generate or optimize).

name or path: Either the filename of an open data file,  or the complete path
of a data file.

;alg = <any algorithm>(stop = total(200 secs))
The algorithm <any algorithm> will stop after running for 200 seconds.

;alg = <any algorithm>(stop = total(3 mins))
The algorithm <any algorithm> will stop after running for 3 minutes.

;alg = <any algorithm>(stop = noimprov(10000 iterations))
The algorithm <any algorithm> will stop if no improvement  has been found for
10000 iterations.

requirements:

incompatibilities
:

Factorial  designs  (;fact).  Factorial  designs  are  generated  with  a  fixed
algorithm.
Orthogonal designs (;orth).  Orthogonal and orthogonal efficient  designs are
generated with a fixed algorithm.
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Design evaluation (;eval).
Continuous attributes and ;alg=mfederov.
Attribute  level  rejection  (;reject)  and  any  non  row  based  algorithm  (all
except ;alg=mfederov).
Attribute level requirements  (;require) and any non row based algorithm (all
except ;alg=mfederov).

example(s): ;alg = rs
;alg = rsc(stop = total(15 mins))
;alg  =  (random=500,  swap=1,  swaponimprov=40,
reset=10000, resetinc=5000)
;alg = mfederov(candidates=200000)

relevant  manual
sections:

Appendix 7B: Steps in generating efficient SC designs
8.6: Algorithms for generating designs in Ngene
Appendix 9B: The Nelder Mead algorithm

11.3.2 alts

description: Specifies the alternatives in the model.

values: ;alts(<string(model  label)>)  =  <string(alternative  1
name)>*, <string(alternative 2 name)>* , ...

default: This property and its property values are mandatory.

comments: Names  of  alternatives  may  contain  numbers,  but  no  spaces.  These  names
need to be used when defining the utility functions in the model property. 

All alternative names that are followed by an optional asterix (*) will  be treated
as  unlabeled.  A  full  discussion  of  the  checks  performed  on  unlabeled
alternatives is documented in Section 8.8.

;alts = 
When a single model specification is  present  in the syntax,  the alts  property
does not need to be qualified.

;alts(<string(model label)>) = 
When  multiple  model  specifications  are  present  in  the  syntax,  the  alts
property  needs  to  be  qualified  with  a  label.  This  label  will  also  be  used  to
qualify  the  utility  functions  specified  in  the  model  property.  In  this  way,
different model specifications can have different numbers of alternatives.

requirements:

incompatibilities
:

The alternative names cannot be reserved words.

example(s): ;alts = car, train, bus

;alts(model1) = car, train, bus
;alts(model2) = train, bus
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relevant  manual
sections:

4.2: An example design syntax: Full factorial designs

11.3.3 bdraws

description: Specifies the type and number of draws for Bayesian prior parameters.

values: ;bdraws = [ random(<integer(R)>)
          | halton(<integer(H)>)
          | sobol(<integer(S)>)
          | mlhs(<integer(M)>)
          | gauss(<integer(A)> , ...)
          ]

default: ;bdraws = halton(200) unless changed in the options dialog box.
If the property  is  not  specified,  the presence of Bayesian  priors  in  the  utility
expressions will determine whether Bayesian draws are drawn.

comments: ;bdraws = random
R pseudo-random draws.

;bdraws = halton
H quasi-random Halton draws.

;bdraws = sobol
S quasi-random Sobol draws.

;bdraws = mlhs
M draws using modified latin hypercube sampling.

;bdraws = gauss
Gaussian  quadrature  draws  with  A  abscissas.  One  can  specify  a  single
number of abscissas which will be used for all prior parameters, or provide the
number  of  abscissas  for  each  prior  parameter.  In  this  case,  the  number  of
abscissas per prior parameter are specified in a comma separated list  in the
same order as the priors are introduced in the models.

The  number  of  Gaussian  quadrature  draws  is  equal  to  the  product  of  each
prior  parameter's  numbers  of  abscissas.  Thus,  Gaussian  quadrature  might
need a large number of rows when there are many prior parameters.

requirements: Lack of specification of any Bayesian priors will result in a warning. 

incompatibilities
:

example(s): ;bdraws = halton(100)
;bdraws = gauss(5)
;bdraws = gauss(1,3,2,3)

relevant  manual 7.3: Bayesian efficient designs
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sections:

11.3.4 block

description: Specifies the number of blocks in the design.

values: ;block = <integer(number of blocks)>, 
         [minsum | minmax], 
         [ total([<integer> mins | <integer> secs]) 
         | noimprov([<integer> mins | <integer> secs])
         ]

default: ;block = minsum, total(3 secs)
The <integer(number of blocks)> property value is mandatory.
If the property is not specified, no blocking column is generated.

comments: <integer(numBlocks)>  (compulsory)
Simultaneous  orthogonal  or  efficient  designs  can  be  blocked,  i.e.  a  design
with  S  choice  situations  is  divided  into  smaller  designs  with  S/<integer(
number of blocks)>  choice situations,  where  <integer(number  of  blocks)>  is
the number of blocks. 

For a simultaneously  efficient  design,  the blocking column is  orthogonal with
all other attributes.

For other designs, the correlations between the blocking column and all  other
attributes  will  be minimized using a  search  procedure.  The  blocking  column
will only be assigned for these designs when the design window is  first  open,
to prevent this calculation slowing down the efficiency optimization.

minsum  (optional)
When  assigning  the  blocking  column  using  a  search,  minimizes  the  total
correlation values between the blocking column and all of the attributes.

minmax  (optional)
When  assigning  the  blocking  column  using  a  search,  minimizes  the
maximum  correlation  value  between  the  blocking  column  and  each  of  the
attributes.

total  (optional)
When  assigning  the  blocking  column  using  a  search,  spend  the  specified
number of seconds or minutes to find the best blocking column.

noimprov  (optional)
When  assigning  the  blocking  column  using  a  search,  accept  the  current
blocking  column  when  no  improvement  has  been  found  for  the  specified
number of seconds or minutes.

requirements:

incompatibilities
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:

example(s): ;block = 3

;block = 2, minmax, noimprov(10 secs)

;block = 4, minsum, total(1 mins)

relevant  manual
sections:

6.2.4: Orthogonal fractional factorial designs

11.3.5 bseed

description: Specifies  the  random  seed  for  the  'bdraws=random'  and  'bdraws=mlhs'
directives.

values: ;bseed = <integer>

default: ;bseed = random

comments: If bseed is  not  specified,  the bdraws for random and mlhs will  be completely
random each time the syntax  is  run.  Otherwise,  it  uses the same seed each
time and therefore reproduces the same output each time.

requirements:

incompatibilities
:

example(s): ;bseed = 12345

relevant  manual
sections:

7.3: Bayesian efficient designs

11.3.6 con

description: Specifies  whether  constants  are  to  be  considered  when  determining  the
efficiency of a design.

values: ;con

default: If the property  is  not  specified,  constants  are  not  considered  in  determining
the design efficiency.

comments: Only  included  whenever  constants  are  to  be  considered  in  determining  the
design efficiency.

requirements:

incompatibilities
:

example(s): ;con
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relevant  manual
sections:

7.2.2: Designs for estimating MNL models

11.3.7 cond

description: Specifies conditional expressions for attribute levels.

values: ;cond:
 [ if ( <LOGICAL EXPRESSION> , <LOGICAL EXPRESSION> )
 | fractional=<decimal(fractionalSize)%
 ]
, ...

where
<LOGICAL EXPRESSION> is
 [ <VALUE>
   [ < | <= | > | >= | = | <> ]
   <VALUE>
 | <VALUE> 
   = 
   [<decimal(constant)> ,...]
 ]
 [ AND | OR ] ...

and
<VALUE> is
[ <string(alternative)>.<string(attribute)> 
| <decimal(constant)> 
| <VALUE> [ + | - ] <VALUE>
]

and
<VALUE> = [<decimal(constant)> , ...]

is equivalent to
<VALUE> = <decimal(constant)> OR ...

default:

comments: This  property  can  be  used  for  attribute  levels  that  are  conditional  on  other
attribute levels.
If  many  attributes  are  related  through  the  conditional  expressions,  memory
problems  may  result.  The  solution  is  to  specify  a  suitably  low  value  of
fractionalSize. See 8.2.2: Constrained designs in Ngene for more details.

requirements: New attribute levels  cannot  be  specified  in  the  cond  property.  Instead,  all
possible  levels  must  be  declared  when  the  attribute  is  specified  in  the
model property,  and these can then be constrained  by  the  cond  property.
Be careful,  there is  currently  no check that  the attribute levels  you specify
in the cond property  were specified in  the  model  property,  and  levels  that
are not in the later will be ignored in the former.



220 Ngene User Manual

© 2012 ChoiceMetrics

incompatibilities
:

Factorial designs (;fact).
Orthogonal designs (;orth).
Modified Federov algorithm (;alg=mfederov).
Multiple designs (i.e. use of the ;fisher property)
Attributes with a continuous specification

example(s): ;cond:
if(alt1.A = 10, alt2.B = [15,20,25])

relevant  manual
sections:

8.2.2: Constrained designs in Ngene

11.3.8 eff

description: Generates  an  efficient  design,  and  specifies  the  efficiency  measure  to
optimize on.

values: ;eff = 
 <decimal(weight)> * <string(model name)>
 ([mnl | rp | rppanel | ec | ecpanel | rpec | rpecpanel
| ood],
 [d | a  |  b  |  s(<decimal(t  threshold)>)  |  wtp(<string
(wtp label)>) | dw | aw | bw | sw(<decimal(t threshold)>
) | none], 
 [fixed | mean | median | dev | min | max])
+ ...

default: ;eff = 1 * (mnl, d, fixed)

weight: 1
t threshold: 1.96
model name: blank (corresponding to a single ;model property  that  has not
been qualified with a label)
wtp label: blank (corresponding to a single ;wtp property  that  has  not  been
qualified with a label)

comments: This property directs Ngene to search for the most  efficient  design,  where the
desired efficiency measure is specified through the property values.

The following efficiency measures are available:
d: d-error (based on the determinant of the AVC), minimized.
a: a-error (based on the trace of the AVC), minimized.
b:  utility  balance,  maximized.  Reported  as  a  percentage,  with  higher
percentages representing greater utility balance.
s:  s-efficiency  measure  (sample  size  based),  minimized.  Optionally
calculated with the user specified t threshold.
wtp: willingness to pay efficiency,  minimised.  Optimizes on a  willingness  to
pay measure specified with the ;wtp property.  If "wtp label"  is  not  specified,
the single unqualified ;wtp  property  is  used  to  define  the  willingness  to  pay
measure.  If  "wtp  label"  is  specified,  the  ;wtp  property  qualified  with  "wtp
label" is used to define the willingness to pay measure.
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dw: d-error, maximized.
aw: a-error, maximized.
bw: attribute level balance, minimized.
sw: willingness to pay efficiency, maximised.
none:  no  comparison  is  made  between  two  designs,  and  so  all  designs
considered during the  search  are  reported.  It  is  strongly  recommended  that
stopping  criteria  are  specified  for  the  search  algorithm  through  the  ;alg
property,  as  the  sheer  number  of  designs  that  are  found  will  quickly
overwhelm Ngene.

For  Bayesian  designs,  one  efficiency  measure  is  calculated  per  Bayesian
draw,  resulting  in  a  set  of  efficiency  measures  E.  These  measures  can  be
aggregated in a variety of ways:
mean: the mean E.
median: the median of E.
dev: the standard deviation of E.
min: the minimum value in E.
max: the maximum value in E.
fixed: the efficiency measure using a fixed prior.  The mean prior is  used  for
normally distributed Bayesian priors, and the midpoint  of the upper and lower
bounds is used for uniformly distributed Bayesian priors.

The efficiency measures  will  vary  according  to  the  type  of  model  assumed.
The following model types are available:
mnl: multinomial logit model.
rp:  MMNL  model.  Random  parameters  need  to  be  specified  in  the  utility
expressions. Any error components specified will be ignored.
rppanel:  MMNL  model  accounting  for  panel  nature.  Random  parameters
need  to  be  specified  in  the  utility  expressions.  Any  error  components
specified will be ignored.
ec:  EC  model.  Error  components  need  to  be  specified  in  the  utility
expressions.  Any  random  parameters  specified  will  be  treated  as  non-
random.
ecpanel: EC model accounting for panel  nature.  Error  components  need  to
be specified in the utility  expressions.  Any random parameters  specified  will
be treated as non-random.
rpec: MMNL model with error components.  Random parameters  and/or error
components  can  be  specified  in  the  utility  expressions,  and  all  will  be
considered.
rpecpanel: MMNL model with error components, accounting for panel nature.
Random parameters  and/or  error  components  can  be  specified  in  the  utility
expressions, and all will be considered.
ood: optimal orthogonal designs. Only the d error can be optimised on.

Ngene allows multiple sets of utility expressions to be specified via the model
property, with each set being labeled. For example:
;model(short): ...
;model(medium): ...
If  this  is  done,  the  eff  property  must  reference  the  correct  set  of  utility
expressions,  with  "model  name"  matching  the  label  in  the  desired  model
property. For example:
;eff = short(d)
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If only a single set of utility expressions is specified,  the model property  does
not need to be qualified. For example:
;model: ...
If this is done, the eff property should not contain any value for "model name
". For example:
;eff = (d)

The  specification  of  an  efficiency  measure,  a  Bayesian  moment,  a  model
type,  and a reference  to  a  specific  set  of  utility  expressions  will  result  in  a
single  efficiency  value  for  any  given  design.  However,  multiple  efficiency
values can be additively  combined  in  the  ;eff  property  using  the  +  operator.
Prior to summation, each efficiency value added can be multiplied by  "weight
", to place greater or lesser importance on each efficiency value.  Any number
of individual efficiency measures can be added,  although be warned that  this
may slow down the search considerably,  especially  if panel model types are
specified.

requirements:

incompatibilities
:

Factorial designs (;fact).
Orthogonal designs (;orth).
Design evaluation (;eval).

example(s): ;eff = (mnl, s(3), fixed)
;eff  =  1.5  *  short(rp,  d,  mean)  +  2  *  medium(rp,  d,
mean) + long(rp, d, mean)
;eff = (ec, wtp(wtp_all), median)

relevant  manual
sections:

7.2.1 Efficiency measures

11.3.9 eval

description: Evaluates the specified data file.

values: ;eval = <string(name or path)>

default: The property value is mandatory.

comments: "name  or  path"  can  be  the  full  path  of  an  Excel  or  .CSV  data  file.
Alternatively,  if the workspace  is  managed,  "name  or  path"  can  refer  to  the
name of a data file in the current project.

A design will  be created using the information  specified  in  the  entire  syntax
(utility expressions, priors etc), with the levels as specified in the data file.

The data file should not  contain a header row.  Each row represents  a  single
choice  situation.  The  first  column  must  contain  a  number  representing  the
design number. If there is only one design,  this  must  be a column of 1's.  The
second column must  contain increasing choice situation numbers  (1,  2,  ...).
All subsequent columns must contain the design levels,  with a single column
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representing an attribute within an alternative.  Columns in the data file will  be
assigned  to  attributes  in  the  order  that  the  attributes  are  specified  in  the
syntax.

requirements:

incompatibilities
:

When  ';eval'  is  specified,  the  design  is  generated  by  reading  in  the  design
levels  from the specified data file.  The  following  properties  are  an  alternative
way  for  instructing  Ngene  how  to  generate  a  design,  and  hence  are
incompatible with ';eval'.

Factorial designs (;fact).
Orthogonal designs (;orth).
User specified algorithms (;alg).

example(s): ;eval = RawDesign.xls
;eval = C:\Store\RawDesign.xls

relevant  manual
sections:

8.7: Evaluating existing designs in Ngene

11.3.10 fact

description: Generates a full or fractional factorial design.

values: ;fact

default: N/A

comments: Full factorial designs
To generate a full factorial design, specify  ';rows=all'.  Care must  be taken,  as
large design dimensions will  lead to a design with a huge number of rows  in
the full factorial, and Ngene will crash when it runs out of memory.

Fractional factorial designs
To generate a fractional factorial design, specify the number of desired rows in
the fractional factorial with the ';rows' property.  The  design  will  be  populated
with a random subset of the full factorial design.

Constraints
The  factorial  design  can  be  constrained  with  ';reject'  and  ';require',  but  not
'cond'.

requirements:

incompatibilities
:

Orthogonal designs (;orth). Correlation values can still be interrogated in the
design window. The full  factorial  design  will  be  orthogonal  (using  Pearson
Product  Moment,  CP  Coefficient,  Point  Biserial  and   J  Index  correlation
measures). Use ';orth' in place of 'fact' to achieve orthogonality  for fractional
factorial designs, as they are unlikely to be orthogonal using ';fact'.
Efficient  designs (;eff).  Efficient  designs are merely  an optimised  fractional
factorial  design,  so  the  ';fact'  property  is  superfluous  when  an  efficient
design  is  desired.  Nonetheless,  all  available  efficiency  results  can  be
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interrogated in the design window.
User specified algorithms (;alg).
Design evaluation (;eval).
Blocking (;block).

example(s): ;fact

relevant  manual
sections:

6.2.1 Full factorial designs
6.2.2 Fractional factorial designs

11.3.11 fisher

description: Specifies  the  design  names,  model  names  and  weights  that  are  used  to
construct  a  Fisher  matrix.  Used  with  pivot  designs  and  designs  with
covariates.

values: ;fisher(<string(fisher label)>) = 
 <string(design  label)>(<string(model  label)>[<decimal
(exact weight)> | <decimal(lower weight)>:<decimal(upper
weight)>] , ...)
+ ...

default:

comments: Specifying multiple  model  labels  within  a  single  design  (as  in  example  one
below) will  cause a homogeneous design  to  be  constructed.  Specifying  one
model label per design will generate heterogeneous designs.

Currently only one fisher property can be specified. This  constraint  is  likely  to
be relaxed in the future. Also,  the formatted scenarios  will  only  show the first
design. Again, this constraint will be relaxed in the future.

requirements:

incompatibilities
:

example(s): ;fisher(fish)  =  des1(small[0.33],  medium[0.33],  large
[0.34])               ? homogeneous design
;fisher(fish) = des1(small[0.33]) + des2(medium[0.33]) +
des3(large[0.34]) ? heterogeneous designs

relevant  manual
sections:

8.3.2 Pivot designs in Ngene
8.4.1 Designs with covariates

11.3.12 foldover

description: Specifies whether a fold-over design will be generated.

values: ;foldover
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default: N/A (by default no fold-over design is generated)

comments: A fold-over design doubles  the  number  of  choice  situations,  but  removes  all
correlation between two-way interactions.

requirements: Orthogonal designs (;orth).

incompatibilities
:

Factorial designs (;fact).
User specified algorithms (;alg).
Design evaluation (;eval).
Attribute level rejection (;reject).
Attribute level requirements (;require).

example(s): ;foldover

relevant  manual
sections:

6.2.5 Orthogonal fractional factorial designs with two-way interactions

11.3.13 Formatting properties

A  range  of  properties  are  appended  to  the  syntax  when  design  matrices  are  formatted  using  the
Scenario  formatting  system.  It  is  strongly  recommended  that  these  properties  are  only  modified
through this  system, and not  directly  from the syntax.  Directly  editing these properties  may  cause
Ngene to crash when opening the design.  Consequently,  the  syntax  structure  is  not  documented,
and the properties are only listed for your reference.

11.3.13.1 formatattributes

11.3.13.2 formatchoices

11.3.13.3 formatstylesheet

11.3.13.4 formattable

11.3.13.5 formattabledimensions

11.3.13.6 formattablefooter
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11.3.13.7 formattableheader

11.3.13.8 formattablestyle

11.3.13.9 formattitle

11.3.14 model

description: Specifies the model structure.

values: ;model(<string(label)>):
 U(<string(alternative)>) = 
  [ <string(parameter)>[<PRIOR>]
  | <string(parameter)>.d[<PRIOR> |...]
  | <string(parameter)>.e[<PRIOR> |...] 
  ]
  * 
  <string(attribute name)>[.ref | .piv | .covar]<LEVELS>
  * ...
 + ...
/ ...

where
<PRIOR> is
[ <decimal(fixed prior)>
| (n, <decimal(Bayesian mean)>,        <decimal(Bayesian
std dev.)>   )
|  (u,  <decimal(Bayesian  lower  bound)>,  <decimal(Bayesian
upper bound)>)
| n,  [ <decimal(rp mean)>        | __ | __ ] , [ <decimal
(rp std dev.)>   | __ | __ ]
| u,  [ <decimal(rp lower bound)> | __ | __ ] , [ <decimal
(rp upper bound) | __ | __ ]
| ec, [ <decimal(ec std dev.)>    | __ | __ ]
]

and
<LEVELS> is
[ [<decimal(level)> , ...]  ([<integer(exact  frequency)>  |
<integer(low  frequency)>  -  [  <integer(high  frequency)>  |
inf ] ] , ...) 
| [<string(attribute name to mimic)>]
|  [fcn([<decimal(constant)>|<string(alternative  name)>.
<string(attribute name)>] [+|-] ...)]
|  [<decimal(lower  continuous  limit)>  :  <decimal(upper
continuous limit)>] 
|  [<decimal(lower  limit)>  :  <decimal(upper  limit)>  :
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<decimal(step size)>] 
| [<decimal(pivot percentage)>% , ...] 
]

default:

comments: This  is  the  most  elaborate  property  to  be  specified  in  the  Design  command.  It
expresses the utility functions of each alternative (if one utility  function is  left  out,
then this alternative is considered to be a no-choice option). 

Each  utility  function  is  a  linear  combination  of  parameters  and  attributes.
Parameter  names  and  attribute  names  are  user-defined  and  may  not  include
spaces.  If for different  alternatives  the  same  parameter  name  is  used,  then  this
parameter is considered generic over these alternatives.  Using the same attribute
name in different alternatives does not have an impact  (although this  can be used
as a shortcut:  attributes  in subsequent  alternatives  with the same  name  and  no
levels specified will assume the levels of the first attribute instance).

Parameters and their priors
parameter[x]  specifies  that  x  is  the  prior  value  of  parameter,  where  x  can  be  a
single value for a fixed parameter, or can denote a random parameter distribution,
or may denote a Bayesian prior distribution (or a combination).  For some designs
(such  as  orthogonal  designs)  x  need  not  be  specified  and  can  therefore  be
omitted.  For generic  parameters,  the prior value x can only  be specified  the  first
time and should be omitted in all other utility functions.

Fixed parameters with fixed priors: 
parameter [x]

Random parameters with fixed priors: 
parameter  [n,x,y]  for  normal  distribution  with  mean  x  and  standard  deviation  y
(requirements: y>=0),
parameter  [u,x,y]  for  uniform  distribution  with  lower  bound  x  and  upper  bound  y
(requirements: y>x).

Error component with fixed prior:
parameter[ec,y]  for  normal  distribution  with  mean  0  and  standard  deviation  y
(requirements: y>=0).

Fixed parameters with Bayesian priors: 
parameter  [(n,x,y)]  for  Bayesian  normal  distribution  with  mean  x  and  standard
deviation y (requirements: y>=0),
parameter [(u,x,y)] for Bayesian uniform distribution with lower bound x and upper
bound y (requirements: y>x).

Random parameters with Bayesian priors: 
parameter  [n,(u,x1,y1),(n,x2,y2)]  for  normal  distribution  with  Bayesian  mean
distributed with a uniform distribution (with parameters x1 and y1) and a Bayesian
standard deviation distribution with a normal distribution (with parameters  x2 and
y2). Other combinations of distributions can be made.

Fixed parameters with fixed priors for a dummy or effects coded attribute:
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parameter.d[x|y|z] for specification of priors for the first three dummy coded levels
of the associated four level attribute.
parameter.e[x|y|z] for specification of priors  for the first  three effects  coded levels
of the associated four level attribute.
The  associated  attribute  does  not  need  to  have  levels  specified.  If  levels  are
specified,  there must  be one more than the number of priors,  and  the  levels  will
internally  be  dummy  or  effects  coded  for  calculations  in  the  current  model
specification. Note however that  in other model specifications that  use the same
attribute,  the specified levels  may be used  if  the  parameter  associated  with  the
attribute is not dummy or effects coded. In this way, the dummy or effects  coding
is  associated  more  closely  with  the  parameter  specification  than  the  attribute
specification.

Attributes and their levels
attribute  [x]  specifies  that  x  is  the  range  of  attribute  levels,  where  x  denotes  a
discrete or continuous range of attribute levels,  or may be relative attribute levels
pivoted around a reference level.

Discrete attribute levels: 
attribute [x1,x2,…]. Each level can only be specified once.

Non-balanced discrete attribute levels: 
attribute [x1,x2,…](y1–z1,y2,…) is to be used in case attribute level balance is  not
required; then attribute level x1 is required to appear between y1 and z1 times,  x2
is required to appear exactly y2 times etc. To specify a maximum that  equals  the
number of rows, specify "inf" for the maximum.

Continuous attribute levels: 
attribute  [x1:x2].  Specific  algorithms,  such  as  Nelder-Mead,  are  required  to  take
advantage  of  continuous  attribute  levels.  For  other  algorithms,  the  number  of
levels generated will be equal to the number of rows in the design,  and the levels
will be equally spaced.

Discrete attribute levels with bounds and a step size: 
attribute  [xLower:xUpper:stepSize]  allows a large number of attribute  levels  to  be
quickly specified. The levels xLower, xLower+stepSize, xLower+2*stepSize, ...  are
utilised, until  the upper bound xUpper is  exceeded.  If too few rows are specified,
not all levels may be used in the design.

Attributes that maintain the same levels as another attribute:
attribute[other attribute] not only  specifies  that  the levels  of the other attribute be
used for attribute, but also that the levels of the two attributes will be the same for
any given row of  any  given  design.  This  is  useful  for  including  scenarios  in  the
experimental design.

Attribute level functions:
attribute[fcn(...)]  will  generate the attribute level by  evaluating the function,  which
can include constants, attributes, and plus and minus operators. This is useful for
specifying probabilities. Refer to Section 8.9 for more details.

Reference and pivot attributes
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attribute.ref[<one level>] indicates that the attribute is  a reference attribute with a
single  level.  attribute.piv[x1,x2,...]  is  a  pivot  attribute,  where  the  levels  can  be
specified  as  positive  or  negative  absolute  values,  or  positive  or  negative
percentages.

Covariate attributes
attrib.covar[<one level>] indicates that the attribute is a covariate.

Interactions
The above specification does not  adequately  cover interactions,  especially  when
the  interactions  involve  dummy  coded  attributes.  For  precise  information  on
interactions, refer to Section 7.2.9, and Section 6.2.4.

requirements
:

incompatibili
ties:

example(s): ;model:
U(alt1) = b1 + b2 * A[0,1,2] + b3 * B[0,1]     /  
U(alt2) =      b2 * A        + b4 * C[0,1,2,3]
? b2 is generic
? b3 and b4 are alternative-specific

;model:
U(alt1) = b1[-1] + b2[2] * A[0:2]                + b3[0.5]
* B[0,1]     /  
U(alt2) =          b2    * C[1,2,3](1-3,1-3,2) + b4[0.3] *
D[0,1,2,3]
? all parameters have fixed priors,
? levels of attribute A are continuous,      
? levels of C need not be balanced 
?  (level  1  should  appear  1  to  3  times,  level  3  should
appear exactly twice)

;model:
U(alt1)  =  b1[-1]  +  b2[n,1,(u,0,0.2)]  *  A[0,1,2]  +  b3
[(n,0.5,0.1)] * B[0,1]   /  
U(alt2) =          b2                * A[1,2,3] + b4
[n,0.3,0.1]   * C[0,1,2,3]
? b1 is a fixed parameter with a fixed prior,
?  b2  is  a  random  parameter  with  a  Bayesian  standard
deviation,
? b3 is fixed parameter with a Bayesian prior,
? b4 is a random parameter with fixed priors.

relevant 
manual 
sections:

4.2: An example design syntax: Full factorial designs
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11.3.15 orth

description: Generates an orthogonal design.

values: ;orth = [ sim
        | seq
        | seq2
        | ood ]

default: ;orth = sim

comments: Generates  a  fully  orthogonal  design,  with  no  Pearson  Product  Moment
correlations between the levels  of the attributes.  The actual attribute pairs  for
which no correlations will exist depends on the type of orthogonality specified.
 There may not  exist  an orthogonal design with the number of rows specified
with ';rows'.  Hence,  the user-defined number of rows will  be used as  a  lower
bound.

Orthogonal designs may be blocked using ';block', and a foldover column may
be added using ';foldover'.

;orth = sim
Maintains  orthogonality  within  and  across  all  alternatives.  This  may  require
many rows to be generated in the design.

;orth = seq
Maintains  orthogonality  only  within  each  alternative.  Each  alternative  must
have the same attributes with the same levels.

;orth = seq2
Maintains  orthogonality  only  within  each  alternative.  Each  alternative  may
have different attributes with different numbers of levels.

;orth = ood
Generates  a  design  using  the  OOD  efficiency  measure  and  the  OOD
algorithm.

For  greater  detail  on  the  various  types  of  orthogonal  design,  including  their
generation within Ngene, refer to Chapter 6.

Efficient orthogonal designs
Specify  ';eff'  in  addition  to  ';orth'  to  generate  efficient  orthogonal  designs.  A
custom  algorithm  will  be  implemented  that  spans  all  possible  orthogonal
designs.

requirements:

incompatibilities
:

Factorial designs (;fact). Orthogonal designs are fractional factorial designs,
and full factorial designs are orthogonal, so ';fact' is  superfluous when ';orth'
is specified.
User specified algorithms (;alg).
Design evaluation (;eval).
Attribute level rejection (;reject).
Attribute level requirements (;require).
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example(s): ;orth = seq

relevant  manual
sections:

6.2.4 Orthogonal fractional factorial designs

11.3.16 prec

description: Specifies the precision of all numbers reported in Ngene.

values: ;prec = <integer>

default: ;prec = 6 unless changed in the options dialog box.

comments: Naturally, all calculations are made with maximum precision,  and outputs  are
only rounded immediately prior to being reported.

requirements:

incompatibilities
:

example(s): ;prec = 8

relevant  manual
sections:

11.3.17 rdraws

description: Specifies the type and number of draws for random prior parameters.

values: ;rdraws = [ random(<integer(R)>)
          | halton(<integer(H)>)
          | sobol(<integer(S)>)
          | mlhs(<integer(M)>)
          | gauss(<integer(A)> , ...)
          ]

default: ;rdraws = halton(200) unless changed in the options dialog box.
If  the  property  is  not  specified,  the  presence  of  random  priors  in  the  utility
expressions will determine whether random draws are drawn.

comments: ;rdraws = random
R pseudo-random draws.

;rdraws = halton
H quasi-random Halton draws.

;rdraws = sobol
S quasi-random Sobol draws.
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;rdraws = mlhs
M draws using modified latin hypercube sampling.

;rdraws = gauss
Gaussian  quadrature  draws  with  A  abscissas.  One  can  specify  a  single
number of abscissas which will be used for all prior parameters, or provide the
number  of  abscissas  for  each  prior  parameter.  In  this  case,  the  number  of
abscissas per prior parameter are specified in a comma separated list  in the
same order as the priors are introduced in the models.

The  number  of  Gaussian  quadrature  draws  is  equal  to  the  product  of  each
prior  parameter's  numbers  of  abscissas.  Thus,  Gaussian  quadrature  might
need a large number of rows when there are many prior parameters.

requirements: Lack of specification of any random priors will result in a warning. 

incompatibilities
:

example(s): ;rdraws = halton(100)
;rdraws = gauss(5)
;rdraws = gauss(1,3,2,3)

relevant  manual
sections:

7.2.3: Designs for estimating random parameters models

11.3.18 reject

description: Specifies which combinations of attribute levels in choice situations should be
rejected.

values: ;reject:
  <VALUE>
  [ < | <= | > | >= | = | <> ]
  <VALUE>
  [ AND | OR ] ... 
, ...

<VALUE> is
[ <string(alternative)>.<string(attribute)> 
| <decimal(constant)> 
| <VALUE> [ + | - ] <VALUE>
]

default: When the property is specified, a value is mandatory.

comments: This  property  will  prevent  certain  combinations  of  attribute  levels  from
appearing in the same row of the design.  Logical expressions are specified in
this  property,  and  if  they  evaluate  to  true  for  any  potential  row,  the  row  is
rejected and cannot be placed in the design. In this  way,  it  is  possible to find
a constrained design. (An alternative approach is to use the ;require property,
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where all logical expressions must evaluate to true when applied to all  rows of
the design.) The  ;reject  property  will  only  work  on  design  search  strategies
that  modify  designs  by  changing  an  entire  row:  factorial  designs  and  the
modified  Federov  algorithm.  To  specify  constraints  with  the  swapping
algorithm, use the ;cond property instead.

Any  number  of  independent  logical  expressions  can  be  specified,  although
care must be taken.  A large number of constraints  will  reduce the number of
rows available to populate the design  with  (i.e.  the  candidate  set  size).  The
number of rows that do not violate the constraints  should be at  least  equal to
the number of rows for a factorial design, and greater than the number of rows
for  the  modified  Federov algorithm  (to  allow  some  row  exchange  to  take
place).

requirements: Factorial designs (;fact) or a row based search algorithm (;alg=mfederov).

incompatibilities
:

Orthogonal designs (;orth).
Non row based search algorithms (all except ;alg=mfederov).

example(s): ;reject:
alt1.A + 1 > alt2.B ,
alt1.B = alt1.C and alt1.D <> 0

relevant  manual
sections:

8.2.2: Constrained designs in Ngene

11.3.19 rep

description: The number of draws to use in the sample of a panel based model.

values: ;rep = <integer>

default: When the property is specified, a value is mandatory.
When the property is not specified, the default is 200.

comments:

requirements:

incompatibilities
:

example(s): ;rep = 500

relevant  manual
sections:

7.2.3: Designs for estimating random parameters models
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11.3.20 require

description: Specifies attribute level conditions that  must  be met  for a choice situation to
be acceptable in the design.

values: ;require:
  <VALUE>
  [ < | <= | > | >= | = | <> ]
  <VALUE>
  [ AND | OR ] ... 
, ...

<VALUE> is
[ <string(alternative)>.<string(attribute)> 
| <decimal(constant)> 
| <VALUE> [ + | - ] <VALUE>
]

default: When the property is specified, a value is mandatory.

comments: This  property  will  require  that  certain  attribute  level  conditions  be  met  for  a
choice  situation  to  be  acceptable  in  the  design.  Logical  expressions  are
specified in this property,  and all  expressions must  evaluate to true for a row
to  be  placed  in  the  design.  (An  alternative  approach  is  to  use  the  ;reject
property,  where  if  any  logical  expression  evaluates  to  true  for  any  potential
row,  the  row is  rejected  and  cannot  be  placed  in  the  design.)  The  ;require
property  will  only  work  on  design  search  strategies  that  modify  designs  by
changing an entire row:  factorial designs and the modified Federov algorithm.
To  specify  constraints  with  the  swapping  algorithm,  use  the  ;cond  property
instead.

Any  number  of  independent  logical  expressions  can  be  specified,  although
care must be taken.  A large number of constraints  will  reduce the number of
rows available to populate the design  with  (i.e.  the  candidate  set  size).  The
number  of  rows  that  meet  the  conditions  specified  in  the  ;require  property
should  be  at  least  equal  to  the  number  of  rows  for  a  factorial  design,  and
greater than the number of rows for the modified  Federov algorithm  (to  allow
some row exchange to take place).

requirements: Factorial designs (;fact) or a row based search algorithm (;alg=mfederov).

incompatibilities
:

Orthogonal designs (;orth).
Non row based search algorithms (all except ;alg=mfederov).

example(s): ;require:
alt1.A + 1 > alt2.B ,
alt1.B < alt1.C

relevant  manual
sections:

8.2.2: Constrained designs in Ngene
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11.3.21 rows

description: Specifies the number of choice situations.

values: ;rows = [ <integer>
        | all 
        ]

default: This property and its property value are mandatory.

comments: ;rows = <integer>
Specifies  the exact  number of choice situations to be generated.  There  may
not  exist  an orthogonal design  with  the  specified  number  of  rows.  Hence,  if
orthogonal designs are specified with ';orth',  the user-defined number of rows
will be used as a lower bound.

;rows = all
This  option is  only  available  when  a  factorial  design  is  specified  with  ';fact'.
The  maximum  number  of  choice  situations  will  be  generated  (i.e.,  the  full
factorial).  Care  must  be  taken,  as  large  design  dimensions  will  lead  to  a
design with a huge number of rows in the full  factorial,  and Ngene  will  crash
when it runs out of memory.

Specification  of  the  ';foldover'  property  will  double  the  number  of  choice
situations specified with ';rows'.

requirements: ';rows = all' requires that ';fact' be specified.
<integer> cannot exceed the size of the full  factorial if the ';fact' property  is
specified.

incompatibilities
:

example(s): ;rows = 12

relevant  manual
sections:

4.2: An example design syntax: Full factorial designs

11.3.22 rseed

description: Specifies  the  random  seed  for  the  'rdraws=random'  and  'rdraws=mlhs'
directives.

values: ;rseed = <integer>

default: random

comments: If rseed is  not  specified,  the rdraws for  random  and  mlhs  will  be  completely
random each time the syntax  is  run.  Otherwise,  it  uses the same seed each
time and therefore reproduces the same output each time.

requirements:
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incompatibilities
:

example(s): ;rseed = 12345

relevant  manual
sections:

7.2.3: Designs for estimating random parameters models

11.3.23 start

description: Uses  the  specified  design  as  the  starting  design  for  an  efficient  design
search.

values: ;start = <string(name or path)>

default: When the property is specified, a value is mandatory.

comments: When performing an efficient  design  search,  the  seed  design  will  be  loaded
from the data file specified by the ;eval property.

"name  or  path"  can  be  the  full  path  of  an  Excel  or  .CSV  data  file.
Alternatively,  if the workspace  is  managed,  "name  or  path"  can  refer  to  the
name of a data file in the current project.

The starting design will be created using the information specified in the entire
syntax (utility expressions, priors etc), with the levels as  specified in the data
file.

The data file should not  contain a header row.  Each row represents  a  single
choice  situation.  The  first  column  must  contain  a  number  representing  the
design number. If there is only one design,  this  must  be a column of 1's.  The
second column must  contain increasing choice situation numbers  (1,  2,  ...).
All subsequent columns must contain the design levels,  with a single column
representing an attribute within an alternative.  Columns in the data file will  be
assigned  to  attributes  in  the  order  that  the  attributes  are  specified  in  the
syntax.

requirements: Efficient design search must be specified (;eff).

incompatibilities
:

example(s): ;start = RawDesign.xls

;start = C:\Store\RawDesign.xls

relevant  manual
sections:

8.6: Algorithms for generating designs in Ngene
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11.3.24 store

description: Specifies how many designs to store in memory during a search.

values: ;store = [ <integer>
         | all 
         ]

default: 10

comments: ;store = <integer>
Retains  the most  recent  <integer> designs in memory  during a search,  plus
the first design.

;store = all
Retains all designs in memory during a search,  but  the user must  accept  the
risk of memory issues.

Refer to the Options dialog box for more information.

requirements:

incompatibilities
:

example(s): ;store = 15

relevant  manual
sections:

3.4: Output window

11.3.25 trimdist

description: Additionally  reports  Bayesian  efficiency  measures  using  a  subset  of  all
Bayesian draws.

values: ;trimdist = <decimal number(low)>, <decimal number(high)
>

default: The two property values are mandatory.
If  the  property  is  not  specified,  the  additional  Bayesian  efficiency  measure
outputs are not reported.

comments: This  allows  a  second  set  of  Bayesian  efficiency  measures  to  be  reported
using a subset of all available Bayesian draws. 

For each efficiency measure, L draws with the lowest efficiency measures are
removed, as are H draws with the highest efficiency measures,
where:
L = Round(<decimal number(low)> / <total number of draws>)
H = Round(<decimal number(high)> / <total number of draws>).
Only  the  remaining  draws  are  used  to  calculate  the  various  Bayesian
efficiency moments (mean, minimum, maximum, standard deviation,  median).
The  draws  discarded  may  vary  from  one  efficiency  measure  (e.g.  d,  a)  to
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another.

requirements: Bayesian priors  must  be specified in  the  utility  expressions  for  this  to  be
useful.

incompatibilities
:

example(s): ;trimdist = 10, 10

relevant  manual
sections:

11.3.26 wtp

description: Specifies  a  willingness  to  pay  expression  that  is  used  to  generate  a
willingness to pay efficiency measure.

values: ;wtp(<string(model label)>) = 
<string(wtp label)>( [ * |  <decimal(weight)>  *  <string
(parameter)> , ... ] / <string(cost parameter)> )

default: When the property is specified, a value is mandatory.

comments: Multiple  wtp  efficiency  measures  can  be  generated,  so  long  as  each  is
labelled with a unique "wtp label".  All  specified parameters  must  exist  in the
associated model (either the model  specification  labeled  with  "model  label",
or otherwise the default unlabeled model if the wtp property is unqualified).

If a star is specified in the numerator, all non-cost parameters  will  be included
in  the  wtp  efficiency  calculation.  Alternatively,  individual  parameters  can  be
specified and weighted with "weight".

requirements:

incompatibilities
:

example(s): ;wtp(m1) = wtp1(0.4*G1, 0.6*B1 / G2),  ? weighted
           wtp2(* / G2)                ? all non-cost
parameters in the numerator

relevant  manual
sections:

7.2.1 Efficiency measures
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11.4 Reserved words

There are  a  number  of  words  that  are  reserved  by  Ngene,  and  may  not  be  used  for  user  defined
variables such as the names of alternatives, attributes, priors. These words are listed below.

Any of the property names listed in this chapter (alg, rows, model, etc)
Design
Any word that contains the following symbols: ?  ;  $  :  =  ,  .  |  (  )  [  ]  *  +  -
Any word that contains only numbers

It  is  recommended that  user defined variable names consist  only  of  alpha-numeric  characters,  and
that all other symbols be left out of the names. Failure to observe this might lead to unexpected error
messages or software crashes.



Chapter 12

Endnotes
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12 Endnotes

1:  Labeled choice experiments  involve studies  where the names of the  alternatives  on  offer  convey
meaning to  the  respondents  beyond  the  order  in  which  they  are  shown  to  respondents  (e.g.,  the
alternatives  may be labeled as  car,  bus and train).  In unlabeled choice  experiments,  the  names  of
the alternatives  are only  meaningful in so far as  they relate the order of the alternative as  shown to
the  respondent  (e.g.,  Option  A,  Option  B,  etc.).  In  the  later  case,  each  alternative  may  actually
represent a car or a bus or a train in terms of the attribute levels  shown to the respondent,  but  the
fact that the alternative resembles one of these modes is  not  explicitly  stated to the respondent.  An
exception  to  this  rule  exists  where  the  different  alternatives  are  treated  as  an  attribute  in  the
experiment. Also, in many SC experiments,  a type or brand of alternative is  often mentioned in the
scenario descriptor of the task. In such cases,  all  the alternatives  represent  different  versions of the
same type or brand (e.g., Option A, Option B, etc., represent different alternative buses). 

2: A degree of freedom is defined here as  the total number of parameters  (excluding the constants),
plus 1. All constants are accounted for in the “plus 1”.

3:  For  example,  the  authors  once  constructed  a  survey  where  the  two  alternatives  represented
different  potential  dates.  One  attribute  in  the  experiment  was  that  the  potential  date  either  had
children or did not.  Because the design required that  one potential date always had children  whilst
the other did not,  problems arose,  particularly  with younger respondents,  who  always  selected  the
date without  children.  This  occurred to the point  where no information could be gained on the other
attributes of the design. 

4: The term asymptotic refers to the fact that it is consistent in large samples,  or it  is  representative
as an average for small samples when the survey would be repeated many times.

5:  The assumption of single respondent  is  just  for convenience and  comparison  reasons  and  does
not have any further implications. Any other sample size could have been used,  but  it  is  common in
the literature to base it on a single respondent.

6: The theoretical lowest rate of convergence for quasi-random MC simulation is O((lnK R) / R),  which
depends  on  the  number  of  dimensions,  K,  such  that  in  theory  quasi-random  MC  simulation  can
become quite slow for higher dimensions.  The fastest  theoretical rate  of  convergence  is  O(1/R).  In
practice,  the  rate  of  convergence  seems  to  be  much  closer  to  this  faster  rate,  even  for  higher
dimensions.

7: As an example, consider the 5th draw using 2 (the first prime number) as base. Then r =  5 can be

expressed using three digits as 101 in base 2, because 5 = 1.20 +  0.21 +  1.22.  The 5th draw is  then

given by 1.2-0-0 + 0.2-1-1 + 1.2-2-1 = 0.5 + 0 + 0.125 = 0.625.

8: For example, suppose that the first  parameter has two abscissas and the second parameter has

three. Let 
1
(1) and 

1
(2) denote the abscissas for the first parameter and 

2
(1),  

2
(2) and  

2
(3) the

abscissas of the second parameter. Then the draws for  will be (
1
(1),

2
(1)),  (

1
(1),

2
(2)),  (

1
(1),

2
(3)), (

1
(2),

2
(1)), (

1
(2),

2
(2)) and (

1
(2),

2
(3)), hence 6 draws in total.

9:  The minimum number of abscissas is  typically  two,  such  that  with  10  random  parameters,  the

minimum  number  of  draws  possible  using  Gaussian  quadrature  is  210  =  1,024.  Using  three

abscissas per random parameter increases this number to 310 = 59,049.

10: The assumption of single respondent  is  just  for convenience and comparison reasons and does
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not have any further implications. Any other sample size could have been used,  but  it  is  common in
the literature to normalize it to a single respondent.

11: If Monte Carlo simulations are used rather than the true analytical second derivatives to calculate
the AVC matrix for each design matrix, the amount  of computing time required may be such that  at
most  only  a few hundred or  so  possible  designs  may  be  explored,  particularly  for  more  advanced
models  such  as  the  MMNL model  using  Bayesian  prior  parameter  distributions.  For  this  reason,
using the true analytical second derivatives for the specified model is preferred, yet even so,  it  is  still
unlikely that for designs of even a moderate size, all possible designs can be evaluated.
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