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Design efficiency for non-market valuation
with choice modelling: how to measure it,
what to report and why*

Riccardo Scarpa and John M. Rose'

We review the basic principles for the evaluation of design efficiency in discrete choice
modelling with a focus on efficiency of WTP estimates from the multinomial logit model.
The discussion is developed under the realistic assumption that researchers can plau-
sibly define a prior belief on the range of values for the utility coefficients. D-, A-, B-,
S- and C-errors are compared as measures of design performance in applied studies
and their rationale is discussed. An empirical example based on the generation and
comparison of fifteen separate designs from a common set of assumptions illustrates
the relevant considerations to the context of non-market valuation, with particular
emphasis placed on C-efficiency. Conclusions are drawn for the practice of reporting
in non-market valuation and for future work on design research.
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1. Introduction

Stated choice modelling has now an established role in non-market valuation.
Practitioners are engaged in testing the method and defining the boundaries
of its use in public decision making and cost benefit analysis. In this respect
the method has taken up a research agenda which is quite distinctive from
other fields of applications, such as in transport, marketing, food choice and
health research. One of the areas of distinctiveness is associated with the
methodology of experimental design for the specific purpose of deriving
non-market values

A survey of existing non-market valuation studies indicates that there is a
prevailing format of stated choice surveys in non-market valuation. Typically,
these surveys involve asking respondents to indicate their preferred alterna-
tive from those offered within a given choice set. Alternatives in the choice
set are often outcomes of policies that can vary in their effects of relevance to
the respondent. Effects of policies are described by a selected number of
attributes, each of which can take a qualitative or numerical level. Rather
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254 R. Scarpa and J. Rose

than reviewing a single choice set, respondents are typically asked to evaluate
several choice sets, thus increasing the number of observations per individual
surveyed and producing a panel of discrete choice responses. Underlying
stated choice surveys are experimental designs, which are used to allocate the
levels of the attributes that make up the alternatives within each of the choice
sets used in the survey. As such, experimental designs lie at the core of all
stated choice studies.

Conceptually, experimental designs may be viewed as the systematic
arrangement in matrices of the values that researchers use to describe the
attributes representing the alternative policy options of the hypothetical
choice sets. As the total number of possible combinations of attribute and
attribute levels can be huge even with relatively simple problems, some theory
must be used to drive the selection of these levels and their arrangements in the
choice sets to achieve the required information within practical sample sizes.

Via experimental design theory, the analyst is able to determine the values
to be assigned to attributes in each alternative situated within the choice
sets to be used in the survey. The assignment of these values occurs in some
systematic (i.e. non-random) manner so as to achieve the intended results of
the survey in an efficient (i.e. a least cost) manner. Cost effectiveness is of
paramount importance in many non-market valuation studies, so design
efficiency is a much sought after property as it allows researchers to minimise
the sample sizes necessary to achieve a given degree of estimation accuracy.
Design theory makes use of various criteria to evaluate the outcomes of these
assignments on the basis of the assumptions invoked by the analyst as
incorporated by a given model specification. The selection of the correct set
of criteria will drive the analyst to an adequate choice of experimental design
for the purpose at hand. However, this will be conditional on the chosen
specification and on other necessary assumptions made by the researcher.

Experimental design techniques are of general relevance in survey research.
However, the specific focus of non-market valuation on the derivation of
implicit prices from discrete choices has some important and distinctive
implications in experimental design practice. Such implications are still
inadequately addressed in the literature, as recently noted, for example, by
Ferrini and Scarpa (2007) and Toubia and Hauser (2007). The present paper
intends to contribute to developing an understanding of these implications
within the ‘workhorse’ of discrete choice analysis: the conditional logit model
predicated on random utility theory. Extensions to other specifications of the
logit family are conceptually immediate, although technically challenging,
and definitely beyond the scope of this paper.

To do so, we selectively draw from the wide and rapidly expanding literature
in experimental design for logit models and we propose an unfrequently used
criterion based on the specific needs of non-market valuation. For choice
modelling surveys developed to estimate monetary values, desirable criteria
should revolve around efficiency of willingness to pay (WTP) estimates. For
models specified in the preference space, which represent the vast majority
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Design efficiency for choice modelling 255

used in practice,’ WTP for single attributes are functions of parameter estimates
of logit models predicated on random utility theory. While criteria measuring
predictive performance of probabilities, utility balance across alternatives
and efficiency of the utility estimates are much more frequently used in design
evaluation, the way such criteria are related to efficiency of and sample size
requirements for WTP estimates is unclear. In this paper we set up the building
blocks for investigating such a relationship and provide a worked out example
exploring the relationship between parameter efficiency, WTP efficiency and
sample size requirements for stated choice surveys. We set up our example in
a setting that is most common in non-market valuation applications, the one
with repeated choices from two hypothetical alternatives and the status-quo
or no-buy option. These are the most frequent operational conditions in non-
market valuation studies.

The rest of the paper is organised as follows. Section 2 provides a discussion
of the relationship between discrete choice models, random utility theory and
experimental design. Section 3 discusses various efficiency criteria that have
been employed in the literature before the introduction of an uncommon
criteria based on WTP efficiency, which is discussed in Section 4. Section 5
provides a brief discussion on what should be reported in terms of statistical
measures after which Section 6 discusses various algorithms for generating
efficient designs. In Section 7 we discuss the issue of scaling, which has impli-
cations for designs with status-quo and it has often been ignored by the exist-
ing literature. In Section 8 we discuss a case study in which 15 experimental
designs optimised on the basis of various criteria and generated using different
design strategies are contrasted. Our conclusions and ideas for further
research are reported in Section 9.

2. Discrete choice models, random utility and experimental design

Qualitative choices are based on discrete outcomes represented by the selec-
tion of alternatives from given consideration sets. What form of evaluation
(lexicographic, elimination by aspect, economic or other attribute screening
rules, etc.) is predominant among respondents in driving such selections
remains an elusive issue. Much research is being conducted on methods to
practically distinguish these processes starting from observed behaviour.
Regardless of actual evaluation processes, in applied research, the most
successful paradigm to date has been the random utility theory (RUT), and
we refer to this in what follows. Similarly, in terms of statistical analysis of
responses, the most successful specification consistent with RUT has been the
conditional logit model (McFadden 1974). This model remains at the core

' Random utility applications can accommodate models directly specified in the WTP
space. For examples of this kind from stated preference data see Train and Weeks (2005), and
for an example from revealed preference data see Scarpa et al. (in press). In these specifications
attribute WTPs are coefficient estimates and not derived from functions of such estimates.
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of most of the more sophisticated specifications, such as nested and mixed logit
models. What is discussed and illustrated in practice here can be easily extended,
although not so easily illustrated, to more sophisticated RUT-based models.

The main point of departure of our study concerns the logical consequences
from being able to assume the direction and sometime the relative magnitude
of the values of the taste intensity parameters in the utility function. Unfor-
tunately, within the published literature there appears to have developed two
separate paradigms for constructing designs, both of which claim to generate
designs aimed at improving the overall efficiency of stated preference surveys.
Regrettably, both paradigms use different criteria to judge the overall level of
efficiency of a generated experimental design. One design paradigm seeks to
maximise differences between the attribute levels of the stated preference
alternatives, whereas the second method attempts to minimise the variances of
the parameter estimates obtained for each of the attribute coefficients included in
the utility specification. This second approach is based on the observation that
as soon as the researcher can plausibly defend that some attributes of choice may
plausibly be expected to have a given sign or relative size, the efficiency of the
design for a logit specification can easily be shown to be improved from what
would be the case in the absence of such assumptions. Because of these radi-
cally different starting assumptions our work is to be located in the second
paradigm and cannot be compared to similar research carried out within the
limited framework of probability balanced designs, that are predicated on
researchers’ total ignorance of the values of taste intensities (e.g. Street et al.
2001, 2005; Burgess and Street 2005; Lusk and Norwood 2005; Street and
Burgess 2005). With this premise, these authors proceed to develop a discussion
prevalently based on the property of orthogonality,” which is — as they them-
selves note — much more relevant for designs developed for linear multivariate
models than it is for highly non-linear models such as those in the logit family.

As a matter of fact, we and many others (e.g. Sindor and Wedel 2001,
2002, 2005; Bliemer and Rose 2005; Bliemer et al. in press; Ferrini and
Scarpa 2007 and Kanninen 2002; Kessels et al. 2006) argue exactly the oppo-
site, which is that in the greatest majority of non-market valuation studies,
researchers indeed are able to predict at least the sign of the price coefficient.
In reality, however, researchers can normally do more than this and express
some beliefs on the range of (relative) values that are likely to be taken by
other parameters in the utility function.

In terms of assumptions our research is therefore more akin to research efforts
by Sandor and Wedel (2001, 2002, 2005), Bliemer and Rose (2005), Bliemer
et al. (in press), Ferrini and Scarpa (2007) and Kessels et al. (2006). We also note
that this approach is more in keeping with previous literature in optimal design
for non-market valuation (Kanninen 1993a,b; Alberini 1995), and of
sequential improvement of survey designs in non-market valuation

% Orthogonality here refers to experimental designs (or data) where the attributes of the
design (or data) are uncorrelated with one another.
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(Kanninen 1993b; Scarpa et al. 2007). It is also more consistent with the
notion that selected attributes for choice modelling studies are usually relevant
to respondents and hence different from zero in the population of interest.

We will show with examples that when adequately expressed, this a priori
information is of great use and can lead to substantial efficiency gains in the
design. In doing so, however, the analyst must be made aware of some potential
difficulties, some of which are of specific interest to the current choice
modelling practice for the purpose of non-market valuation, such as the
effect of the status-quo alternative and that of the choice of attribute coding
on the evaluation of the efficiency of the design.

We now move our attention to the definition of efficiency in the context of
the logit model commonly used to derive estimates of utility coefficients from
observed discrete choice.

3. Measuring design efficiency for taste intensities

In this section we examine the measures of design efficiency that are of interest
when the objective is to estimate the coefficients of the indirect utility function,
or the so-called ‘taste intensities’.

3.1 The basics

Consider a situation involving the choice between i, j=1, 2, ..., J alternatives,
each of which is described by k=1, 2, . . ., K attributes. Assuming the choice
process of choice situation s=1, 2,..., S is modelled using a conditional
logit specification with Gumbel error scale A >0, we get:
ABxg;
Pr(Y, =i)=—5—— A>0, (D

Z e AB'xy

J=1

as the probability that alternative i will be selected from the set of J alternatives
available in choice task s.

The specific values of x,; are defined by the experimental design. An efficient
design will minimise the variance-covariance estimator, or — put differently —
will maximise the amount of information the design conveys to identify the
estimates of the vector B The information matrix for the design under the
conditional logit assumption is given by the matrix of second derivatives of
the log-likelihood function, which can compactly be written as:

2 N S J (2)
1(B, XSj) - aa[;gﬁl: = _ZZZPV(XS] - X-Yj)(xsf - X"f/),

n=l s=l j=1

kYA

J
with X = Zstx
=
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where n denotes respondent n=1, 2,..., N and s choice situation s=1,
2, ..., S. The resulting matrix will be of size K x K.

One of the reasons for the popularity of the multinomial logit model is that
of having a relatively simple mathematical formulation of both the Jacobian
(gradient or vector of first derivatives) and Hessian (matrix of second deriva-
tives) models. These two objects, however, are functions of both the utility
coefficients 8 and the matrix of choice attributes x,; (i.e. the experimental
design). So, an informative design is one that increases the size of the elements
contained within /(8, x,). In other words, taken g(/(B, x,,)) as a measure of
information, an informative design should make this measure large. At this
stage it is useful to revise the relationship between /(f3, x,;) and a common
Maximum Likelihood (ML) estimator of the asymptotic variance-covariance
(AVC) matrix Q(, x,;) of a design. The Maximum Likelihood estimator of
the AVC matrix for a design to be used with the conditional logit model
is the negative of the inverse of the expected Fisher information matrix
(e.g. see Train 2003), where the latter is equal to the second derivatives of the

log-likelihood function:

-1
d’In L
AVC = Q(B, x,,,)) = [EU(B, x, )] =| - : 3
(B, x,y) = [EU(B, x,)]] { o’?ﬂaﬁ’} 3)
where In L is the log-likelihood of the design:
N S J
InL= 222)’,,5_/111 Pns_i(xn:i’ ﬁ)’ (4)
n=l s=1 j=1

and s denote the choice tasks implied in the design, n the respondent, y,; the
choice indicator, while j denote the alternatives.

Because of this inverse relationship, in choosing an informative (efficient)
design, one can choose to think in equivalent terms of either maximising
information or minimising variance. A suitable algorithm would search the
arrangement of attribute and levels, in a suitably coded matrix x,;, such that
an optimal solution is found according to some stopping criteria from the
sometime extremely large feasible set of solutions.

3.2 Design efficiency measures

A key passage is the definition of the function g(-), which is useful to define
as a single number, rather than a collection of numbers, as in vectors and
matrices. A convenient scalar measure of the size of a matrix is its deter-
minant, which is a sum of terms, each made-up of products of systematically
selected elements of the matrix. A non-zero determinant matrix implies that
the matrix has full rank (no collinearity and identification of the ). So, the
determinant of the information matrix (or equivalently minimising that of
the AVC) is a valid measure of the efficiency of a candidate design. However,
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the determinant will be larger as K — the number of elements in §— increases,
so that one must devise a measure that accounts for that too. An often used
measure is the D-error:

D-error = det(Q(f, x,;))"* (5)

Note that when each respondent is asked to review the same set of choice
tasks, it is common to compute such efficiency measures assuming a single
respondent. Although not necessary, we currently adopt this assumption for
simplicity, and as such, we drop the subscript 7.

Rather than the determinant, another measure of efficiency has been used the
so-called A-efficiency, measured by the A-error, which is the trace of the AVC:

A-error = trace((fB, x,)). (6)

However, this measure seems to have encountered lower acceptance and
use within the published literature. The reason for this is that only the main
diagonal elements of the AVC matrix are used in computing the trace, and
hence this measure does not account for the off-diagonals and so it may pro-
duce very large covariances for the parameters.

One final measure, which we explore in this paper, does not look at the AVC
matrix, but at the choice probabilities for the design. This measure, proposed
by Kessels et al. (2004), is not explicitly meant to be used as a measure of
design efficiency, however, we use it here as a means of attempting to prevent
choice sets containing alternatives that may be strongly dominated. The
probability or utility balance of a design is given by the following statistic:

)

Equation (7) will range between zero and 100 per cent, with the percentage
value representing how balanced the probabilities (or utilities) are over the
alternatives within the design. A zero value indicates that there exists a
completely dominant alternative within each choice set, whereas a value of
100 per cent indicates that each alternative in every choice set has an equal
probability of being chosen.

In constructing a design, different combinations of attribute levels (i.e. different
experimental designs) will produce different D- and A-error measures, and
different B statistic values. Given that lower D- or A-error values typically
correspond to lower values within the AVC matrix under consideration (e.g.
the smaller the determinant of a matrix, the smaller on average will be the
elements contained in that matrix), locating a design with a lower D-error
leads to a design that is expected to produce smaller parameter variances and

B=

(7
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covariances. On the other hand, the use of the A-error as a design criterion
would be expected to result in a design with minimum variances, but not
necessarily small covariances, this is because the trace only considers the
diagonals of the AVC matrix. Thus, searching over different arrangements of
attribute levels in x; with the objective of minimising these scalar measures
allows the analyst to search for designs that will be expected to produce smaller
standard errors (and covariances depending on the criteria employed). As
such, designs with lower D- or A-errors are typically said to be designs that are
D- or A-efficient. The same is true of other efficiency measures discussed below.

Note that the probability balance of the design, as given by the B-statistic
in Equation (7), is typically not used in generating efficient designs. This is
despite there being a clear relationship between this value and the elements in
the AVC matrix of discrete choice models (see Kanninen 2002).?

We would argue that any other measure is not only relatively uninformative,
but in some cases can even be misguiding. Consider the frequent practice of
reporting the following design statistic in stated choice studies:

100
S ‘ (xx)

D-efficiency = [ y} , )

(e.g. Lusk and Norwood 2005, p. 772) where S is the number of observations (i.e.
choice sets), K is the number of attributes in the design and X the design matrix.

This measure is uninformative with respect to the operating conditions of
discrete choice modelling under random utility theory. This is because
Equation (8) is derived under the assumption that the model to be estimated
is linear in nature. The relationship between this equation and that of the
variance-covariance matrix of the homoskedastic linear regression model,
o [X’X ]! clearly demonstrates the relationship between the two. Unfortu-
nately, the variance-covariance matrices of discrete choice models are radically
different to those of linear models as can be seen by inspecting the Hession
given in Equation (2), which depends on the values of . Indeed, Equation (8)
will return a value of 100 per cent for an orthogonal® design and lower values

3 Interestingly, the relationship is such that probability balance is unlikely to yield the most
efficient design, contrary to the work presented by Huber and Zwerina (1996). Kanninen
(2002) demonstrates that in the case of designs with two alternatives, the optimal choice prob-
abilities are related to the number of attributes of the design, with designs producing choice
probabilities around 0.7 and 0.3 resulting the smallest possible values for the elements con-
tained within the AVC matrices of discrete choice models.

* Note that Equation (8) only works under very strict coding structures. The statistic is only
valid if the design is coded using orthogonal coding (i.e. —1, 1). If the design is coded in any
other manner (or there are more than two levels — thus requiring more levels than —1 and 1),
then the statistic fails. We also note that the formula proposed in Lusk and Norwood (2005,
page 772) is more frequently used in its equivalent form: D-efficiency = 100 x | X’ X|"%/N, and
that K is not the product of attributes and levels in the design, as suggested by these authors,
but the number of attributes.
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for non-orthogonal designs. As we argue later however, design orthogonality
of this type does not imply efficiency of non-linear discrete choice models.”

We note that although we deliberately restricted the discussion to the
conditional logit model, these principles are fully applicable to any model of
discrete choice, such as the nested logit or mixed logit models. All it requires
is the computation of the adequate information matrix (see e.g. Bliemer and
Rose 20006).

3.3 Design specificity and coefficient uncertainty

Two important observations are in order here, both of which clearly affect
the measurement of efficiency of a conditional logit design. The first con-
cerns the coding of the variables in the matrix x,; and it concerns the fact that
efficiency depends on the type of coding chosen (on the levels, effect-coding,
or dummy variable coding). As a consequence, a design obtained under effect-
coding will produce different efficiency values if the coding is changed to
dummy variable coding or to the levels. Hence the efficiency measures should
not be compared across models with different coding applied to the same design.

The second issue concerns the assumptions about the values of S, which
are the very quest of a stated choice survey study and hence cannot be known
with certainty at the time of designing the experiment. These can, however,
be assumed by the analyst to be in a given range with some degree of uncert-
ainty. Such uncertainty can be formally defined in terms of adequate a priori
distributions, as done for example in Sandor and Wedel (2001) and in Ferrini
and Scarpa (2007).

For this reason the literature distinguish between point D-error and Bayesian
D-errors, using the notation D, and D, respectively. The latter is just an expecta-
tion taken over the assumed « priori distributions of f. Suppose, for example
that the values of f are a priori believed to be distributed normally, with a
vector of means u and a variance-covariance . Then the D, error would be:

D, error = J [det(Q(ﬁ, x‘v))]”KN (u, X)dp 9)

Of course, less informative priors can be invoked, such as uniform distri-
butions over a broad range of values.

3.4 Level of significance and design replicates

The survey will typically employ many replications of the same design and
generally a design will be completed by more than one respondent in the final

5 To pre-empt our argument, discrete choice models are estimated on the differences of the
utilities of the chosen and non-chosen alternatives, and not on the actual data itself. Thus, the
orthogonality of the levels of the data matrix is not as important as is orthogonality in the dif-
ferences of attribute values between alternatives.
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data. In generating the design, it is common to assume only a single respondent,
however, this need not always be the case. In particular, it is useful to assume
more than one respondent when the design is too large for a single respondent
and subsets of the design are to be given to different respondents (this is
commonly achieved via blocking the design). Suppose that a design is broken
into G subsets, with #n respondents reviewing each subset (noting that #» may
be different for each G). Then the AVC matrix for the final model would be:

Qu(B.x,) = Y2, (. x,) (10)

&=l

Further, note that the AVC has dimension K x K and that the asymptotic
standard errors for each estimate of the elements of f are given by the
squared root of the diagonal of the AVC matrix:

5.
€2 | = diag(Q(ﬂ, xsj)) (11)

5.6

This is sometimes used to derive a measure of the (theoretically) required
design replicates to achieve a given significance value for a choice attribute
coefficient k via the required #-value and the relationship®:

.. B

For example, suppose one assumes a f; = 1.2 and derives a design with an
s, =2 but wants to compute the number of design replicates necessary to
achieve a five per cent significance for which the two-tailed #-value is approxi-
mately 1.96. Then an adequate design size can be of 11 replicates since:

2 2
t; s.e.
ny, =| B2k < L90X21 _1067~11 (13)
Ny 1.2

If the design is segmented into three different subsets consisting of different
choice sets, then one would need about 32-33 respondents to achieve 5 per cent
significance, assuming that the prior parameter is correct. Such a calculation

2
B 1g,S-€
tﬂk = i, = Mg, = : (12)

® Values returned by Equation (11) represent the mathematical minimum sample size require-
ments, based on the original work by McFadden (1974). Such values represent minimum theo-
retical sample size requirements, and should be used carefully, particularly given that they are
contingent on the priors assumed being correct. Note, however, that in the unlikely event that
the priors are exactly correct then the sample size requirement will exactly be the one derived
in the formula.
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may be made for all K parameters, with the theoretical minimum sample size
being the largest value calculated (Bliemer and Rose (2005) proposed that
designs that seek to minimise the sample size be termed S-efficient designs).
This illustration is informative to clarify the relationship between design and
sample size required to achieve significance of [ estimates. However, this is
obviously a theoretical relationship critically hinging on the exactness of the
a priori assumption on the f values. In practice such assumption are unlikely
to hold perfectly, and the theoretical model supporting the choice of design
remains a mere simplification of the real world, so that typically larger sample
sizes are necessary than those indicated. How much larger will depend on the
empirical case at hand.

4. Design efficiency for prediction and for WTP

In many marketing and transport studies choice experiments are used to
derive predictions of choices, and in particular predictions on the effect of
changes in the choice attributes. So, other criteria rather than efficiency are
used to assess designs when the stated choice exercise has this purpose. Kessels
et al. (2006) propose the use of G- and V-optimality criteria for the experi-
mental choice context. These criteria measure the variance of prediction,
rather than the variance of the taste intensity estimates. In particular, G-
optimality relates to the minimisation of the maximum prediction variance
in the design, while V-optimality relates to the minimisation of the average
prediction variance.

Finally, of central interest to the literature in non-market valuation and to
this paper is the concept of C-optimality, first introduced in the literature by
Kanninen (1993a,b). This criterion is specifically suited for minimising the
variance of functions of model coefficient estimates, such as willingness to
pay. A frequently adopted specification of utility is often specified as a function
liner in the parameter of choice attributes, one of which, for valuation studies,
is necessarily the cost of the alternative. In this context, it can be shown that
the unit WTP for the attribute can be derived as a function of the coefficient
attributes:

WTP, = B (14)
_ﬁcost
This is a highly non-linear function of the coefficient estimates and its variance
can be approximated using the delta method.
The ML estimator for 8 is asymptotically normal, so that given consistency:

Vn(Byy = B) 3 N(O, Var(By,)) (15)

Take any continuously function differentiable g(f). Using the first two
terms of a Taylor series approximation to expand it around the estimates one
obtains:
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g(Byur) = g(B) +Ve(BY By — B) (16)

Where Vg () is the vector of K first derivatives, the gradient of g(-), and ’
indicates the transpose.
We can compute the variance of this linear function so that:

Var[g(Bu)] = Ve(B) Var(By )Ve(B). (17)

With this approximation, all that is now needed is to substitute g(-) with —ct/ 3
To avoid notational clutter induced by the use of subscripts, we indicate with
o the taste intensity of the generic attribute and with 8 the cost coefficient.

First note that a/— = —o(B)™", which makes the use of the product rule to
derive the gradient easier:

I=0ap™)
Sy f/ B a 3 _ﬂ_l
Vg(_aﬁ ) - |:h/:| - 8(_%71) - |:(XB_2:| (18)
P

So that:

Var [g(Bu)] = Ve(B) Var(By)Ve(B)

_[_p1p2]| Var(@)  Cov(a, B)||-B" (19)
B [_ﬂ P ][COV(% B) Var(B) Haﬂz}

Multiplying the first row vector by the matrix gives:

[-B'Var(a) + aB*Cov(ar, B) ~B~'Cov(e, B) + af*Var(B)|  (20)

Then, multiplying the resulting row vector by the final column vector gives:
~B'[-BVar(a) + aBCov(a, B)|
+ o[- 'Cov(er, B) + B Var(B)| > Var[%} 1)

= 5-2[Var(a) — 2087 Cov(e, B) + (a/ﬁ)zVar(B)]

Thus, the C-efficiency criterion relates to the minimisation of such approxi-
mation formula for the variance of WTP. One thing to note is that, unlike in
the case of CVM in which there is only one WTP to derive, here the variance
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relates to an element of K — 1 WTPs. Furthermore, different attributes may
be described in different units. So, for example, with an attribute expressed in
miles and one in number of properties affected, the WTP per unit will be
referring to different measures. Suppose one takes the sum of the K — 1 vari-
ances, then minimising such a sum may result in an unsatisfactory outcome
if the minimum is obtained by diminishing the variance unevenly across
WTPs. For example, the minimum may be reached by achieving a very small
variance for attribute 1 while leaving the variance for attribute 2 higher than
desirable. Equation (13) suggests a potential criterion, which is that of either
maximising the minimum ¢-value for the WTP:

Lwtp,

A8 max | min| (22)

Y

*
Xy =

fwtp,

or equivalently, that of minimising the number of design replicates necessary
to achieve the desired significance level for WTP:

ar Dw
x* = € min| max| (23)

s
DWTPk_l

To our knowledge neither of these criteria has been used so far in the litera-
ture of experiment design for choice studies. We note in passing that all these
criteria can be adapted so as to be amenable to a Bayesian prior as discussed
in section 3.3.

In conclusion of this review of criteria we emphasise how various criteria
are available to evaluate a candidate design and each is particularly suitable
to a specific purpose. Of course, when the stated choice exercise has a variety
of purposes, then perhaps a weighted combination of selected criteria can be
employed to derive the optimal design x% . A similar observation can be
extended to the final specification. If the data collection is likely to support a
variety of specifications, then the AVC matrix may be substituted for an ade-
quate mixture of AVC matrices, one for each specification. However, we do
not venture our empirical illustration in this territory, but note that it could
constitute fertile ground for further research.

5. What design efficiency measure to report?

For any given choice study, there exist two distinct stages. The first stage
relates to the design of the survey instrument and subsequent data collection.
The second stage relates to any analysis that is performed on the data collected
during the initial stage of the project. Given our discussion above, it is clear
that in generating the experimental design during the first stage of a choice
study project, the analyst is required to assume the expected values of the
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utility parameters of the attributes present within the stated choice task, as
well as to the likely model specification to be used during the estimation
phase. The efficiency measures discussed above (e.g. the D- or C-errors) relate
only to the statistical efficiency of the design at the generation stage of the
study and depend on the assumptions made by the analyst. In other words,
they are conditional on the information available at this stage and may or
may not be confirmed by the information collected in the data.

With this in mind, we propose a statistical measure comparing how a
design is expected to perform, as defined at the design generation phase of
the study, against how it actually performed in reality once the data is
collected. While such a measure may not necessarily be useful within any one
study, if reported over several studies, it may allow researchers to determine
how sensitive final model results (in terms of the AVC matrix at least) are to
the assumptions that go towards making the design. In turn, this may aid
future researchers and practitioners in understanding how much time and
effort should be put into generating more statistically efficient designs.

Denoting by the superscript 0 the initial stage priors and with 1 the end of
study estimates we recommend future studies report:

Q0
) 9
> Xy
where F denotes the particular criterion of interest and the starred design
indicates optimisation with respect to the end of study estimates.

Additional criteria might also be reported to understand the relationship
between the design employed — which presumably has been derived by opti-
mising according to some valid criterion — and the values that the same
design affords with regards to other criteria. So, for example, suppose one
has obtained the design x; used in the study by optimising for the V/, crite-
rion of section 4, then it would probably be of interest to contrast this design
by using the more common D, criterion:

0 .V
Dp(ﬁ/‘ s x\j)
D,(B’. x;))

A high value of this ratio would illustrate that despite having been derived
with a criterion that maximised efficiency in prediction (as V-optimality
does), such design turns out to perform well relative to the design xj; that is
optimised for efficiency in coefficient estimates (D-efficiency). Different evalua-
tions can also be carried out by using assumed and estimated values of .

(25)

6. Algorithms for design optimisation for efficient designs

We now turn our attention to a brief description of the various algorithms
proposed in the literature to search for improvements on or selection from a
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basic starting design, which can be, for example, the typical orthogonal
fraction of the full factorial. Unfortunately, there does not exist much theo-
retical guidance as to which method should be employed. We are also not
aware of studies that tested which type of design construction method is
likely to produce the best results under various circumstances in practice.
Several algorithms have been proposed and implemented within the literature
to systematically search the various arrangements of attribute levels and
identify efficient designs. These algorithms operate mostly by systematically
operating swaps across the rows and columns of the matrix x; Typically,
algorithms fall into one of two categories; row-based and column-based
algorithms.

In row-based algorithms, a large number of choice sets are first generated
from which those to be used in the survey are selected. Typically, the choice
sets are drawn from a full factorial design, although in many instances the
full factorial will be too large (even with today’s computing power) and frac-
tional factorials may be generated instead. This is precisely what the most
widely used row-based algorithm, the Modified Federov algorithm (Cook and
Nachtsheim 1980), does. The algorithm randomly draws s choice sets from
either a full factorial or fractional factorial design, and computes the D-error
of each random selection. The combination of choice sets that produce the
lowest D-error is retained as the most efficient design. The algorithm is
terminated either manually by the researcher, when some stopping criteria
is achieved (e.g. no improvement in the D-error is achieved for 30 min) or
when all possible choice set combinations have been explored. Row-based
algorithms have the advantage of being able to reject poor choice set candidates
at the initial stage (e.g. choice sets in which the attributes of one or more
alternatives are dominated or where a particular combination of attributes
realistically cannot exist), and as such, these choice sets will never appear in
the final survey. Nevertheless, row-based algorithms generally find it difficult
to maintain attribute level balance (where each attribute level appears an
equal number of times over the design).

Column-based algorithms on the other hand, begin by randomly generating
a design and then systematically change the levels within each column (rep-
resenting an attribute in the survey) of the design. While it is difficult to
reject poor choice sets using column-based algorithms, such algorithms typi-
cally are able to maintain attribute level balance, particularly if the initially
generated design has such a property. In general, column-based algorithms
offer more flexibility and are generally easier to use when dealing with
designs with many choice situations, but in some cases (e.g. for unlabelled
choice experiments and for specific designs such as those where certain
attribute level combinations are forbidden) row-based algorithms may be
more suitable.

Rather than relying solely on row- or column-based algorithms, some authors
suggest using combinations of both. Huber and Zwerina (1996) implemented
the RSC algorithm (Relabelling, Swapping and Cycling), which remains the
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most widely used algorithm today. The RSC algorithm alternates between
relabelling (column-based), swapping (column-based), and cycling (row-based)
over many iterations. During the relabelling phase, all occurrences for two
or more attribute levels within a column of the design are switched (e.g. if
attribute levels 1 and 4 are relabelled then the column containing the sequence
of levels {1,3,4,2,4,1,3,2} would become {4,3,1,2,1,4,3,2}). The swapping
phase of the algorithm is similar to that of relabelling, however, only a few of
the attribute levels are changed within the column (e.g. swapping the first and
third values in {1,3,4,2,4,1,3,2} would yield {4,3,1,2,4,1,3,2}). The cycling
phase of the algorithm is row-based, where the attribute levels are switched
(similar to relabelling but now across rows, not down columns) within choice
sets, one choice set at a time. The algorithm will generally try a number of itera-
tions of either relabelling, swapping or cycling, before switching to another
phase (typically randomly). Note that not all phases have to be used with
various combinations of RSC being possible.

7. The impact of scale on willingness to pay

One consideration must be made at this stage about the scale parameter A, of
equation (1), which is often a neglected issue in D-efficient designs. This is
particularly relevant when the focus is on WTP estimation and when a
status-quo constant (or any alternative-specific constant) is expected to be
part of the utility function, as is often the case in non-market valuation
studies. WTP computations are one-to-many mappings of the S vector. In
fact, infinite pairs of B, (non-price coefficients) and S, produce the same
vector of WTP values. Suppose, the values of f are as assumed above. Scaling
them all by any positive constant produces the same WTP estimates. So,
implicit in the assumption of values for f there is an assumption of the scale
coefficient.

When — instead — utility includes an alternative-specific constant of some sort,
scaling the vector B by any amount has an effect on the utility differences
across alternatives, which are not scaled by the same constant. So, depending
on the assumed scale parameter of the Gumbel error, the same WTP vector
can be associated with large or small utility differences with the status-quo,
and hence different choice probabilities. Table 1 illustrates this case in which
the levels of the attributes in the status-quo (SQ) choice are assumed to be
the baseline (equal to zero) and hence the levels in the designed alternatives
1 and 2 are expressed as differences from those in the SQ.

This is, of course, a corollary to the fact that with a high scale (small error
variance) the choice probabilities become deterministic. However, it high-
lights how important an adequate specification of the error scale is to the
evaluation of the design in the presence of alternative-specific constants. For
a given scale though, the criteria of different designs can be compared. We
hence now turn to a comparison of designs generated under the assumption
of a multinomial logit specification for a given case study.
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Table 1 Demonstration of impact of scaling on model outcomes

A=1

B 1 1 2 3 1 Bx, AV, Pr(j)
X, 0 1 2 2 2 9 8 0.952
X 0 2 2 1 3 6 5 0.047
Sq 1 0 0 0 0 1 0 0.000
WTP 1 1 2 3 1 - - -
A=0.5

B 0.5 0.5 1 1.5 0.5 Bx, AV, Pr(j)
X, 0 1 2 2 2 45 4 0.806
X 0 2 2 1 3 3 2.5 0.180
Sq 1 0 0 0 0 0.5 0 0.015
WTP 1 1 2 3 1 - - -
=02

B 0.2 0.2 0.4 0.6 0.2 Bx, AV, Pr(j)
X, 0 1 2 2 2 1.8 1.6 0.571
X 0 2 2 1 3 1.2 1 0.313
Sq 1 0 0 0 0 0.2 0 0.115
WTP 1 1 2 3 1 - - -

8. Case study

8.1 The case study setting

This case study is devised to illustrate the considerations a researcher can
make when engaged in developing a ‘typical’ non-market valuation study. A
recent review on the design solutions used in published non-market valuation
studies (Ferrini and Scarpa 2007) suggests that a common set up is an
unlabelled design based on a choice task involving the indication of the
favourite alternative among three. Two of these have levels and attributes
developed on the basis of a design, while the third represents the status-quo
(see Breffle and Rowe (2002) for a discussion of the inclusion of the status-quo
alternatives in non-market valuation studies and Scarpa et al. (2005) for some
econometric insights). We hence adopt this framework, but caution the
reader that generalising the results from this case study to other contexts
might well be unwarranted.

Most published studies investigate a range of 3—6 choice attributes plus the
cost of the package to the respondent. We hence present results of a design
with three attributes plus price and a status-quo constant. We postulate that
the analyst is able to define some a priori beliefs on the values of the 8 vector
that can be adequately formalised. We assume that since much of the literature
reports positive status-quo effects, the element of S relating to the status-quo
is assumed to be positive and equal to unity. The price effect is of course
negative and also equal to one. The three attributes differentiating the alterna-
tives are assumed to be expressed as positive effects on utility and orderable
in terms of a gradient one, two, and three. Thus, the utility functions used in
generating the designs for the case study may be summarised as follows.
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M =1x, + 2xy + 3x;, — Ix,,
V, =1x, + 2x,, + 3x;, — 1x,,, (26)
Vo=1

While one can very frequently express attributes in a way that can be gener-
ally expected to be perceived and evaluated by respondents as having a
specific directional (positive or negative) effect on utility, the cardinal scaling
is arguably the strongest a priori assumption. However, this assumption can
be relaxed by assuming a distributional form with overlapping densities, as
we will see later.

The size of the design is of 20 choice sets, and the design attributes can all
take four values (0,1,2,3) except price which can take five levels (these are
0,1,2,3,4). A size of 20 is not unusual and can be shared out across five, four
or two respondents to obtain a balanced panel of, respectively, four, five and
ten choices per respondent. In non-market valuation studies it is frequently
found that the number of levels used for the price attribute is larger than
those used for non-price attributes.

8.2 Exploration of design procedure

Fifteen designs are generated and compared across a range of criteria. In order
to demonstrate why it is important to use experimental designs for stated
preference studies, the first two designs we report were constructed using a
purely random allocation of the attribute levels to the design. In generating
the first design, we do not assume attribute level balance (i.e. each level of an
attribute may appear an uneven number of times over the 20 choice sets),
whereas for the second design, attribute level balance was enforced as a
design criteria. All remaining designs also assume attribute level balance.
Unlike Designs 1 and 2, Designs 3 to 5 and 9 to 15 were constructed using
the RSC algorithm (see Section 5) assuming (different) optimisation crite-
rion. Design 6 was constructed in a manner for which the RSC algorithm
was not appropriate and hence only swapping was used. Designs 7 and 8 are
orthogonal designs, for which the RSC algorithm is also inappropriate.
Designs 3, 4 and 5 represent designs constructing using the D-efficiency
criterion given as Equation (5), and they illustrate the effect of varying the
scale parameter in this context, as discussed in Section 7. In generating
Design 3, we assumed as prior parameter estimates, the values discussed
above. In Design 4 we double the magnitude of the prior parameter esti-
mates, whereas Design 5 halves the magnitudes. The sixth design was con-
structed also using the D-efficiency criterion. However, many restrictions
were placed on such design. Specifically, the design was generated so that the
attribute levels for one of the non-status-quo alternatives are always lower
than that of the other non-status-quo alternative. Given that higher levels for
the non-price attributes are assumed to be more preferred (i.e. the prior
parameters assumed were all positive for these attributes) while higher prices
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are obviously less preferred (i.e. a negative prior parameter) this design forces
respondents to trade (simultaneously) the non-price attributes with price
within each choice set. Such a constraint is designed to ensure that some
form of trading always takes place in choice tasks. However, we note that
strictly speaking one cannot assume that generating a design in this manner
will avoid dominance in terms of preferences.’

Designs 7 and 8 are orthogonal fractional factorial designs. In construct-
ing the designs, no orthogonal design could be found that allowed for zero
correlations both within and between the attributes of alternatives. So, a
sequential design process was employed (see Louviere et al. 2000). This process
involves first constructing an orthogonal design for alternative 1, and then
using the same design to construct alternative 2. The process ensures that the
designs are orthogonal in the attributes within alternatives, but not between
alternatives. Given that the experiment is assumed to be unlabelled, the
between alternative correlations are not of concern and hence the design
process is appropriate. While maintaining the (within alternative) orthogonality
constraint, the D-efficient criteria was also applied to Design 8.

Designs 9, 10 and 11 are non-orthogonal designs generated to minimise,
respectively, 4-, S- and B-criteria, of Equations (6), (12), and (7), respectively.
The remaining designs are generated in such a way as to minimise the sum of
the C-efficiency measures in Equation (22). Designs 12 and 14 consider only the
variances of the WTP values for the design attributes, whereas Designs 13
and 15 also consider the variance of the WTP for the status-quo constant. To
illustrate the flexibility afforded by applying the C-criterion we use different
weights for the variances of the WTPs of different attributes when generating
the last two designs. So that the criterion employed is the minimisation of the
weighted sum of the variance components of the attribute WTPs. This flexi-
bility may be important in practice when the object of a stated preference
study is to specifically calculate the WTP for a subset of the design attributes.
The full set may include attributes considered important within the prefer-
ence space of the respondent, but irrelevant from the viewpoint of WTP esti-
mation. Alternatively, the absolute magnitudes of the WTP outcomes may
also guide whether weighting should be applied, for example, whether it is to
be expressed in dollars or cents. For the present study, in constructing Design
14, attribute 1 is assigned the largest value of 0.4 because it is the one with

” Dominance implies that all respondents acting rationally will always select one alternative
over all others present. Design 6 ensures that respondents will be faced with a comparison
between a lower ‘quality’ lower price alternative and a higher quality higher price alternative,
but says nothing about the probability that one of the alternatives will be chosen. To establish
whether an alternative is dominated or not, the analyst would need to calculate the choice
probabilities (which are function of the design attributes and (prior) parameters). Once the
choice probabilities are determined, the analyst would need to establish some rule as to what
constitutes a dominated alternative based on the expected choice probabilities (e.g. if the prob-
ability is less than 0.1).
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lowest absolute WTP. As such, more precision (efficiency) is needed for this
attribute compared to the others to obtain a WTP estimate different from
zero. For similar reasons attribute 2 is assigned a value of 0.35, and Attribute
3 of 0.25. The status-quo constant is ignored in this design, and hence has a
weight of zero. A similar weighting procedure is applied in generating Design
15, with weights of 0.4, 0.3, 0.2 and 0.1 being applied to each of the design
attributes and status-quo constant, respectively.

All designs were generated using either Microsoft Excel or a program
called Ngene. Visual Basic macros were constructed in Microsoft Excel with
the AVC matrices of the designs constructed using matrix algebra manipula-
tion formulas that are standard within Microsoft Excel. Ngene is a design
generation program currently under development by Econometric Software.

8.3 Design outcomes

For each of the 15 designs we generated Tables 2 and 3 present various measures
of the design criteria discussed. For each measure, excluding the B-statistic,
values are presented based on computations including and excluding the
status-quo constant. As would be expected, the two random designs perform
very poorly on each design criterion measure presented in the table. This out-
come, however, is based on random chance, and different results might have
been obtained if a different random allocation of the attribute levels were
considered. The design obtained by minimising the D-error (Design 3) appears
to perform very well on all criteria except for the B-statistics. According to
the S-error for the design, a minimum of seven replications of the design
(representing 140 choice tasks) are required for all parameters, including the
status-quo constant to be statistically significant at the 1.96 level. Of course,
this number assumes that the prior parameter used is correct, hence, this
represents only the theoretical minimum number of design replications that
should be collected.

Designs 4 and 5 illustrate the impact of assuming different prior values for
the scale parameter A, when generating the design. Contradictory results are
produced when doubling and halving A. The importance of accounting for
scale size has eloquently been described by Swait and Louviere (1993), and
the reader is reminded here that higher scale implies smaller variance and
that as scale increases the choice becomes gradually more deterministic. In
our context halving the priors produces superior D- and A-error results, but
dramatically worsens results in terms of WTP and sample size requirements
when compared to a doubling of the scale parameter. These results might be
perceived as counter-intuitive, as one would expect that doubling the assumed
scale of the error (Design 4) and hence increasing the precision should lead
to a higher efficiency. Instead, one observes the opposite. Increasing scale
decreases the information content of the design for  while it increases it for
the attribute WTPs. One possible cause for this might be that in generating
the design, the attribute levels used are the same as those used for Design 3,
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Table 2 Efficiency level outcomes for Designs 1-15

D-error A-error C-error Weighted C-error S-error

Without  With ~ Without  With ~ Without  With  Without  With Without ~ With

Design Effect Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant B-error
1 Base Design 0.998 2.136 2306  17.170 10.076  111.894 - - 10.076  294.379  0.06%
(random — unbalanced)
2 Base Design 0.920 1.398 2.202 4.847 8.630 22.677 - - 9.218 59.270  1.67%
(random — balanced)
3 D-error 0.120 0.189 0.909 1.052 2.030 0.519 - - 1.001 6.238  10.03%
4 Scale up (% 2) 0.198 0.290 3.895 3.612 0.176 0.656 - - 1.015 9.529  1.77%
5 Scale down ( % 0.5) 0.076 0.126 0.200 0.448 2.034 7.955 - - 1.396 22.070  21.96%
6 Constrained trade-off 2.768 2.436 8.629 7.586 29.682 35.690 - - 10.896 13.104  3.06%
7 Random orthogonal 1.828 2.146 11.828 4.326 24.393  160.706 - - 8.786 15.368  5.10%
8 Efficient orthogonal 0.334 0.464 1.318 1.024 1.643 4.160 - - 1.300 9.592  5.25%
9 A-error 0.212 0.283 0.526 0.653 1.230 2.503 - - 0.943 4456 10.25%
10 S-efficient 0.373 0.408 1.589 1.407 2.594 1.487 - - 2.189 2.602 23.92%
11 B-error 0.384 0.419 1.879 2.057 4.391 1.926 - - 10.634 3.778  41.20%
12 C-error (attributes only) 0.153 0.281 2.984 4.282 0.455 6.456 - - 3.293 36.386  7.53%
13 C-error (attributes + SQ)  0.206 0.262 3.185 2.838 0.551 1.454 - - 3.454 5.585 21.42%
14 Weighted C-error 0.244 0.302 5.821 5.120 0.540 1.496 0.666 0.666 6.347 8.902 28.16%
(attributes only)
15 Weighted C-error 0.183 0.251 3.043 2.778 0.501 1.601 0.526 0.966 3.527 6.602 17.13%
(attributes + SQ)
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Table 3 T7-ratio (assuming a single design replication) and minimum design replication requirements by attribute for Designs 1-15

B WTP B WTP B WTP

|z-values| n |t-values| n |t-values| n |t-values| n |t-values| n |z-values| n
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Constant

Design 1 Random allocation (unbalanced)

53.962
5.219
2.118
2.163
n.a.

7.385
0.072
0.057
0.042
n.a.

199.680

39.792
3.103
2.153
n.a.

4.256
1.041
0.439
0.324
n.a.

3.470
0.346
0.173
0.120

0.255 59.270 0.267
0.646 9.218 0.858
1.427 1.886 1.347
1.712 1.311 1.333
0.854 5.268 n.a.
Design 4 fx 2
0.635 9.529 0.721
1.951 1.010 7.294
1.961 0.999 8.223
1.966 0.9%94 9.596
1.945 1.015 n.a.
Design 7 Orthogonal
0.155 160.706 0.139
0.397 24.393 0.311
1.347 2.116 1.113
1.086 3.258 1.336
0.945 4.304 n.a.
Design 10 S-efficient
1.215 2.602 0.950
1.325 2.189 1.921
1.632 1.443 2.957
1.552 1.594 3.446
1.347 2.117 n.a.
Design 13 C-efficient attributes + sq
0.829 5.585 1.052
1.064 3.391 3.333
1.055 3.454 4.714
1.100 3.175 5.662
1.103 3.156 n.a.

n.a.

Design 2 Random allocation (balanced)

0.114
1.113
1.681
1.434
0.617

0.417
1.659
2.194
2.279
1.893

0.633
1.719
1.852
1.959
2.020

0.601
1.008
1.463
1.474
1.390

0.657
0.778
0.800
0.807
0.801

294.379 0.106 340.096
3.103 0.737 7.068
1.359 0.647 9.173
1.868 0.867 5.111

10.076 n.a. n.a.

Design 5 fx 0.5

22.070 0.411 22.749
1.396 1.744 1.263
0.798 2.649 0.548
0.740 2.816 0.484
1.072 n.a. n.a.

Design 8 Orthogonal efficient
9.592 0.630 9.667
1.300 2.074 0.894
1.121 2.554 0.589
1.001 3.360 0.340
0.941 n.a. n.a.
Design 11 B-efficient

10.634 0.637 9.470
3.778 1.280 2.346
1.796 3.200 0.375
1.769 3.120 0.395
1.989 n.a. n.a.

Design 14 Weighted
C,-efficient attributes only

8.902 1.023 3.671
6.347 3.478 0.318
5.995 4.563 0.185
5.904 5.826 0.113
5.987 n.a. n.a.

Design 3 D-efficient

0.785 6.238 0.814 5.804
1.959 1.001 3.589 0.298
2.000 0.960 5.016 0.153
2.061 0.904 5.642 0.121
1.977 0.983 n.a. n.a.
Design 6 Trade-off constrained
0.541 13.104 0.408 23.079
0.612 10.243 0.567 11.961
0.594 10.896 0.578 11.517
0.689 8.097 0.786 6.222
0.807 5.904 n.a. n.a.
Design 9 A-efficient
0.928 4.456 0.886 4.891
2.018 0.943 2.186 0.804
2.632 0.554 3.171 0.382
2.868 0.467 3.802 0.266
2.310 0.720 n.a. n.a.
Design 12 C,-efficient attributes only
0.325 36.386 0.408 23.051
1.080 3.293 3.881 0.255
1.109 3.122 5.323 0.136
1.133 2.995 6.025 0.106
1.109 3.125 n.a. n.a.
Design 15 Weighted
C,-efficient attributes + sq

0.763 6.602 0.954 4.223
1.044 3.527 3.525 0.309
1.105 3.145 5.127 0.146
1.122 3.051 5.786 0.115
1.097 3.192 n.a. n.a.
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and since it is differences in utility that matter most, the utility differences
observed with a scaled up set of f are larger and induce large variations in
choice probabilities, at the expense of design balance and information con-
tent. The opposite effect is at play for Design 5, where the scale of the priors
is half that of Design 3.

Ignoring the designs that were randomly generated and where the para-
meter priors have been re-scaled, Design 6 performs quite poorly based on all
criteria when compared to the other designs. This is because the trade-off
constraint, while attempting to conform to some analyst-imposed behavi-
oural heuristic, fails to consider the statistical requirements that improve the
statistical efficiency of experimental designs. In particular, the AVC matrix of
a design, from which all efficiency measures are derived (save for the B-error
measure), is the inverse of the second derivatives of the log-likelihood func-
tion for the design. As such, the AVC matrix is intrinsically related to the
choice probabilities that the design is likely to produce (given prior para-
meter estimates). In setting up the (behavioural) constraint, the expected
choice probabilities for the design are also constrained, which in turn impacts
on the design AVC matrix and its efficiency. So, such design strategy, while
behaviourally attractive, is likely to produce poor outcomes in terms of
model efficiency.

Design 7 represents the currently predominant method used for generating
stated choice experimental designs; the generation of an orthogonal design
(see Louviere et al. (2000) Ch5 or Hensher et al. (2005) Ch5). However, as
shown here, the use of orthogonal designs tends to produce less than optimal
outcomes in terms of expected model results, requiring larger sample sizes to
retrieve statistically significant parameter estimates than other non-orthogonal
designs. Design 8 represents an improvement on Design 7 and it is derived by
employing an algorithm that minimises the D-error of the design while main-
taining orthogonality.® Even so, the imposition of orthogonality represents a
constraint on the efficiency of stated choice designs, for the exact same reasons
as given for the poor performance of Design 6. That is, the imposition of
orthogonality only relates to the correlation structure of the design, but says

8 For problems where it is possible to generate an orthogonal design, it may be possible to
locate more than one such design. When constructed from first principles, orthogonal frac-
tional factorial designs are typically generated by confounding higher order interaction effects.
Confounding different interaction effects may result in different orthogonal fractional facto-
rial designs. As such, it is often possible to generate more than on orthogonal fractional facto-
rial design for a given problem. Nevertheless, researchers typically only generate one such
design and fail to consider that other possible fractional factorial designs can be generated.
Further, once an orthogonal fractional design is located, it is often possible to switch the levels
of the design in such a way to maintain orthogonality but produce a different orthogonal
design. This is similar to the relabelling phase of the RSC algorithm. In the current case study,
design 7 is a randomly selected orthogonal fractional factorial design, whereas design 8 is an
orthogonal design that is chosen such that it produces the lowest possible D-error while main-
taining the orthogonality constraint.
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nothing of the choice probabilities and hence the AVC matrix that the design
will produce.’

Designs 9 to 11 were constructed so as to optimise the measures for 4-, S-
and B-criteria, respectively. In each case, the designs produce the lowest
(highest for the B-criterion design) values for the respective criterion for which
the design was optimised. These designs appear to perform very similarly on
all other criteria, however, Design 11 — which optimised the B-criterion —
appears to require the largest minimum number of design replications to
retrieve statistically significant parameters and WTP values. This finding is
consistent with Sandor and Wedel (2001, 2002, 2005) and Kanninen (2002)
who demonstrated that complete utility balance, as explored by Huber and
Zwerina (1996), will result in suboptimal designs.

Our last group of comparisons are made across designs obtained by using
various specifications of C-efficiency as the optimisation criteria. These designs
perform well compared to most other designs, however, several issues arise
which require further discussion. Firstly, assuming the priors have been
correctly specified, the theoretical minimum number of design replications
required for Design 12 is 37 (i.e. 740 choice observations) for all parameters
to be statistically significant as per Equation (11). Table 3, demonstrates the
asymptotic z-ratios for each attribute and WTP for each design, as well as the
number of design replications required in order for the asymptotic 7-ratios to
be greater than 1.96. An examination of this table for Design 12 shows that
the requirement for 37 replications of the design is a result of the status-quo
constant, which was not considered when generating the design. As such, it
is questionable as to whether one would consider 37 replications or the next
highest multiple of four replications to be the minimum.

A second observation relates to the use of the C-efficiency criteria as
expressed previously. The C-efficiency criteria, as implemented here, relates
only to the variances of the ratios of two parameters, and not the variances
of the parameters themselves. While there exists a relationship between the
two, the additional non-variance terms contained within Equation (21) may
compensate for larger parameter variances when minimising the equation. As
such, it may be possible to minimise the variance of the ratio of the two
parameters while obtaining a relatively large variance for one or more of the
parameters themselves. This has implications when calculating the WTP for
that attribute and it is clearly demonstrated in Table 3. Consider for example,
Design 13. For the status-quo constant term to achieve an asymptotic z-ratio
of 1.96, at least six (rounding up from 5.585) design replications are required
(120 choice observations), whereas only four (rounding up from 3.470)

? Strictly speaking this statement is false. An orthogonal design will be optimal when all
parameter priors are assumed to be zero (that is, irrelevant in the decision process). As such,
orthogonal designs will only require the smallest possible design replications relative to all
other designs when one is willing to assume that the attributes in the design do not play a role
in the observed choices. This is obviously contrary to the spirit of most investigations.
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replications are required (80 choice observations) for the WTP for the status-
quo constant term to achieve statistical significance. Given that the WTP for
an attribute should only be calculated if the individual parameters are stati-
stically significant, the higher value of the two should be used (i.e. six design
replications). A search through Table 3 reveals that Designs 9 (A4-efficiency)
and 10 (S-efficiency), while requiring a larger number of design replications
for all WTP values to become statistically significant, would require only
three and five design replications (i.e. 60 and 100 choice observations) respec-
tively for all parameter and WTP values to be statistically efficient. As such,
these designs would be preferred based on these criteria.

While we do not implement it here, it should be possible to create a new
optimisation criterion, similar to the S-efficiency measure that minimises the
largest sample size required for the ratios of two parameters (the WTP) to be
statistically significant. Indeed, one could combine this with the current S-
efficiency measure for the utility parameters, and jointly minimise both.

9. Conclusion and direction of further research

The use of stated preference methods has become increasingly accepted in
the policy arena as a way to investigate non-market values worldwide. Yet,
choice modelling has not been subject to the degree of investigation and
scrutiny dedicated to contingent valuation in the non-market valuation
literature. With particular regards to the topic of experimental design tailored
to the specific needs of non-market valuation practitioners the literature is
still scarce. This study had the objective of bringing together a number of
considerations and design statistics that the practitioner could find of interest.
In particular, the principles outlined here can be adopted in the evaluation of
choice model designs predicated under different assumptions from the one
used for convenience here as the main example.

C-efficiency, for example, is a criterion for design evaluation that although
proposed over 15 years ago, is still rarely used. Sample size determination, as
we explained here can be theoretically linked to design properties, and can
itself be used as a criterion for design search. Importantly, we suggest alterna-
tive ways of reporting design statistics in applied studies that go beyond the
frequently used percent efficiency criterion originally proposed for multivariate
linear regression studies explaining treatment effects in agricultural experi-
ments. We show how this criterion is irrelevant and a bad proxy for C-efficiency,
which is what matters when the focus is WTP estimation. Nonmarket
studies are often plagued by limited budgets, which make design efficiency a
prominent feature. Studies focusing on WTP estimation can benefit from the
use of the C-efficiency criterion because it is tailored to WTP estimates.
Designs maximising C-efficiency are shown here to outperform those derived
according to the more common D-efficiency criterion.

In this paper, we have also discussed several other possible criteria on
which the efficiency of various designs can be judged. Questions persist as to
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which design criteria are most appropriate. While we have argued that some
criteria are inappropriate for stated choice studies based on efficient logit
analysis, the issue remains as to which criteria from the remaining set of pos-
sible measures should be employed by researchers. Unfortunately, there exists
no general answer to this question, but the right criteria that are case dependent
need to be selected in the light of the objectives of each study. Thus, if one
wishes to produce model results that minimise both the standard errors and
covariances of the parameter estimates, then the D-error criterion should be
employed. If, on the other hand, the researcher is limited in budget and
wishes to minimise sample size requirements, then the S-error is the appro-
priate measure to use. If the objective of the study is to examine WTP for
various attributes, then the C-error measure is the appropriate statistic to use
during the design generation process. Of course, as we have done in the case
study, it is possible to compute more than one criterion for any given design.
It is also theoretically possible to optimise a design based on some form of
weighted efficiency measure, taking into account more than one objective
(e.g. both S- and C-errors might simultaneously be considered). Future
research should investigate options of this kind given that many studies
might embrace multiple objectives.

What is certain is that probability balance (B-efficiency) should not be
used, and that orthogonal designs should be avoided when one seeks effi-
ciency in a context of logit specifications. While orthogonal designs are com-
monly used within the literature, we have argued that such designs are
inefficient for the types of non-linear models used in stated choice studies
and can usually be improved upon in terms of the robustness of the para-
meter estimates. Nevertheless, as demonstrated here, when orthogonal designs
are used, it might be possible to generate several orthogonal designs and select
the one, for example, that is best suited for a given criterion. For example, the
analyst may select an orthogonal design that is most likely to result in the
smallest standard errors for the ratio of two parameters, assuming that WTP
estimation is what is of interest.

Of course, in sufficiently large samples, statistically significant parameter
estimates should be retrieved independent of the final design employed.
Indeed, asymptotically, all designs enabling identification of the effects of
interest, whether efficient or simply consisting of randomly assigned attribute
level combinations should reproduce the true population level parameters.
Thus, if the budget for a study is such that the final sample size is not a
concern, then the analyst need not worry about the experimental design. In
principle, one could simply allocate randomly attribute levels to choice sets
and these across respondents. In smaller sample sizes however, the design
employed can play a significant role in whether the final model results are
statistically efficient or not.

The question then arises, however, as to what to do if there is sufficient
budget and several possible designs are expected to produce statistically effi-
cient parameter estimates. For example, what if there exists a budget for data
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collection based on 300 respondents and it is calculated that an orthogonal
design will require 280 respondents while an efficient design predicated on «a
priori assumptions will require only 200 respondents. Does it matter, which
design is used? The answer is probably dependent on the confidence the
researcher has on the assumptions required to develop an efficient design. If
a good level of confidence is available, we would argue that at least to start
with the efficient design should be used with a sample size of 200 respondents.
Once the responses based on such design are made available, one can com-
bine the new information from the data with the existing prior in a Bayesian
sequential design (e.g. Scarpa et al. 2007). Depending on how accurate the initial
prior turns out to be, one might stop the data collection and save the budget
necessary for the additional 100 respondents. Alternatively, if the initially
assumed design is in disagreement with the data, one may use the informa-
tion collected with the data to update the design before producing an
improved design for the last 100 observations, so as to reach the desired final
efficiency with an improved understanding of the population parameters. We
would suggest that committing money from the beginning to all 300 respondents
when the same results could be achieved based on 200 respondents is
wasteful of finite resources, and precludes the researcher the opportunity to
improve on the initial design at a later stage. Secondly, we remind the reader
that sample size calculations represent theoretical minima based on the
assumptions made at the time the design is generated. As such, if the
assumptions do not hold in practice, the actual sample sizes required might
be higher for both designs. As such, if given a sample of 200 respondents it is
found that the parameter estimates from the efficient design are unstable
(that is still changing significantly with each additional respondent added)
and the parameters are statistically not significant, then there remains scope
to increase the sample size. If however, the orthogonal design is used, this
option might be precluded because of its lower efficiency. As such, we would
argue that efficient designs (independent of the criteria used to define effi-
ciency) should always be preferred to start with, even if larger sample sizes
are affordable.

We have intentionally neglected several important considerations related
to the behavioural efficiency of the design, concentrating our focus on the
statistical efficiency and the comparison of different criteria to practically
measure it. Future research should focus on respondent efficiency as well.
Although perhaps the current level of knowledge on how respondents process
the information provided in choice tasks is still insufficient to derive efficiency
measures to evaluate behavioural efficiency, this knowledge gap is filling
quickly. For example, extensive research has been conducted on the impact
upon behavioural responses given various design dimensions. For example,
the number of alternatives within the task (Hensher ez a/. 2001), the number
of attributes (Pullman et al. 1999), the number of attributes and alternatives
(DeShazo and Fermo 2002; Arentze et al. 2003), the impact of attribute level
range upon response (Cooke and Mellers 1995; Ohler et al. 2000; Verlegh
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et al. 2002) and the number of choice profiles shown to respondents (Brazell
and Louviere 1998) have all been examined. More recently, Hensher (2004,
2006a,b) and Caussade et al. (2005) examined all of the above effects simul-
taneously. Nevertheless, an examination of the combination of the design
and respondent efficiency remains to date, ever elusive.

One final note is required. While we recommend that choice studies report
the ratio of the design criteria to that of the final estimated model, we do not
report this statistic here. The reason for this is that in this paper we have con-
centrated solely on the design generation phase in the case study. No actual
data has been collected, with the results reported derived from analytical
simulations. As such, the actual performance of the designs in practice cannot
be tested. This constitutes an obvious limitation of the current study. How-
ever, we note from a review of the literature that all such results on efficient
designs are constrained by theory. Research efforts are currently being under-
taken by several researchers where various designs are being used and tested
in terms of their performance in practice.
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