
© 2012 ChoiceMetrics

Ngene 1.1.1
USER MANUAL &
REFERENCE GUIDE

The Cutting Edge in
Experimental Design

Version: 16/02/2012

© 2012 ChoiceMetrics. All rights reserved.

This software product, including both the program code and
the accompanying documentation, is copyrighted by, and all
rights are reserved by ChoiceMetrics. No part of this product,
either the software or the documentation, may be reproduced,
stored in a retrieval system, or transmitted in any form or by
any means without prior written permission of ChoiceMetrics.

Email: contact@choice-metrics.com
Website: www.choice-metrics.com

This is a contract between you and ChoiceMetrics. The software product refers to the computer software and
documentation as well as any upgrades, modified versions, copies or supplements supplied by
ChoiceMetrics. By installing, downloading, accessing or otherwise using the software product, you agree to
be bound by the terms and conditions of this agreement.

End-User License Agreement

Copyright and Intellectual Property

This software product is copyrighted by, and all rights are reserved by ChoiceMetrics. No part of this software
product, either the software or the documentation, may be reproduced, distributed, downloaded, stored in a
retrieval system, transmitted in any form or by any means, sold or transferred without prior permission of
ChoiceMetrics. You may not modify, adapt, translate, or change the software product. You may not reverse
engineer, decompile, dissemble, or otherwise attempt to discover the source code of the software product.
The software product is licensed, not sold. Your possession, installation and use of the software product does
not transfer to you any title and intellectual property rights, nor does this license grant you any rights in
connection with software product trademarks.

Use of the Software Product

You have only the non-exclusive right to use this software product. A single computer license is registered to
one specific computer, and is not intended for installation on a network or in a computer laboratory. For a
multi-computer site license, the specific terms of the site license agreement apply for scope of use and
installation.

Limited Warranty

ChoiceMetrics warrants that the software product will perform substantially in accordance with the
documentation for a period of ninety (90) days from the date of the original purchase. To make a warrnaty
claim, you must notify ChoiceMetrics in writing within ninety (90) days from the date of the original purchase
and return the defective software to ChoiceMetrics. If the software does not perform substantially in
accordance with the documentation, the entire liability and your exclusive remedy shall be limited to, at
ChoiceMetric's option, the replacement of the software product or refund of the license fee paid to
ChoiceMetrics for the software product. Proof of purchase from an authorized source is required. This limited
warranty is void if failure of the software product has resulted from accident, abuse, or misapplication. Some
states and jurisdictions do not allow limits on the duration of an implied warranty, so the above limitation may
not apply to you. To the extent permissible, any implied warranties on the software product are limited to
ninety (90) days.

ChoiceMetrics does not warrant the performance or results you may obtain by using the software product. To
the maximum extent permitted by applicable law, ChoiceMetrics disclaims all other warranties and
conditions, either express or implied, including, but not limited to, implied warranties of merchantability,
fitness for a particular purpose, title, and non-infringement with respect to the software product. This limited
warranty gives you specific legal rights. You may have others, which vary from state to state and jurisdiction
to jurisdiction.

Limitation of Liability

Under no circumstances will ChoiceMetrics be liable to you or any other person for any indirect, special,
incidental, or consequential damages whatsoever (including, without limitation, damages for loss of business
profit, business interruption, computer failure or malfunction, loss of business information, or any other
pecuniary loss) arising out of the use or inability to use the software product, even if ChoiceMetrics has been
advised of the possibility of such damages. In any case, ChoiceMetrics's entire liability under any provision of
this agreement shall not exceed the amount paid to ChoiceMetrics for the software product. Some states or
jurisdictions do not allow the exclusion or limitation of liability for incidental or consequential damages, so the
above limitation may not apply to you.

Ngene User Manual4

© 2012 ChoiceMetrics

Table of Contents

Chapter 1 Introduction 9

91.1 What is Ngene?

91.2 About Version 1

91.3 Feature overview

111.4 Overview of this manual

Chapter 2 Installation and Setup 13

132.1 Installing Ngene

142.2 Evaluation version

142.3 Purchasing Ngene

142.4 License activation and management

172.5 Uninstalling Ngene

Chapter 3 The Ngene Workspace 19

193.1 Workspace overview

213.2 Syntax windows and files

223.3 Data windows and files

243.4 Output window

303.5 Design windows and files

343.6 The unmanaged workspace

353.7 Projects: the managed workspace

383.8 Menus

38File menu

40Edit menu

41Run menu

42Tools menu

42Window menu

43Help menu

43Options dialog box

Chapter 4 Ngene Syntax 50

504.1 Syntax command format

514.2 An example design syntax: Full factorial designs

Chapter 5 Introduction to Experimental
Design Theory 54

545.1 Introduction to experimental designs for stated choice experiments

565.2 Overview of general steps for creating stated choice experiments

5Contents

© 2012 ChoiceMetrics

58Step 1 - Model specif ication

59Step 2 - Generation of experimental design

61Step 3 - Construction of questionnaire

615.3 Notation

Chapter 6 Orthogonal Designs 63

636.1 Theory of full and fractional factorial designs

63Full factorial designs

64Orthogonal designs

64Definition of orthogonality

65Generating orthogonal designs

66Reasons for using orthogonal designs

67Discussion of orthogonal designs

696.2 Generating orthogonal designs in Ngene

69Full factorial designs

71Fractional factorial designs

72Orthogonal fractional factorial designs

76Orthogonal fractional factorial designs w ith tw o-w ay interactions

796.3 Orthogonal optimal in the difference fractional factorial designs

806.4 Appendix 6A Correlation measures

826.5 Appendix 6B Optimal orthogonal in the differences designs

Chapter 7 Efficient Designs 89

897.1 Theory of efficient designs

89Efficient designs

89Definition of eff iciency

89Deriving the asymptotic variance-covariance matrix

91Efficiency measures

94Draw ing from parameter distributions

96Pseudo-random Monte Carlo (PMC) simulation

96Quasi-random Monte Carlo simulation

97Modif ied Latin Hypercube Sampling (MLHS)

97Halton sequences

98Sobol sequences

98Gaussian quadrature

99Orthogonal versus eff icient designs

99Importance of prior parameter values

100Utility balance

102Generating eff icient designs

104Discussion of eff icient designs

1057.2 Generating efficient designs in Ngene

106Efficiency measures

107Designs for estimating multinomial logit models

111Designs for estimating random parameters models

115Designs for estimating error components models

116Designs for estimating combined random parameters and error components

117Reporting eff iciency measures for different model types

118Designs w ith no choice alternatives

119Designs w ith dummy and effects coded attributes

125Efficient designs w ith interactions

Ngene User Manual6

© 2012 ChoiceMetrics

1277.3 Bayesian efficient designs

1307.4 Model averaging of efficient designs

1367.5 Appendix 7A Discrete choice models

136Utility specif ication

138Model probabilities

139Model log-likelihood functions

141Model variance-covariance matrices

1447.6 Appendix 7B Steps in generating efficient stated choice designs

Chapter 8 Advanced Features in Generating
Efficient Designs 149

1498.1 Attribute level balance and fractional factorial designs

1528.2 Constraints and fractional factorial designs

152Constrained designs

153Constrained designs in Ngene

1578.3 Reference or pivot (customized) designs

157Pivot designs

158Pivot designs in Ngene

1698.4 Including covariates in generating efficient designs

169Designs w ith covariates

1728.5 Designs within designs: Designs with scenarios in Ngene

1768.6 Algorithms for generating designs in Ngene

1788.7 Evaluating existing designs in Ngene

1798.8 Handling unlabeled alternatives

1858.9 Handling probabilities and other attributes that must sum to a number

Chapter 9 Designs With Continuous
Attribute Levels 187

1879.1 Theory of designs with continuous levels

1889.2 Designs with continuous levels in Ngene

1959.3 Appendix 9A Steps in generating choice designs with continuous attribute levels

1969.4 Appendix 9B The Nelder Mead algorithm

Chapter 10 Formatting experiments 200

Chapter 11 Syntax Reference 210

21011.1 Definitions of syntax components

21111.2 How this manual specifies syntax

21211.3 Design

212alg

215alts

216bdraw s

217block

218bseed

218con

7Contents

© 2012 ChoiceMetrics

219cond

220eff

222eval

223fact

224f isher

224foldover

225Formatting properties

225formatattributes

225formatchoices

225formatstylesheet

225formattable

225formattabledimensions

225formattablefooter

226formattableheader

226formattablestyle

226formattitle

226model

230orth

231prec

231rdraw s

232reject

233rep

234require

235row s

235rseed

236start

237store

237trimdist

238w tp

23911.4 Reserved words

Chapter 12 Endnotes 241

Chapter 13 References 244

Index 0

Chapter 1

Introduction

9Introduction

© 2012 ChoiceMetrics

1 Introduction

This user manual and reference guide describes how to use the Ngene software and also briefly
introduces the underlying methodology.

1.1 What is Ngene?

Ngene is software for generating experimental designs that are used in stated choice experiments
for the purpose of estimating choice models, particularly of the logit type.

Ngene is distributed by ChoiceMetrics (www.choice-metrics.com). The syntax used in Ngene is
similar to that used in Nlogit/Limdep.

1.2 About Version 1

Ngene 1 is the first commercial release of this software. It has a modern graphical interface and
state-of-the-art methods for generating a wide range of experimental designs. Ngene allows for the
generation of orthogonal designs, optimal orthogonal designs and efficient stated choice designs.
Ngene 1 supports orthogonal main effects only designs and for efficient designs, supports main
effects and interaction effects for MNL, MMNL panel and cross sectional and EC panel and cross
sectional models. Ngene also allows for constraints and nesting of attributes for different types of
designs. Ngene allows the user to open and read existing data, for example to evaluate designs that
may have been generated elsewhere.

Ngene 1 also allows the user to build the HTML code for any design generated. The user may take
an existing design (even one generated using other software) and build step by step the HTML code
for presenting that design. The user will have to write their own code to capture data using the
design, however for those wishing to show clients what the experiment might look like in practice,
this feature will allow for a quick solution without having to first write the complete survey
themselves.

Point releases are released periodically as a free upgrade, and add minor functionality and fix bugs.
The current release is Ngene 1.1.1. Check the website to see if a more recent version of Ngene is
available.

1.3 Feature overview

Ngene is designed to be the single source of stated choice (SC) experimental designs. As such, it
has an extensive range of features and outputs.

With Ngene you can:

Specify designs with great flexibility:
Generate designs with any number of choice situations, alternatives, attributes and attribute
levels.
Maintain attribute level balance, or specify that an attribute must occur an exact number of times

http://www.choice-metrics.com
http://www.choice-metrics.com

10 Ngene User Manual

© 2012 ChoiceMetrics

or between a minimum and maximum number of times.
Dummy and effects code attributes.
Specify logical rules to limit what attribute levels can coexist in a choice situation.
Interrogate design level correlations as calculated using a range of correlation formulas (Pearson
product moment, G index, J index, Spearman rank, Point biserial, CP coefficient, H index).

Generate full and fractional factorial designs.

Generate orthogonal designs:
Maintain orthogonality either across or within alternatives.
Obtain orthogonal designs for a very large range of design dimensions.
Add blocking and foldover columns.
Generate optimal orthogonal in the differences designs.
Find the most efficient orthogonal design.

Generate efficient designs:
Report and optimize on efficiency measures including d, a, s (sample size), b (utility balance), and
wtp (willingness to pay).
Report and optimize on efficiency measures for multinomial logit (MNL) models, mixed multinomial
logit (MMNL) models (panel and cross sectional) and error components (EC) models (panel and
cross sectional).
Account for prior uncertainty with normally and uniformly distributed Bayesian priors.
Report and optimize on the Bayesian mean, median, minimum, maximum and standard deviation.
Draw Bayesian and random parameter distributions with random, Halton, Sobol and MLHS draws,
as well as Gaussian quadrature.
Optimize on more than one model and error measure type using model averaging.
Search for efficient designs using the pair swapping, RSC and modified Federov algorithms.
Report utilities, probabilities, the Fisher matrix and the covariance matrix for each model type.

Generate formatted HTML mockups:
Format the scenarios by placing design levels, text and radio buttons wherever you like within a
table.
Format or relabel design levels for presentation.
Apply cascading style sheets (CSS) to instantly modify the appearance of the formatted scenarios
(CSS files included, or create you own).
View the mockups directly within Ngene.

Interact with a modern user interface that maximizes flexibility:
Open and evaluate existing data files and designs.
Open files independently in the workspace or maintain syntax, data and output files within a
project.
Retain all syntax runs and associated outputs during a session.
Interrogate any design found during a search.
Report design properties as needed - no need to decide what to report before the syntax runs, and
no calculation of unnecessary properties during the search.
Easily view any number of user selected design properties in a grid, and copy directly to other
applications including Microsoft Excel.

and do much more...

11Introduction

© 2012 ChoiceMetrics

1.4 Overview of this manual

This manual is arranged so that the functions you are most likely to use are the ones you will find
documented first. We have attempted to be concise, where possible substituting hands-on examples
for lengthy prose about particular aspects. Nonetheless, in order to be complete, this manual is
necessarily longer than we would have hoped. In spite of this, first time users should take the time
to skim the first few paragraphs of each chapter before beginning serious use.

This manual is broken into chapters:

Chapter 1 "Introduction" gives a brief introduction to the capabilities of Ngene, and the contents of
this manual.
Chapter 2 "Installation and Setup" provides instructions for the installation and setup of the Ngene
software.
Chapter 3 "The Ngene Workspace" explores the graphical operating environment and its various
components.
Chapter 4 "Ngene Syntax" is an introduction to the structure of the syntax that the analyst uses to
control Ngene.
Chapter 5 "Introduction to Experimental Design Theory" provides an introduction to experimental
design theory. It is recommended to read this chapter before reading subsequent chapters.
Chapter 6 "Orthogonal Designs" discusses the theory of orthogonal designs, and guides the user
through the construction of various types of orthogonal designs in Ngene.
Chapter 7 "Efficient Designs" introduces the theory of efficient designs, and demonstrates the
basic features of efficient design generation in Ngene.
Chapter 8 "Advanced Features in Generating Efficient Designs" describes some state-of-the-art
design generation techniques that can be utilized in Ngene.
Chapter 9 "Designs With Continuous Attribute Levels" examines designs that allow some
attributes to have continuous attribute levels.
Chapter 10 "Formatting Experiments" explores the tools that Ngene provides for creating HTML
survey mockups using the generated experimental designs.
Chapter 11 "Syntax Reference" outlines in detail the permissible syntax of each of Ngene's
commands and properties.
Chapter 12 "Endnotes" contains endnotes from the entire manual.
Chapter 13 "References" lists all references cited in the manual.

Key concepts. Some pieces of information are very important. To make them stand out from the
rest of the documentation, these 'key concepts' will be presented in a yellow box such as this
one.

Chapter 2

Installation and Setup

13Installation and Setup

© 2012 ChoiceMetrics

2 Installation and Setup

2.1 Installing Ngene

Ngene is a Windows based program (there is no Macintosh version). As of version 1.0.2, Ngene can
run on computers installed with 64 bit versions of Windows.

To install Ngene:

1. Install .NET 3.0, if necessary
Ngene requires .NET 3.0 to run. If you do not already have .NET 3.0 installed, you can download
the latest version from the Microsoft website. If you are uncertain if .NET 3.0 is installed, attempt
step 3 - an error message will be shown if .NET 3.0 is not installed.

2. Obtain the Ngene installer.
Download the installer EXE file from www.choice-metrics.com/download. The file is large -
approximately 80MB.

3. Navigate to and run the setup program
Run the program 'Ngene setup.exe'. You can change the installation location if you wish, and
install for either all users of the computer, or just yourself.

One screen of the setup program

http://www.microsoft.com/downloads/details.aspx?familyid=10cc340b-f857-4a14-83f5-25634c3bf043&displaylang=en
http://www.choice-metrics.com/download

14 Ngene User Manual

© 2012 ChoiceMetrics

4. Run Ngene
A shortcut called 'Ngene' will have been placed on your desktop, and a further shortcut will have
been placed in your Start Menu. Open either of these shortcuts, and Ngene will run.

5. Activate Ngene
If you purchased your copy of Ngene, refer to the section License activation and management for
information on how to activate your copy of Ngene. Otherwise, Ngene will run as an evaluation
version.

2.2 Evaluation version

Until you activate Ngene, Ngene will run as an evaluation version. Ngene can only be activated if you
have purchased the software. If you have purchased the software, refer to the next section, License
activation and management, for details on how to activate Ngene.

We have provided the evaluation version to allow you to see how Ngene works, and experience first
hand all of the features that it provides. You can pass the software on to others freely. The only
limitation in the evaluation version is that all design values will appear as "0", with the real design
levels being obfuscated. All other functionality will be complete.

2.3 Purchasing Ngene

Ngene can be purchased securely online through PayPal, or by bank transfer. For up to date details
on how to pay, including current pricing, visit www.choice-metrics.com/purchase.

2.4 License activation and management

Single licenses of Ngene allow the software to be used on at most two computers. We understand
that many people want a copy for their desktop computer and for their laptop.

The full version of Ngene is activated using a license ID and password provided by ChoiceMetrics,
with the software being locked to a single computer after activation. Moving the software with the
license file to another computer will cause Ngene to revert to the evaluation version on that
computer.

Note that purchasing Ngene is not instantaneous. We will need to check that payment has
cleared before we send you your password. Please do not leave the purchase of Ngene to the last
minute if you need it for a project.

There are two mechanisms for activating Ngene: online activation and manual activation. We strongly
recommend online activation, as it is faster and more convenient. If however you do not have internet
access on the computer you wish to activate, you may need to manually activate the software. Both
methods are described below.

http://www.choice-metrics.com/purchase

15Installation and Setup

© 2012 ChoiceMetrics

Online activation

1. Purchase Ngene. We will email you a receipt, a license ID, and a password.

2. If you have not already done so, download Ngene from the ChoiceMetrics website at www.choice-
metrics.com/download and install the software.

3. Run Ngene.

4. From the Help menu, select ‘Online Activation’. A dialog box will appear, similar to that below.

The online activation dialog box

5. Enter the license ID and password provided to you when you purchased Ngene. If you have lost
these details, email sales@choice-metrics.com and we will send through the details again. Your
software should now be activated.

Manual activation

1. Purchase Ngene.

2. If you have not already done so, download Ngene from the ChoiceMetrics website at www.choice-
metrics.com/download and install the software.

3. Run Ngene.

4. From the Help menu, select ‘Manual Activation’. A dialog box will appear, similar to that below.

http://www.choice-metrics.com/download
http://www.choice-metrics.com/download
mailto:sales@choice-metrics.com
http://www.choice-metrics.com/download
http://www.choice-metrics.com/download

16 Ngene User Manual

© 2012 ChoiceMetrics

The manual activation dialog box

5. Email sales@choice-metrics.com with ‘User Code 1’ and ‘User Code 2’.

6. We will reply with an activation code. Run Ngene. From the 'Help' menu, again select ‘Manual
Activation’. Enter the activation code into the field 'Reg Key 1:'. Your copy of Ngene should now be
activated.

Note that the user codes will sometimes reset before the user codes can be entered. You will need
to email us again with the updated user codes. This issue is outside of our control, and is another
reason why online activation is preferable.

What if I change computers?

If you received a licence ID and password for online activation (i.e. you purchased the software after
late 2009), the same details will allow you to activate Ngene after you have upgraded or changed
computers. If the activation fails due to insufficient activations being available, email
contact@choice-metrics.com. If you purchased Ngene in 2009, you may not have received a license
ID and password. Email contact@choice-metrics.com to obtain these details. Alternatively, you can
request a manual activation.

If you have merely upgraded a part of your computer, it is unlikely that you will need a new
activation, although this is a possibility. For example, updating the operating system or installing a
new hard drive is unlikely to cause any problems.

What if I uninstall Ngene?

If you uninstall Ngene, the license file "Ngene.lf" will be left in the folder in which Ngene was
installed. So long as this file is left in place, future installations of Ngene to the same folder on the
same computer will not need activation. It is strongly recommended that you create a backup of the
"Ngene.lf" file.

mailto:sales@choice-metrics.com
mailto:contact@choice-metrics.com
mailto:contact@choice-metrics.com

17Installation and Setup

© 2012 ChoiceMetrics

2.5 Uninstalling Ngene

Navigate to the Control Panel, and open 'Add or Remove Program'. Select 'Ngene' from the list, and
then its associated 'Remove' button.

Chapter 3

The Ngene Workspace

19The Ngene Workspace

© 2012 ChoiceMetrics

3 The Ngene Workspace

This chapter will explain how to navigate within and operate the Ngene workspace. Ngene is
primarily command driven, where the commands are stored in a syntax file and entered via the
user’s keyboard. However, the rest of Ngene utilizes a rich graphical user interface (GUI), the
components of which are described in this chapter.

3.1 Workspace overview

Upon starting Ngene, a blank workspace will appear as below. Initially, the workspace consists only
of a menu bar and a toolbar with buttons. When performing tasks within Ngene, new windows will
appear within the workspace.

The Ngene workspace as it appears on startup

The windows can be minimized, so that the window appears at the bottom of the workspace as
shown below.

Windows minimized within the workspace

20 Ngene User Manual

© 2012 ChoiceMetrics

Various files can be opened and represented within Ngene as windows, including:
Ngene project files
Ngene syntax files
Ngene design files
Excel files
Comma separated files

Of these files, only one project can be open at any one time. There is no limit to how many of the
remaining file types can be open within the main operating environment.

A key distinction can be made within Ngene between a managed and an unmanaged workspace.

A managed workspace is controlled by an open project. All new files created will automatically be
added to the project folder, and files external to the project that are opened will be copied to the
project's folder.

An unmanaged workspace exists when no project is open. All new files will not be stored until
they are saved explicitly, and files will be opened from their original location.

The choice of which type of workspace to use will depend on the user's preferences, and the
number of files and designs they wish to work with.

The following sections outline the files that can be opened, their purpose, and how they are handled
and visualized within Ngene.

21The Ngene Workspace

© 2012 ChoiceMetrics

3.2 Syntax windows and files

Whilst some functionality can be invoked in Ngene via the menus, syntax is the primary method of
controlling the program. Syntax is entered as plain text into a syntax window, an example of which
is below. To run syntax, the syntax window that contains the relevant syntax must be made active,
and the Run menu item selected. The results of the run will be displayed in the Output window.

An empty syntax window

A description of the structure of Ngene syntax is covered in Ngene Syntax, together with a simple
example. The syntax is introduced across several chapters, and the manual also contains a Syntax
Reference chapter.

Syntax files

Ngene syntax is stored in syntax files, which have a .ngs suffix. These are plain text files, and so
are portable and can be opened by a wide range of programs. However, Ngene registers these files
so that they will open in Ngene by default. The File menu section describes how syntax files can be
created, opened and saved.

When a syntax file has not been saved since changes were made, a star will appear next to the file
name in that file's syntax window (see below).

A syntax file that has had changes since it was last saved

22 Ngene User Manual

© 2012 ChoiceMetrics

3.3 Data windows and files

Various functions in Ngene may require that the user access data files. For example, the analyst
may wish to evaluate an existing design stored in an Excel file.

The current release version of Ngene supports the access of Excel files (including the new .xlsx and
.xlsm file formats), comma separated (CSV) files, semicolon delimited files, and tab delimited files.
Data file access is read-only, so the data can be viewed within Ngene and used by the routines, but
may not be modified. Memory permitting, any number of datasets can be opened simultaneously.

The File menu section describes how data files can be opened.

Below is a screenshot of an Excel file containing a design that has been opened with Ngene.

An Excel file displayed within Ngene

If the data file represents a design, and is to be used with the eval or start properties, the columns
need to exist in a specific order. The first column contains the design number. In most cases, there
will just be a single design. In this case, all rows should contain the value 1. If D designs are to be
evaluated, perhaps for a heterogeneous design, then the designs should appear in order, with the
first column containing values 1...D. The second column contains the choice situation number. One
choice situation should be specified per row, with the values increasing from 1 to S in order for every
design (where there are S choice situations per design). The remaining columns contain the
attributes, and should be specified in the same order as the attributes are declared in the syntax
that will be used to evaluate the design. Note that constants in a utility expression are not treated as
attributes, and should not be stored in the data file. The above example contains a single design with
12 choice situations and eight attributes.

Ngene can either treat the first row in the data file as a header, or the first row of actual data. For the
former, the first row should contain names for each column, and the actual data should be specified
from the second row. For the later, no column names need to be specified, and the data can begin
from the first row. To change this setting, select Session Options or Permanent Options from the

23The Ngene Workspace

© 2012 ChoiceMetrics

Tools menu, and select the General tab (see below for the relevant part of this screen). Check or
uncheck the "With column headers" check box. All data files will be opened with this setting.

Preferences for changing how data files are read

When opening a CSV file, the file can be seperated by commas (the default), semicolons, or tabs.
To change this setting, select Session Options or Permanent Options from the Tools menu, and
select the General tab (see above for the relevant part of this screen). All data files will be opened
with this setting.

24 Ngene User Manual

© 2012 ChoiceMetrics

3.4 Output window

When syntax is run, results are accessed from the Output window, shown below. The Output
window is not initially visible, but will automatically open the first time syntax is run in a session.

The Output window

The Output window consists of several parts, listed below.

Session History

On the left, the session history is stored. Each time syntax is run, a new row will appear in the
Session History list. The row, which represents a single syntax run, contains several fields of
information:

Command: the main command that was run.
Time: the time the run commenced.
Status: running, paused, or stopped. Note that only one routine may be run at a time. Hence, the
user cannot pause one routine and start a second.
Syntax: the syntax that was run. Placing the curser over a cell in this column will produce a pop-
up box that shows the full syntax used for that routine.
Comments: the user may type personal comments here that may be useful for future reference.
Also, if an error occurs when the syntax is parsed, Ngene will place the word ‘Error’ here. In doing
this, the user will quickly be able to see that the routine for that syntax is not running and
hopefully be able to diagnose the problem.

25The Ngene Workspace

© 2012 ChoiceMetrics

The Session History

The user may wish to remove previous syntax runs to free memory. This can be done in one of two
ways:
1. The user may press the ‘Clear entire session history’ button located below the Session History

list. This will clear all syntax runs that are not running and free the associated memory.
2. The user may remove a single syntax run by right hand clicking on any cell of the corresponding

row in the Session History list, and selecting 'Remove' from the popup menu, as shown below.

Removing a single syntax run

Note that once removed, a syntax run cannot be retrieved. That is, the undo button will not retrieve a
removed run. However, any designs that were added to the project or opened in a Design window
prior to the removal of the run will still be accessible.

Selecting a syntax run in the Session History load that run's output on the right hand side of the
window. Each syntax run is described by two tabs: the Design History tab and the Syntax tab.

26 Ngene User Manual

© 2012 ChoiceMetrics

Iteration History tab

The top of the Iteration History tab contains a list of all designs found so far in the syntax run.
Sometimes only a single design will be found, at other times there may be very many designs found,
as below.

Very important: To open a design window and examine the properties of the design, including
the design levels, double click on a row in the iteration history.

The Iteration history

Each row in the list represents a single design. Three properties of the design are displayed:

27The Ngene Workspace

© 2012 ChoiceMetrics

Evaluation: this indicates how many designs have been evaluated in the search to get to this
design state.
Time: the time and date that the design was found.
A performance measure (optional): the actual measure (and so the column heading) will vary
depending on the syntax. For example, efficient designs will report the efficiency measure being
optimized (e.g. MNL d error in the example above), but orthogonal designs will not report anything
for this field.

The information in the row is only a small subset of all the available properties of the design that
can be reported. This information is presented in a separate window, the Design window. To open
this window and examine this information, double click on the row of the design you wish to
examine. See Design windows and files for more information on Design windows.

Some rows may grey out. This means that the design has been deleted and is no longer available.
While in Ngene attempts to make as much information available as possible, some designs can
consume a large amount of memory, and the deletion of old designs is a strategy for preventing
Ngene from running out of memory. The first design is always retained, and then the N most recent
designs are also retained, where N is an integer that can be configured from the Options dialog box,
or specified in syntax. Also, all designs can be specified to be retained. The syntax for both these
options is:

;store = N
;store = all

Designs can be added to the current project if it is open. This can either be done from the Design
window, from the Add button in the toolbar, or from the design history list. To perform the later, right
click on any retained design, and select 'Add design to project' from the popup menu, as shown
below.

Adding a design to the project from the Iteration History list

The bottom of the Iteration History tab contains a scrolling text area called 'Trace'. This text area is
used by Ngene to provide a variety of feedback to the user, including, but not limited to:

Syntax error messages that will prematurely terminate a run.
Warnings that alert the user to potential problems, but will not terminate a run.
Notifications of assumptions made from a syntax specification.
Information providing updates on algorithm progress.

A significant effort has been made by Ngene's authors to provide meaningful error messages.
However, the authors welcome your feedback and suggestions on unclear messages.

The bottom of the Iteration History tab also presents the 'Current evaluation' number. This can help
reassure the user that a search is still running when an improved design has not been found for

mailto:support@choice-metrics.com
mailto:support@choice-metrics.com
mailto:support@choice-metrics.com
mailto:support@choice-metrics.com
mailto:support@choice-metrics.com

28 Ngene User Manual

© 2012 ChoiceMetrics

some time. The 'Current number of invalid designs' reports how many designs have been found that
have had to be discarded due to a problem with the evaluation of the design. For example,
sometimes the calculation of a Bayesian efficient design results in a singular Fisher matrix. A small
number of discarded designs can usually be tolerated, but a large number is symptomatic of some
underlying problem, and should be investigated by the analyst.

29The Ngene Workspace

© 2012 ChoiceMetrics

Syntax tab

The Syntax tab displays a read-only copy of the syntax that was used for the currently selected
syntax run.

The Syntax tab

30 Ngene User Manual

© 2012 ChoiceMetrics

3.5 Design windows and files

The design window contains all available information about a design. It can be opened by double
clicking on a row in the iteration history of the output window.

The title contains several pieces of information:
A performance measure (optional): If relevant, a performance measure. The actual measure will
vary depending on the syntax. For example, efficient designs will report the efficiency measure
being optimized (e.g. MNL d error in the example below), but orthogonal designs will not report
anything for this field.
The evaluation number: this indicates how many designs have been evaluated in the search to
find this design.
The syntax filename: the syntax file that was run to generate the design.

The design window itself contains three tabs, described below.

Properties tab

The Properties tab, shown below, contains two key components.

The tree structure: On the left is a tree structure that provides a list of properties of the design that
can be reported. Related properties are grouped together, and the actual properties available will vary
depending on the syntax of the design. The tree structure can be expanded and collapsed by
clicking on the plus (+) and minus (-) symbols to the left of the tree. A property is selected for
viewing by selecting its corresponding check box in the 'Show' column. Any number of properties
can be selected for viewing.

The output grid: On the right is a grid that reports each of the selected properties. The properties
themselves are typically tables, and the grid will adjust its size to accommodate all selected
properties. The properties are listed in the grid in the order they were selected. Values in the grid are
read-only and cannot be edited. However, the values may be copied and pasted into other software
packages such as Microsoft Excel or Microsoft Word.

When a design is opened, certain properties are selected by default. The default selection will vary
according to the syntax.

Many properties are calculated on the fly when they are selected. This prevents needless calculation
of properties at earlier stages, say during a search. However, it does mean that some properties
may be slow to display once selected. Properties that are known to frequently be slow to be
calculated will have '(slow)' listed next to their name.

This section will not describe the actual available properties, or the corresponding outputs displayed
in the grid. These outputs will be described in later chapters where appropriate. However, it is worth
noting that the design matrix will always be available (the first property listed below), as will that
design's correlation structure.

31The Ngene Workspace

© 2012 ChoiceMetrics

Properties tab of the Design window

Syntax tab

The Syntax tab, shown below, displays a read-only copy of the syntax that was used to generate
the design, in addition to the name of the syntax file that was run to generate the design.

32 Ngene User Manual

© 2012 ChoiceMetrics

Syntax tab of the Design window

Formatted scenarios tab

In addition to reporting the levels and various properties of the design, Ngene provides a mechanism,
known as scenario formatting, for applying extensive formatting to the design. The results are
presented in HTML, and the style of output can be rapidly transformed using cascading style sheets
(CSS files). Choice matrices of any size can be generated and populated with arbitrary text, radio
buttons for capturing choice, and design levels, which can themselves be formatted and transformed
into labels. The formatting functionality is extensive, and is described in Chapter 10 "Formatting
Experiments".

Scenario formatting is accessed through the Formatted scenarios tab of the Design window. A
simple example is shown below.

33The Ngene Workspace

© 2012 ChoiceMetrics

Formatted scenarios tab of the Design window

Design files

Ngene designs are stored as Ngene design files, which have a .ngd suffix. These are plain text files,
and can be examined by the curious. However, care must be taken if modifying an Ngene design file
yourself, as changes may cause problems when the file is opened again in Ngene. The Ngene
design file is registered in Windows on installation so that they will open in Ngene by default. The
File menu section describes how design files can be opened and saved.

It is worth noting that .ngd files do not store all possible properties of the design. Instead, the file
only contains the syntax used to generate the file, and the design levels. When the design is
opened, the syntax is parsed and used to evaluate the stored design, making all properties available.
This has several advantages, including a small file size and the ability for future versions of Ngene to
report additional properties. The key disadvantage is that opening the .ngd file may be a little slow for
some complex designs.

Adding designs to a project

In addition to saving designs in isolation, designs can be added to a project that is currently open.
From the Design window, right click anywhere on the Properties tab, and select 'Add design to

34 Ngene User Manual

© 2012 ChoiceMetrics

project' from the popup menu, as shown below. Alternatively, designs can be added to the project
from the iteration history list of the Output window.

Adding the design to the current project

3.6 The unmanaged workspace

When a project is not open, Ngene operates with an unmanaged workspace. The unmanaged
workspace treats files in the following way:

New syntax files are only stored after they are explicitly saved for the first time.
Design windows that have been opened from the Output window are only stored after they are
explicitly saved for the first time.
When syntax files, design files and data files are opened, the original version of the files are used.
Designs cannot be added to a project, as no project is open.

The unmanaged workspace can be useful in the following situations:
Only a small number of files are to be used.
A design file needs to be interrogated.
A simple search needs to be performed.

However, an unmanaged workspace with many windows can quickly become unwieldy, and in this
case the user may wish to consider moving to a managed workspace by creating a project.

35The Ngene Workspace

© 2012 ChoiceMetrics

3.7 Projects: the managed workspace

When a project is open, Ngene operates with a managed workspace. The managed workspace
treats files in the following way:

New syntax files are automatically stored in the project's folder when they are created.
Design windows that have been opened from the Output window can be added to the project and
thus stored in the project's folder. However, they are not automatically added to the project when
they are opened.
When syntax files, design files and data files are opened from outside the project's folder, a copy
of the file is made to the project's folder and this copy is used by the project.

The unmanaged workspace can be useful when many files are required by the user. Once the
project file is created, the user does not need to worry about where the project's files are stored.
Only a single project file needs to be opened to resume from where the user left off in the previous
session.

The project window

The project window (shown below) groups files in three categories: Syntax, Data and Output (the
later contains design files). Each group has its own tab, which can be changed by selecting the
appropriate button at the bottom of the project window.

36 Ngene User Manual

© 2012 ChoiceMetrics

The Syntax Files tab of the project window

The Data and Output tabs of the project window

To open any file in the project as a window, click the file once in the Project window. The window
will open, or if it was already open it will come into focus. The window will maximize if it was
minimized.

Managing files in a project

Files are added to the project whenever a file is created or opened. Additionally, the created or
opened file is always stored in the project's folder.

To remove a file from a project, right click on the file in the project window, and select 'Remove from
project' (see below). The file will not be deleted, but instead placed inside a subfolder of the project
folder, called 'Removed Items'. You may wish to delete the file yourself from this folder, especially if
it is a large data file.

Removing a file from a project

37The Ngene Workspace

© 2012 ChoiceMetrics

Files in a project can be renamed within Ngene. Right click on the file you wish to rename in the
project window, and select 'Rename' (see below). Enter the new file name in the dialog box that
appears (see below).

Renaming a file in a project

If you open or create a new project from an unmanaged workspace that contains open files, Ngene
will ask you if you wish to move copies of the open files into the opened or new project (see below).
This is particularly useful if, say, your unmanaged workspace is getting too complex and you want to
consolidate all the files into a single project.

Option to add open files to opened or new project

The project file and its associated folder

Project files end in the suffix .ngp. However, since projects can contain many files, Ngene creates a
folder to store these in the same directory as the .ngp file. If the project file is called 'X.ngp', the
associated folder will be called 'X project files'. If you copy a project to a different location, be sure to
copy both the .ngp file and the associated folder in its entirety.

The .ngp file is registered in Windows on installation so that it will open in Ngene by default.

38 Ngene User Manual

© 2012 ChoiceMetrics

3.8 Menus

The following sections outline the options available from each of the menus in Ngene.

3.8.1 File menu

The file menu

New Project

Creates a new, empty project.

If the current project is unsaved or unsaved files are open, you will be asked if you wish to save
them.
If the workspace is currently unmanaged but files are open, you will be asked if you wish to move
copies of the files to the new project.
If syntax is executing, you will be asked if you wish to stop the execution.

New Syntax

Creates a new, blank syntax window.

If the workspace is unmanaged, the syntax file will not be stored until it is saved for the first time.
If a project is open, you will be asked for a file name, and the new syntax file will be listed in the
project and stored in the project's folder.

Open

Opens any of the following file types in Ngene:

39The Ngene Workspace

© 2012 ChoiceMetrics

Ngene syntax files (.ngs)
Ngene design files (.ngd)
Ngene project files (.ngp)
Excel files (.xls), read only
Comma separated files (.csv), read only

If the workspace is unmanaged and you open a syntax, design, Excel or CSV file, the file will be
opened from its original location.
If a project is open and you open a syntax, design, Excel or CSV file, the file will be copied to the
project's folder and that copy will be opened.
If the workspace is unmanaged with open files, and you open a project, you will be asked if you
wish to move copies of the files to the project that is being opened.
If the existing (managed or unmanaged) workspace contains unsaved files and you open another
project, you will be asked if you wish to save them.
If you open a project while syntax is running, you will be asked if you wish to stop the run.

The Open dialog box

Recently Used Syntax

40 Ngene User Manual

© 2012 ChoiceMetrics

Recently Used Data
Recently Used Designs
Recently Used Projects

The most recently opened syntax, data files, design files and projects will be listed, and may be
opened quickly with this submenu. The toolbar options open the most recent project, syntax, and
data files. An error message will be displayed if the file selected no longer exists.

Close

Closes the active window.

If the project window is closed, but the project contains unsaved files, you will be asked if you
wish to save them.
If syntax is running, you will be asked if you wish to stop the run.

Save

Saves the active window in its current location.

If the file has not yet been saved, a save location will be requested, as per Save As.

Save As

Saves a copy of the active window in the location you specify.

Exit

Exits Ngene. If you are running syntax, you will be asked if you wish to stop the current run. You
may also be asked if you wish to save any unsaved syntax files or projects.

3.8.2 Edit menu

The edit menu

41The Ngene Workspace

© 2012 ChoiceMetrics

Undo

Undo the last syntax window modification. Undo only works with syntax modifications - no other
actions can be undone.

Redo

Redo the last undone syntax window modification. Redo only works with syntax modifications - no
other actions can be redone.

Cut

Cut the selected text.

Copy

Copy the selected text.

Paste

Paste the selected text.

3.8.3 Run menu

The run menu

Run (/ Pause / Resume)
The Run menu item starts the syntax run. Run can only be selected when a syntax window is
active. If any text is selected in the syntax window, only the selected text is run. If no text is
selected, the first command is run.

While the syntax is being run, the Run menu item changes to Pause. If Pause is selected, the
syntax run halts temporarily, and this menu item changes to Resume. If Resume is selected, the
syntax run resumes. A syntax run can be paused and resumed any number of times.

Stop

Many syntax runs will execute for a long time or indefinitely. A syntax run can be stopped at any
stage by selecting the Stop menu item. Stop can only be selected if syntax is currently being run.

42 Ngene User Manual

© 2012 ChoiceMetrics

3.8.4 Tools menu

The tools menu

Check Syntax

Rather than run a piece of syntax, you may wish to just check that the syntax is valid. When a
syntax window is active, select this option and any syntax errors will be reported in the Output
window.

Permanent Options...
Session Options...

There exist a number of settings and defaults in Ngene that may be changed by the user. Ngene
allows users to change the defaults in two different ways.

The Permanent Options dialog box allows the user to make permanent changes to the various
settings which will be saved and retained across sessions.

The Session Options dialog box allows the user to make changes to the various settings that will
remain in effect only for a particular session. The settings will be retained until such time as the user
further changes the default values or until the program is closed.

Refer to the Options dialog box section for details of the actual settings that can be configured.

3.8.5 Window menu

The window menu allows you to navigate between all open windows.

43The Ngene Workspace

© 2012 ChoiceMetrics

3.8.6 Help menu

The Help menu

Help

Opens the documentation in a Compiled HTML Help (CHM) file.

Manual

Opens the documentation as a single Acrobat (PDF) file.

Open demonstration project

Opens a copy of a demonstration project containing a collection of example syntax files. The user is
prompted to select a location where the copy will be stored.

Activate Ngene

Allows you to activate Ngene and unlock the full version. For more information refer to License
activation and management.

About

Provides specific information on the current installation of Ngene, including the specific version and
build number. If you are reporting a bug or problem on the website, please quote your version and
build number.

3.8.7 Options dialog box

There exist a number of settings and defaults in Ngene that may be changed by the user. Ngene
allows users to change the defaults in two different ways via the two options dialog boxes located in
the Tools menu. The Permanent Options dialog box allows the user to make permanent changes to
the various settings which will be saved and retained across sessions. The Session Options dialog
box allows the user to make changes to the various settings that will remain in effect only for a
particular session. The settings will be retained until such time as the user further changes the

http://www.choice-metrics.com

44 Ngene User Manual

© 2012 ChoiceMetrics

default values or until the program is closed. The only differences between the two dialog boxes are
the titles and slight differences to the functionality of the Load Options button. All screenshots will
use the Session Options dialog box, but the actual settings options will be identical.

The screenshot below shows the basic layout of the Options dialog box. On the left are links to
various pages (e.g. Draws and Algorithms), which are grouped under a heading (e.g. Designs).
Selecting one of these links will load the corresponding screen on the right. The 'Restore Defaults'
button will populate all settings with Ngene's 'factory' defaults. The 'Load Options' button varies
between the two settings dialog boxes. In the Session Options dialog box, the 'Load Permanent
Options' button will populate the session options with the current permanent options. In the
Permanent Options dialog box, this same button is called 'Load Session Options', and will populate
the permanent options with the current session options. Save will apply all changes to the settings
and close the dialog box, while cancel will close the dialog box without making any changes.

Settings are described below, grouped by the page they appear on.

45The Ngene Workspace

© 2012 ChoiceMetrics

General tab

The General tab of the Options dialog box

Store designs during search
(default = 10)

When generating output, Ngene attempts to save as much output as possible, thus allowing the
user to see how the output changes over different iterations. For example, in generating efficient
designs (see Chapter 7), multiple designs are generated and tested. If a design is found to be more
efficient, Ngene will store and save that design. Rather than throw away previously stored designs,
Ngene allows the user to store these as well. In this way, the user may view ‘less efficient’ designs
for purposes of comparison. Indeed, the user may for other reasons decide to use a less efficient
design if so desired. Storing large numbers of designs may result in significant memory issues,
particularly for some advanced designs. For this reason, Ngene allows the user to change the
number of most recent designs that are stored. The first design in a search will always be stored. It
is also possible to allow all designs to be retained, but the user must accept the risk of memory
issues.

Number precision
(default = 6)

This settings allows the user to modify the number of decimal places reported. While calculations
are made with maximum precision internally, large numbers of decimal places can be unwieldy when
reported in the output.

46 Ngene User Manual

© 2012 ChoiceMetrics

Number of Recently Used Syntax
Number of Recently Used Data
Number of Recently Used Designs
Number of Recently Used Projects
(default = 6)

This alters the maximum number of most recently used syntax/data/designs/projects available in the
 File menu.

Open data files with column headers

Change whether Ngene will look for a header row when opening a data file (checked), or start reading
the data from the first row (unchecked). All data files will be opened using this setting.

Formatting type for CSV files

Specify what character is used to delineate cells when opening CSV files: commas, semicolons, or
tab characters. All CSV data files will be opened using this setting.

Draws tab

The Draws tab of the Options dialog box

47The Ngene Workspace

© 2012 ChoiceMetrics

Default to
(default = Halton)

Sets the default type of draws to use for either Bayesian or Random draws.

Number of draws
(default = 200)

Sets the default number of draws for each draw type.

In most software packages that use simulated draws the default number of simulated draws is fixed.
In Ngene, the user is able to change the default number of draws for each draw type. For functions
that require the use of simulated draws (for example, Bayesian efficient designs), if the user fails to
specify the number of draws, Ngene will use the default number of draws specified here.

Remove first rows
(default = 10)

Specifies how many initial rows to remove from the table used for the corresponding draw type.

Many types of draws, often referred to as intelligent or quasi random Monte Carlo draws (e.g., Halton
sequences) are nothing more than tables of generated probabilities. These types of draws are
constructed in a specific fashion so that as much space of a distribution will be covered. Many
researchers have questioned certain aspects of these tables, in particularly Tables of Halton
sequences. In particular, these researchers claim that the first few rows of tables (corresponding to
the first few simulated draws) are correlated in an undesirable way (see Train 2003 for example).
These researchers therefore suggest removing the first few simulated draws.

48 Ngene User Manual

© 2012 ChoiceMetrics

Algorithms tab

The Algorithms tab of the Options dialog box

The generation of efficient experimental designs requires the exploration of impact of different
attribute level combinations. How Ngene changes the attribute level combinations may be set by the
user. Different algorithms (discussed in Algorithms for generating designs in Ngene) are available to
the user. Most algorithms have several settings, which can be controlled through parameters
specified in the 'alg' property. If no parameters are specified, the defaults specified here in the
Options dialog box are used. The equivalent parameter names that can be supplied in the 'alg'
property are listed in brackets next to the description.

When generating efficient designs, the type of model used to calculate the efficiency can have a
large impact on performance, and this may be a consideration when setting algorithm parameters.
For example, RP panel calculations are relatively slow, and so it may not be appropriate to allow as
many seed iterations for RP panel designs. The algorithm parameter defaults can be set
independently for each type of model by first choosing the appropriate tab. The model averaging tab
applies whenever the 'eff' property specifies more than one model type to optimize on (See model
averaging for more details).

Chapter 4

Ngene Syntax

50 Ngene User Manual

© 2012 ChoiceMetrics

4 Ngene Syntax

4.1 Syntax command format

Most Ngene instructions follow a similar pattern. Each new routine must begin on a new line (see
Figure 4.1), however specific instructions within a routine may use the same line. A routine may
consist of as many lines as required. Ngene code is not case specific so that the user may freely
use lower or capital case letters, and spaces may be used throughout the code.

Figure 4.1: Sample syntax

The general format of a command is:

VERB
; other information …
$

The syntax for a routine in Ngene will always begin with a verb and end with a dollar sign ‘$’. Specific
properties related to the routine must usually be specified, and each begins with a semicolon ';'. For
example, the typical structure of the Design command is as follows, which starts with ‘Design’, then
sets properties, and closes with the dollar symbol ‘$’:

Design
;<property>
;<property>
;...
? comment
$

Comments in the syntax file can be indicated with a question mark symbol ‘?’ and all text
subsequent to that symbol on the same line will be ignored.

The order of the properties or routine instructions does not matter.

Several routines may be run in sequence, by typing several routines into a single syntax file and

51Ngene Syntax

© 2012 ChoiceMetrics

pressing run, or highlighting several routines and pressing run. However, the generation of many
types of designs will run indefinitely, even if an improved design is unlikely to be found after a certain
period of time. In that case, you can specify stopping criteria. Refer to the syntax reference for the
alg property for more details.

4.2 An example design syntax: Full factorial designs

In the following we will explain a simple syntax file as an introduction to the basic syntax structure.
A list and description of all propertys and properties can be found in the Syntax Reference.

Several types of designs can be created using the Design property. One such design is the full
factorial design, which uses only the most basic properties.

For designs, three properties will always be present in a syntax file, namely alts, rows, and model.
The alts property defines which alternatives are present in the choice model. The rows property
defines how many choice situations need to be generated. The model property defines the choice
model by describing the complete utility function for each alternative.

For example,

;alts = A, B, C
;alts = car, bus, train
;alts = house1, house2

The alternatives can have any name (except for some reserved words) and need to be separated by
commas. These same names are then used in the model property, defining their utility functions.
This model property is a complex property and will be described in more detail.

Suppose that the alternatives are named ‘alt1’ and ‘alt2’. An example of setting the model property
is:

;model:
U(alt1) = b1 + b2 * A[0,1,2] + b3 * B[0,1] /
U(alt2) = b2 * A + b4 * C[2,4,6,8]

First, notice that complex properties consist of several lines, separated by a slash ‘/’. The first line
after the ‘model:’ property describes the utility function for ‘alt1’, the second line for ‘alt2’. The utility
functions are expressed as linear functions of attributes with associated weighting parameters. In the
above example, ‘b1’ to ‘b4’ are the weighting parameter names, while ‘A’ to ‘C’ are the attribute
names. The first name in the multiplication is the parameter name, the second is the attribute name,
i.e., ‘b2’ is the parameter associated with attribute ‘A’. Note that constants like ‘b1’ are specified
without an associated attribute. In all cases, the parameter name precedes the attribute name,
which are separated by the asterisk multiplicative symbol ‘*’.

Note that ‘b2’ appears both in the utility function of ‘alt1’ and ‘alt2’, meaning that ‘b2’ is a generic
parameter across both alternatives. On the other hand, ‘b1’, ‘b3’ and ‘b4’ are alternative specific
parameters. Whenever the same name is used across alternatives, the parameter is assumed to be
generic.

The values between square brackets located after an attribute name are the possible attribute levels
for that specific attribute required by the user. For example, attribute ‘A’ can have the levels 0, 1, or

52 Ngene User Manual

© 2012 ChoiceMetrics

2, while attribute ‘B’ can only have the levels 0 or 1. If the same levels are used for a similar attribute
with the same name in another alternative, then it is not necessary to repeat the levels, such that in
the example above, the levels of ‘A’ can be omitted in the second utility function. If the levels are
different, then the attribute level values will need to be added. Note that one can use the same
attribute name in different utility functions as Ngene will treat them separately (Ngene will refer to
them in the output as ‘alt1.A’ and ‘alt2.A’, etc.).

The number of choice situations to be generated has to be defined using the rows property. Normally
this would be a whole number, but to prevent the user from having to calculate the number of rows in
the full factorial manually, the following can be specified:

;rows = all

Finally, to specify that we want a factorial design, we specify:

;fact

The complete syntax would be:

Design
? This will generate a full factorial design
;alts = alt1, alt2
;rows = all
;fact
;model:
U(alt1) = b1 + b2 * A[0,1,2] + b3 * B[0,1] /
U(alt2) = b2 * A + b4 * C[2,4,6,8]
$

The above example will generate a full factorial design with 3x2x3x4 = 72 choice situations.

Attribute levels can be specified in an alternative way, with a lower and upper bound, and a step
size. These three values are specified in sequence inside the square brackets, separated by a
colon. Using this syntax, the above example would be:

Design
? This will generate a full factorial design
;alts = alt1, alt2
;rows = all
;fact
;model:
U(alt1) = b1 + b2 * A[0:2:1] + b3 * B[0:1:1] /
U(alt2) = b2 * A + b4 * C[2:8:2]
$

Chapter 5

Introduction to Experimental Design
Theory

54 Ngene User Manual

© 2012 ChoiceMetrics

5 Introduction to Experimental Design Theory

5.1 Introduction to experimental designs for stated choice
experiments

SC (SC) experiments, as proposed by Louviere and Woodworth (1983) and Louviere and Hensher
(1983), have received increasing attention in many different fields, including marketing,
transportation, health economics, environmental economics, and resource economics. Theoretical
advances in and estimation of discrete choice models has had a large impulse from the
transportation community, where many state-of-the-art publications on this topic have appeared. In
contrast, the main research in design of choice experiments has been in marketing and economics.
Lately, the interest in the design of choice experiments has increased in the transportation field as
well, and the purpose of this manual is to present the state-of-the-art in designing choice
experiments using the knowledge gained over the years till present from all disciplines. While there
exist good books with overviews for discrete choice modelling and estimation (Ben-Akiva and
Lerman, 1985; Hensher et al., 2005; Louviere et al., 2000; Train, 2003), no such books exist for
designing SC experiments.

The purpose behind conducting experiments is to determine the independent influence of different
variables (attributes or factors depending on the literature cited) on some observed outcome. In SC
studies, this translates into the desire to determine the influence of the design attributes upon the
choices that are observed to be made by sampled respondents undertaking the experiment.
However, an acknowledged limitation of SC studies is that unless the number of person specific
observations captured in a survey is extremely large, it is necessary to pool the responses obtained
from multiple respondents in order to produce statistically reliable parameter estimates. As such,
SC studies typically consist of numerous respondents being asked to complete a number of choice
tasks in which they are asked to select one or more alternatives from amongst a finite set of

alternatives. In each task, the alternatives, whether labeled or unlabeled1, are typically defined on a
number of different attribute dimensions, each of which are further described by pre-specified levels
drawn from some underlying experimental design. The number of choice tasks each respondent is
asked to undertake will generally be up to the total number of choice situations drawn from the
experimental design. Consequently, an archetypal SC experiment might require choice data be
collected on 200 respondents, each of whom are observed to make eight choices, thus producing a
total of 1600 choice observations.

Exactly how analysts distribute the levels of the design attributes over the course of an experiment
(which typically is via the underlying experimental design), may play a big part in whether or not an
independent assessment of each attribute’s contribution to the choices observed to have been made
by sampled respondents can be determined. Further, the allocation of the attribute levels within the
experimental design may also impact upon the statistical power of the experiment insofar as its
ability to detect statistical relationships that may exist within the data. This ability is related to the
sample size of the study and given a large enough sample, the statistical power of an experimental
design may not matter. Nevertheless, for sample sizes more commonly used in practice, the ability
to retrieve statistically significant parameter estimates may be compromised given the selection of a
relatively poor design. What constitutes a poor design is the focus of this chapter, however, at this
stage it may be worth noting that there may exist a trade-off between the ability of a design to allow
for an independent determination of the impact each design attribute has in a SC experiment (at
least insofar as how independence is thought of in a traditional sense) and the ability of the design to
detect statistically significant relationships. The experimental design chosen by the analyst may
therefore play a significant role in SC studies.

55Introduction to Experimental Design Theory

© 2012 ChoiceMetrics

Conceptually, an experimental design may be viewed as nothing more than a matrix of values that is
used to determine what goes where in a SC survey. The values that populate the matrix represent
the attribute levels that will be used in the SC survey, whereas the columns and rows of the matrix
represent the choice situations, attributes and alternatives of the experiment. The actual layout of
the design matrix is often set out in one of two ways. Some researchers set up the experimental
design matrix such that each row represents a different choice situation and each column a different
attribute within the experiment (see e.g., Bliemer and Rose 2006; Rose and Bliemer 2008). In such
cases, groups of columns form different alternatives within each choice task. Other researchers
however set-up the design matrix such that each row of the matrix represents an individual
alternative and each column a different attribute (see e.g., Carlsson and Martinsson 2002; Huber and
Zwerina 1996; Kanninen 2002; Kessels et al. 2006; Sándor and Wedel 2001, 2002). In these cases,
multiple rows are grouped together to form individual choice situations. Independent of how the
matrix is set out, the experimental design performs the same function; that being the allocation of
attribute levels to choice tasks, as shown in Figure 5.1.

Figure 5.1: From experimental design to choice situation construction

A number of competing explanations exist as to why this distinction has arisen in the past. The first
explanation suggests that the distinction arose due to historical reasons, with Western Europeans,
led predominately by John Bates in the early 1980s, adopting the column based approach whilst the
row based approach remained a legacy from the traditional conjoint methods used by marketing
researchers elsewhere in the world. A second explanation is that the different design formats tend to
correspond to the use of either equations to derive the asymptotic variance-covariance (AVC) matrix
(representing the column based approach) or matrix algebra (corresponding to the row based
approach). Independent of how the design matrix is represented however, the end result remains the
same.
.
Given the above, the primary question for those generating experimental designs for SC studies is
‘how best to allocate the attribute levels to the design matrix’. Traditionally, researchers have relied
upon the use of orthogonal experimental designs to populate the hypothetical choice situations
shown to respondents (see Louviere et al., 2000, for a review of orthogonal designs). More recently
however, some researchers have begun to question the relevance of orthogonal designs when
applied to SC experiments (e.g., Huber and Zwerina, 1996; Kanninen, 2002; Kessels et al., 2006;
Sándor and Wedel, 2001, 2002, 2005). Generally, the argument against the use of orthogonality as a
design criterion in the construction process is that the property of orthogonality is unrelated to the
desirable properties of the econometric models used to analyse SC data (i.e., logit and probit
models). The orthogonality (or otherwise) of an experimental design relates to the correlation
structure between the attributes of the design with designs in which all between-attribute correlations
are zero being said to be orthogonal (in some cases, this definition of an orthogonal design may be
relaxed to define orthogonality as occurring when all attribute correlations are zero within alternatives

56 Ngene User Manual

© 2012 ChoiceMetrics

but not necessarily between alternatives; see Louviere et al. (2000) discussion on sequential versus
simultaneous generation of orthogonal designs). Whilst orthogonality is an important criterion to
determine independent effects in linear models, discrete choice models are not linear (Train, 2003).
In models of discrete choice, the correlation structure between the attributes is not what is of
importance. Rather, given the derivation of the models, it is the correlations of the differences in the
attributes which should be of concern.

Huber and Zwerina (1996) took the important step of relating the statistical properties of the SC
experiments to the econometric models estimated on such data. In their paper, Huber and Zwerina
showed that designs that let go of orthogonality as a consideration in generating SC experiments
and which attempt to reduce the asymptotic standard errors of the parameter estimates (i.e., the
square roots of the diagonal elements of the asymptotic variance-covariance (AVC) matrix) will
generally result in designs that either (i) improve the reliability of the parameters estimated from SC
data at a fixed sample size or (ii) reduce the sample size required to produce a fixed level of
reliability in the parameter estimates with a given experimental design. The linking of the
experimental design generation process to attempts to reduce the asymptotic standard errors of the
parameter estimates has resulted in a class of designs known as efficient or optimal designs, where
designs that produce smaller asymptotic standard errors are thought of as being more efficient.

5.2 Overview of general steps for creating stated choice
experiments

The aim of generating an experimental design is generally to help construct a SC experiment, for
which an example is given in Figure 5.2. In creating a stated choice experiment, three main steps
have to be taken, as illustrated in Figure 5.3. First of all, a complete model specification with all
parameters to be estimated has to be determined. Based on this model specification, an
experimental design type has to be selected and then the design can be generated. Finally, a
questionnaire (on paper, internet, CAPI, etc.) is created based on the underlying experimental
design and data can be collected. The three steps will be elaborated below. The main part of the
chapter will be dedicated to the generation of experimental designs (step 2).

57Introduction to Experimental Design Theory

© 2012 ChoiceMetrics

Figure 5.2: Example of a screen in a stated choice experiment

1 0 1 1 2 2

2 1 3 3 4

V x x

V x x
- 1 - 1 - 1 - 1
- 1 - 1 - 1 1
- 1 1 1 - 1
- 1 1 1 1

1 - 1 1 - 1
1 - 1 1 1
1 1 - 1 - 1
1 1 - 1 1

Which mode would you choose in the following situations?

1. Car Train
Travel time: 10 min. 10 min.
Cost/fare: $1 $1

Your choice:

2. Car Train
Travel time: 10 min. 10 min.
Cost/fare: $1 $1.50

Your choice:

3. Car Train
Travel time: 10 min. 15 min.
Cost/fare: $1.50 $1

Your choice:

…
…

1x 2x 3x 4x

1.
2.
3.
4.
5.
6.
7.
8.

Model Experimental design Questionnaire

Figure 5.3: Steps in designing a stated choice experiment

58 Ngene User Manual

© 2012 ChoiceMetrics

5.2.1 Step 1 - Model specification

Each SC experiment is specifically created for estimating a specific model (or sometimes a range of
models). Therefore, one needs to specify the model and the parameters to be estimated before
creating an experimental design.

First, the problem studied should be refined and hypotheses developed. Secondary data search,
focus groups, and in-depth interview can assist in this. Then the stimuli need to be refined, in which
at least the following choices need to be addressed:

Which alternatives need to be included?
Which attributes to include for each alternative?

For example, alternatives can be existing or not-yet-existing transport modes in the area of interest.
Each mode can have different attributes (travel time, waiting time, comfort, etc.). Additionally, the
model type has to be chosen, appropriate to the problem. In other words, is the MNL model, the NL
model, or perhaps the MMNL model suitable?

Essentially, the complete specification of the utility functions needs to be known. For the example in
Figure 5.3, the chosen MNL model consists of two utility functions (hence two alternatives are
considered), and each alternative has two attributes (the first alternative has attributes x

1
 and x

2
,

while the second alternative has attributes x
3
 and x

4
.

Another important decision to make is whether an attribute is generic over different alternatives, or
alternative-specific. In the example, x

1
 and x

3
 are assumed to be generic, as they have share the

same generic parameter β
1
, while the constant β

0
 and the parameters β

2
 and β

3
 are alternative-

specific. For example, the attribute travel time can be differently weighted in the utility functions of
different mode alternatives, while it is typically weighted equally in case of different route alternatives.
If one is not certain about parameters being generic or alternative-specific, then it is best to make
them alternative-specific, as this can then be tested afterwards when estimating the parameters.

However, each additional parameter in the model represents an extra degree of freedom2, meaning
that the experimental design may become larger (although this is typically not substantial). The
minimum number of choice situations in the experimental design is discussed in Section 5.2.2.

Also of importance is to decide if any interaction effects (such as x
1
x

2
) besides the main effects will

be included in the model. Finally, the decision has to be made if nonlinear effects are taken into
account, either estimated using dummy-coded or effects-coded variables. These will introduce extra
parameters to be estimated and also impact the number of attribute levels used in the experimental
design.

Once the model has been completely specified, the experimental design can be generated. It is
important to note that the experimental design will be specifically determined for the specified model
and may be sub-optimal if other models are estimated using the data obtained from the stated
choice experiment. Hence, estimating an MMNL model is done best using data from a stated choice
experiment using a design generated based on the same MMNL model. Adding extra variables to
the utility functions later in estimation, such as socio-economic data (age, gender, income, etc.),
may make the experimental design again sub-optimal, hence is possible they should be taken into
account from the beginning.

59Introduction to Experimental Design Theory

© 2012 ChoiceMetrics

5.2.2 Step 2 - Generation of experimental design

Once the model specification is known, the experimental design can be created. An experimental
design describes which hypothetical choice situations the respondents are faced with in the stated
choice experiment. It typically consists of a table of numbers (as illustrated in Figure 6.3) in which
each row represents a choice situation. The numbers in the table correspond to the attribute levels
for each attribute (e.g., -1, 1) and are replaced by their actual attribute levels later on in the
questionnaire (e.g., $1, $1.50). In the example, there are in total eight choice situations and four
different columns for each of the four attributes. Different coding schemes can be used for
representing the attribute levels in the experimental design. The most common ones are design
coding (0, 1, 2, 3, etc.), orthogonal coding ({-1,1} for two levels, {-1,0,1} for three levels, {-3,-1,1,3} for
four levels, etc.), or coding according to the actual attribute level values.

There are many experimental designs possible, and the aim here is to determine the best one.
Before finding the best design, some design decisions have to be made. These include:

Should the design be labelled or unlabelled?
Should the design be attribute level balanced?
How many attribute levels are used?
What are the attribute level ranges?
What type of design to be used?
How many choice situations to use?

If the model specification has alternatives with alternative-specific parameters, then these
alternatives need to be labeled (e.g., car, train, bus) in the experiment. If alternatives have generic
parameters, they can be unlabeled (e.g., route A, route B, route C).

Almost all experimental designs created satisfy the attribute level balance property, which means
that each attribute level appears an equal number of times for each attribute. In the example, in each
column -1 and 1 both appear exactly four times. Although imposing attribute level balance may
restrict the design to be sub-optimal, it is generally considered a desirable property. Having attribute
level balance ensures that the parameters can be estimated well on the whole range of levels,
instead of just having data points at only one or few of the attribute levels. For most designs, Ngene
assumes designs will display the attribute level balance property. Where there are exceptions, such
as designs generated using the Modified Federov algorithm, this will clearly be indicated in the
manual.

The number of attribute levels to use depends on the model specification. If nonlinear effects are
expected for a certain attribute, then more than two levels need to be used for this attribute in order
to be able to estimate these nonlinearities. If dummy and/or effects coded attributes are included,
then the number of levels to use for these attributes is predetermined. The more levels used, the
higher the number of choice situations will be. Also, mixing the number of attribute levels for different
attributes may yield a higher number of choice situations (because of attribute level balance). For
example, if there are three attributes with 2, 3, and 5 levels, respectively, then the minimum number
of choice situations will be 30 (since this is divisible by 2, 3, and 5). On the other hand, if one would
use 2, 4, and 6 levels, then only a minimum of 12 choice situations would be enough. Therefore, it is
wise not to mix too many different numbers of attribute levels, or at least have all even or all odd
numbers of attribute levels.

Regarding the attribute level range, research suggests that using a wide range (e.g., $1-$6) is
statistically preferable to using a narrow range (e.g., $3-$4) as this will theoretically lead to better
parameter estimates (i.e., parameter estimates with a smaller standard error), although using too
wide a range may also be problematic (see Bliemer and Rose, 2009). The reason for this is that the
attribute level range will impact upon the likely choice probabilities obtained from the design, which

60 Ngene User Manual

© 2012 ChoiceMetrics

we show later to impact upon the expected standard errors from that design. Having too wide a
range will likely result in choice tasks with dominated alternatives (at least for some attributes)
whereas too narrow a range will result in alternatives which are largely indistinguishable. We have to
emphasize that this is a pure statistical property and that one should take into account the practical
limitations of the attribute levels. The attribute levels shown to the respondents have to make sense.
Therefore, there is a trade-off between the statistical preference for a wide range and practical
considerations that may limit the range.

Several different design types can be considered. A full factorial design (see Section 6.1.1) consists
of all possible different choice situations and with this design all possible effects (main and
interaction effects) can be estimated. However, for a practical study the number of choice situations
in a full factorial design is too large. Therefore, most people rely on so-called fractional factorial
designs (see Section 6.2.2), and within this class there exist many different types of designs. One
could randomly select choice situations from the full factorial, but clearly this is not the best way of
doing it. Rather, one selects choice situations in a structured manner, such that the best data from
the stated choice experiment will be produced for estimating the model. A fractional factorial design
consists of subset of choice situations from the full factorial. The most well-known fractional factorial
design type is the orthogonal design (see Section 6.1.2), which aims to minimize the correlation
between the attribute levels in the choice situations. As will be shown in Section 6.1.6, these
orthogonal designs have limitations and cannot avoid choice situations in which a certain alternative
is clearly more preferred over the others (hence not providing much information). More recently,
several researchers have suggested another type of fractional factorial designs, so-called efficient
designs (see Chapter 7). Instead of merely looking at the correlation between the attribute levels,
they aim to find designs that are statistically as efficient as possible in terms of predicted standard
errors of the parameter estimates. Essentially, these designs try to maximize the information from
each choice situation. Efficient designs will be able to outperform the orthogonal designs, however
prior parameter estimates need to be available. Therefore, efficient designs rely on the accuracy of
the prior parameter estimates. In order to obtain more stable designs that rely less on the accuracy
of the priors, the last few years Bayesian efficient designs have been proposed (see Section 7.3).
Instead of assuming fixed prior parameters, the priors are considered to be random parameters.
Some other design types have been considered very recently, in which attribute level balance is
abandoned, in which constraints on attribute levels are imposed, in which attribute levels are pivoted
around realistic values for each respondent, or in which covariates (such as socio-economics data)
are already considered when creating the design. These design types, being at the frontier of the
current state-of-the-art, will be briefly discussed in Chapter 8.

Unlike most other data types where an observation typically represents information captured about a
specific respondent or agent, in discrete choice data each alternative j represents a unique
observation. This is because each alternative is observed to be chosen or not, hence providing
information down to this level of detail. In grouping the alternatives together in choice tasks, there
therefore exist J-1 independent choice probabilities within each choice situations S which will be
estimated. As such, for first preference (pick one) tasks, the total number of independent choice
probabilities obtained from any given design will be equal to (J-1)S with the maximum number of
parameters, K, including constants, that can be estimated from that design having to be less than or
equal to this number. As such, the number of choice situations is bounded from below by (J-1)S =K,
and the number of choice situations required to ensure attribute level balance. Also the design type
may restrict the number of choice situations. An orthogonal design sometimes needs (many) more
choice situations than the minimum number determined by the number of degrees of freedom and
attribute level balance, merely because an orthogonal design may not exist or may be unknown for
these dimensions. A full factorial design has a predetermined number of choice situations, only
influenced by the total number of attributes and the number of attribute levels.

It should be noted that determining a “good” experimental design is not a simple task as there are

61Introduction to Experimental Design Theory

© 2012 ChoiceMetrics

generally billions of possible designs and it is impossible to evaluate all of them. Typically, computer
software is used to assist in this process.

5.2.3 Step 3 - Construction of questionnaire

Using the underlying experimental design, the actual questionnaire instrument can be constructed
(see Figure 5.2). Obviously, the experimental design represented by a table of numbers is
meaningless to a respondent, hence it needs to be transformed somehow so as to be meaningful for
the respondent. Each row in the experimental design is translated into a choice situation as
illustrated for the first three rows in Figure 2. In this example, all four attributes have two levels each,
denoted by -1 and 1 in the experimental design. These numbers are replaced by meaningful values
for each attribute, e.g., 10 minutes and 15 minutes for the travel time attribute for the car and train
alternatives, and $1 and $1.50 for the cost/fare attribute for both alternatives. Furthermore, for each
respondent the order of the choice situations should be randomized in order to rule out any possible
effects the ordering may have on the estimation.

In the end, the questionnaire can be either written down on paper, can be programmed into software
for computer-aided personal interviewing (CAPI), or implemented as an internet survey. Of course,
CAPI and internet surveys are much more flexible (choice situations can be responsive to earlier
responses or automatically tailor-made for each respondent), enable more advanced surveys, and
make the data readily available without human data entry errors. Therefore, most stated choice
surveys nowadays are computer-based.

5.3 Notation

For the remainder of this manual we will use the following notation when describing various aspects
of experimental design. Let each alternative j, j = 1, ..., J, have K

j
 associate attributes. Let the

number of choice situations be denoted by S, and the number of respondents by N. Suppose that
each respondent n, n = 1, ..., N, faces all S choice situations. In each choice situation s, s = 1, ...,
S, each alternative has attributes with different attribute levels x

jks
, k = 1, ..., K

j
. The objective is to

determine the experimental design matrix X
n
 = [x

jksn
] for each respondent n with x

jksn
 Λ

jkn
 where

Λ
jkn

 is the set of possible attribute levels for each attribute for respondent n. Let l
jk

 = |Λ
jkn

| denote

the number of levels for this attribute. In classical experimental designs, each respondent faces the
same attribute levels in the same choice situations, hence the subindex n can be omitted from the
variables describing the attribute levels. However, in some cases a different design for each
respondent is created, such that this subindex n is important.

Chapter 6

Orthogonal Designs

63Orthogonal Designs

© 2012 ChoiceMetrics

6 Orthogonal Designs

6.1 Theory of full and fractional factorial designs

In this chapter we discuss how to generate orthogonal designs. Before doing so however, we first
discuss the theory underlying the generation of these types of designs. We begin with a discussion
of full factorial designs.

6.1.1 Full factorial designs

A full factorial design considers each possible choice situation, i.e., each possible combination of
the attribute levels. Table 1 shows the full factorial design in case of three attributes (A, B, and C)
with two, two, and three levels, respectively (using orthogonal coding). In total there are twelve
choice situations.

In general, if there are J alternatives, each with K
j
 attributes, where attribute k K

j
 has l

jk
 levels,

then the total number of choice situations in the full factorial design is

(6.1)

In case of two alternatives, each having three attributes with four attribute levels each, the total

number of combinations is (4 x 4 x 4) x (4 x 4 x 4) = 42x3 = 4,096. Clearly, this number increases
rapidly, and it is not feasible to let a single respondent face all these choice situations. Therefore,
only for the smallest problems the full factorial design can be used. However, generating the full
factorial design may be useful for determining other designs, such as certain fractional factorial
designs (e.g., constrained designs, see Section 8.2).

Table 6.1: Example full factorial design

In the more practical fractional factorial designs, each respondent is only shown a subset of S
choice situations from the total number of choice situations. One option is to randomly select choice

64 Ngene User Manual

© 2012 ChoiceMetrics

situations from the full factorial. Another option is to give the first S choice situations to the first
respondent, the second S choice situations to the second respondent, and so on. Both options can
lead to biased outcomes, as for example a respondent may face only low or only high values of a
certain attribute. This could be avoided by choosing the subsets in such a way that attribute level
balance is satisfied. Orthogonal designs and efficient designs select subsets in a more structured
way, as will be outlined in the next sections.

6.1.2 Orthogonal designs

Orthogonal designs have been used in experimental design for a long time. It should be noted that
nowadays optimal/efficient designs exist (described in the next section) and are gaining in popularity
among researchers. However, for reasons of history and inertia, orthogonal designs remain
mainstream.

6.1.3 Definition of orthogonality

An orthogonal design is said to be orthogonal if it satisfies attribute level balance and all parameters
are independently estimable. This translates into the definition that the attribute levels for each
attribute column in the design need to be uncorrelated. In case of using orthogonal coding, an
orthogonal design satisfies the property that the sum of the inner product of any two columns is
zero:

(6.2)

This is illustrated by the orthogonal design in Table 6.2. The design in Table 6.3 is not orthogonal, as
the sum of the inner product of columns B and C is not equal to zero. As can be observed from the
correlation matrix, columns B and C are perfectly (negatively) correlated.

Table 6.2: Orthogonal design with three attributes having two levels

Table 6.3: Non-orthogonal design with three attributes having two levels

Orthogonality is preserved if columns are left out, however not when rows are left out. Therefore, if an
orthogonal array exists with more columns than is needed, one can randomly select columns to

65Orthogonal Designs

© 2012 ChoiceMetrics

enter the design, and re-arrange them in any preferred order. Also, multiplying one or more columns
by -1 preserves orthogonality. Therefore, from the orthogonal design in Table 6.2, in total eight
different orthogonal designs can be generated using all possible combinations of column multipliers:
(1,1,1), (-1,1,1), (1,-1,1), (1,1,-1), (-1,-1,1), (-1,1,-1), (1,-1,-1), and (-1,-1,-1). Furthermore, when
replacing the orthogonal codes with the actual attribute levels when constructing the questionnaire,
one is not restricted to assign the attribute levels in the same order as the orthogonal coded levels.
For example, one is free to choose the replacement {-1,0,1} {$1,$2,$3} or {-1,0,1} {$2,$1,$3},
again preserving orthogonality.

6.1.4 Generating orthogonal designs

The problem of finding an orthogonal design can be described as follows:

Given feasible orthogonal coded attribute levels Λ
jk
 for all j and k , given a minimum number of

choice situations S, determine the smallest level balanced design X with X
jks

 Λ
jk

 such that

Equation (6.2) is satisfied.

Determining orthogonal designs is not a straightforward task. Suppose that one searches for an
orthogonal design for five attributes having three levels each. The smallest number of choice
situations possible that satisfy the degrees of freedom and attribute level balance is six. However, in
this case an orthogonal design with six choice situations does not exist. Even in nine or twelve
choice situations it does not exist. We are able to find an orthogonal design with no less than 18
choice situations for this problem. Tables of orthogonal arrays have been derived mathematically for
different numbers of columns and levels. These tables are limited and there may not be an
orthogonal array known for the problem at hand. There are many lists with two, three, or even four
levels, but higher levels become rare, and when mixing different numbers of levels it becomes even
harder to find an orthogonal design. For example, Hahn and Shapiro (1966) have published tables
with orthogonal designs for certain instances of numbers of attributes and attribute levels, but these
are restricted to fairly small models. Computer programs can try to find near-orthogonal designs that
can be used.

If an orthogonal design has been found, it may still be too large to give all choice situations to a
single respondent. An often used procedure called block ing can split the orthogonal design into
smaller designs. Each block is not orthogonal by itself, only the combination of all blocks is
orthogonal. Blocking mainly ensures that attribute level balance is satisfied within each block, such
that respondents do not just face only low or high attribute levels for a certain attribute. Blocks are
typically determined by using an extra uncorrelated column with a number of levels equal to the
number of blocks. This is illustrated in Table 6.4. One can check that the design for attributes A, B
and C is orthogonal, and that also the blocking column is orthogonal to all other columns. The
orthogonal design with nine choice situations is blocked into three blocks, such that each
respondent now only has to face three choice situations instead of nine. Note that attribute level
balance is satisfied within each of the blocks.

66 Ngene User Manual

© 2012 ChoiceMetrics

Table 6.4 Blocking an orthogonal design in three blocks

Orthogonal designs can be created manually, or can be found in documents such as Hahn and
Shapiro (1966), or can be created automatically using software such as Ngene.

6.1.5 Reasons for using orthogonal designs

Aside from the fact that orthogonal designs allow for an independent estimation of the influence of
each design attribute on choice, two other reasons lie behind the common use of orthogonal designs
in practice. The first reason is that they are generally easy to construct or obtain (either from
software packages or academic papers), although only for a limited number of combinations of
attribute levels. Secondly, the common use of orthogonal designs in SC studies is largely a result of
historical impetus. In the past, the experimental design literature has been primarily concerned with
linear models (such as linear regression models), where the orthogonality of data is considered
important. In linear regression models, this is because (a) orthogonality ensures that the model will
not suffer from multicollinearity, and (b) orthogonality is thought to minimize the variances of the
parameter estimates, which are taken from the variance-covariance (VC) matrix of the model. The
VC matrix of a linear regression model is given in Equation (6.3).

(6.3)

where σ2 is the model variance, and X is the matrix of attribute levels in the design or in the data to
be used in estimation. Fixing the model variance (which simply acts as a scaling factor), the
elements of the VC matrix for linear regression models are minimized when the X matrix is
orthogonal. A design that results in a model where the elements contained within the VC matrix are
minimized is preferable, for two reasons. Firstly, such a design will produce the smallest possible
standard errors (i.e., square roots of the variances), and hence maximize the t-ratios produced from
that model and secondly, an orthogonal design (or data set) will produce zero-off diagonals in the
models VC matrix, thus ensuring that the parameter estimates are unconfounded with one another
(i.e., no multicollinearity).

As such, orthogonal designs, at least in relation to linear models, meet the two criteria for a good
design mentioned in the introduction; they allow for an independent determination of each attributes
contribution on the dependent variable and they maximize the power of the design to detect
statistically significant relationships (i.e., maximize the t-ratios at any given sample size). The
question however is whether for discrete choice models, do orthogonal designs produce the same
properties? Before we address this question, we first discuss several problems that often occur in
practice between the mapping of design orthogonality to data orthogonality.

67Orthogonal Designs

© 2012 ChoiceMetrics

6.1.6 Discussion of orthogonal designs

It is important to understand that parameters are estimated from data sets underlined by SC
experiments, not from the design itself. As we will demonstrate, only under exceptional
circumstances will orthogonality be preserved within the data used to estimate discrete choice
models, even if the experimental design is orthogonal. Indeed, with regards to choice data sets, one
would expect orthogonality to be the exception rather than the rule. Further, even under
circumstances where orthogonality is retained in a data set, as we show, orthogonality will likely be
lost in the estimation process.

In case of non-response, in which a few choice situations are missing, the data will not be
orthogonal. In case of blocking, if not all blocks are equally represented in the data set, then
orthogonality will be lost. For example, consider again the blocked orthogonal design in Table 6.4. If
blocks 1 and 2 appear twice in the data set and block 3 only once, then the data is correlated as
indicated by the correlation matrix in Table 6.5. Removing data to preserve orthogonality is not
common, as extra data is preferred above preserving orthogonality.

Table 6.5: Correlation matrix with missing block

Further, it is common practice to collect socio-demographic and contextual variables and include
these in the utility functions of models of discrete choice. Even assuming equal representation of
each choice situation of a design in the data, the current standard of sampling is such that analysts
fail to ensure orthogonality between the design attributes and other variables within the data set. For
example, if age, gender, or income is added as a variable in the utility function for estimation, then
this attribute level is constant over all choice situations of this person, creating correlations between
this variable and other attributes in the design.

Another reason that orthogonality may be lost is due to a poor transition between the design codes
and the attribute level labels used within the experiment. Orthogonality of a design will only be
maintained if the (quantitative) attribute level labels used are spaced equally along the range of that
attribute. If unequal points are used along the attribute level range, then orthogonality will be lost. For
example, if the orthogonal codes {-1,0,1} are replaced with quantitative attribute level labels {$2, $5,
$15}, then the attribute levels are not equidistant in spacing. Therefore, the data will not be
orthogonal.

The primary argument for using orthogonal fractional factorial designs is the ability of such designs
to produce unconfounded estimates of the population parameters due to the enforced statistical
independence between the attributes contained within the design. However, parameters are
estimated from data sets underlined by SC experiments, not from the designs themselves.
Unfortunately, only under exceptional circumstances will orthogonality be preserved within the data
used to estimate discrete choice models, even if the experimental design used to construct the
study is itself orthogonal. Indeed, with regards to choice data sets, one would expect orthogonality
to be the exception rather than the rule (see however Lanscar et al. (2006) for an example where
orthogonality has been transferred from the design through to the data). We offer three reasons for

68 Ngene User Manual

© 2012 ChoiceMetrics

this statement.

Firstly, the principle of orthogonality as we have described it relates solely to the columns of the
design matrix being uncorrelated with one another. In cases where respondents review the complete
orthogonal matrix, this orthogonality will be preserved through to the data set. When respondents
review subsets of the matrix however, problems can occur and orthogonality lost. If the subsets (or
blocks) of the design are not replicated evenly over the survey and hence certain blocks are either
over or under represented within the data, orthogonality will generally be lost. Simply put, one cannot
(i) add or remove rows of the design and/or (ii) replicate unevenly rows of the design over multiple
respondents, and retain orthogonality within the data set. Note that the removal of columns from the
design will not impact on the orthogonality of the design however. Thus, the onus is on the
researcher to ensure that in allocating the choice tasks to respondents, that each choice task is
equally represented in the final data. In cases of non-response or where the number of respondents
in the study does not allow for each block to be equally distributed over the sample, this may be
difficult to achieve (this last point is often missed by the literature, as it has implications on sampling
and sample sizes that is rarely, if ever, discussed).

Secondly, it is typical in many choice studies to collect data on non-design attributes such as
socio-demographic and contextual variables. In such cases, unless some form of strict sampling is
imposed, any covariates within the data set will unlikely be orthogonal, not only amongst
themselves, but also with the design attributes. For example, if age, gender, and income are added
as variables in some form of analysis, correlations are not only likely to exist for these variables, but
given that the variables described are constant over all choice situations within individual
respondents, correlations between these variables and other attributes of the design are also likely
to exist.

Finally, enforcement of orthogonality as a design principle does not ensure against the production of
behaviorally implausible choice situations within the survey. Often, analysts after generating a design
will review the final survey and locate choice situations in which they believe the attribute level
combination of a particular alternative in a choice situation are such that that alternative has a
probability of one of being chosen (i.e., that alternative dominates all other alternatives on offer in
terms of preference). In such cases, no information is gained in terms of the possible trade-offs
between the attributes of the alternatives. In other cases, analysts may locate choice situations
whereby certain combinations of attributes are formed which may not be plausible in reality and
which thus detract from the realism of the choice tasks. In these cases, analysts typically reject the
choice situations (i.e., delete that row or combination of rows of the design), thus ensuring that the
design and data will no longer be orthogonal (for a discussion of the benefits and costs of such
strategies, see e.g., Lanscar and Louviere 2006).

Knowledge of these and other issues related to orthogonal designs are not new and have been well
documented in the literature. For example, Hensher and Barnard (1990) have made a distinction
between design orthogonality and estimation-data orthogonality in order to highlight that design
orthogonality is not always preserved in model estimation. In making this distinction, they argued
that estimation orthogonality based on discrete choice models requires that the differences in
attribute levels be orthogonal, not the absolute levels themselves. Such arguments are similar to
those that led to the creation of so called difference designs in which the absolute values of the
attribute levels of the alternatives are forced to be as different as possible whilst the designs
themselves remain orthogonal in the differences.

Given the above, a carefully determined orthogonal design is likely to produce non-orthogonal data in
practice. As such, the question arises as to how important orthogonality is to SC experiments. In
the next section efficient designs will be introduced, which seem to be outperforming orthogonal
designs easily, although such designs have not been used much in practice yet.

69Orthogonal Designs

© 2012 ChoiceMetrics

To summarize, a carefully determined orthogonal experimental design is likely to produce non-
orthogonal data. Therefore the question arises if orthogonality is that important. In the next section
so-called optimal or efficient designs will be introduced, which seem to be outperforming orthogonal
designs easily, although such designs have not been used much in practice yet.

6.2 Generating orthogonal designs in Ngene

6.2.1 Full factorial designs

We demonstrated the syntax to generate full factorial designs in Section 4.2. The syntax we used
was

Design
? This will generate a full factorial design
;alts = alt1, alt2
;rows = all
;fact
;model:
U(alt1) = b1 + b2 * A[0,1,2] + b3 * B[0,1] /
U(alt2) = b2 * A + b4 * C[2,4,6,8] $

In the above syntax, the fact property in conjunction with the rows property instructs Ngene to
produce the full factorial design. The rows property is required to inform Ngene as to the number of
rows that the user requires for a design. The above syntax will produce the output given in Figure
6.1. Users should be cautioned that for designs with large numbers of attributes and attribute levels,
display of the full factorial may take some time. Further, full factorials with greater than 150,000 rows
cannot be generated due to memory issues.

70 Ngene User Manual

© 2012 ChoiceMetrics

Figure 6.1: Full factorial design output

For all experimental design types, clicking the first ‘Design’ check box will display the generated
design. This is shown in Figure 6.1. Located under the ‘Design’ check box is the ‘Correlation’
branch. Ticking the ‘+’ symbol will reveal different correlation measures that may be used to examine
the design. Depending on the type of data, different correlation formulas are appropriate. Clicking on
one of the correlation checkboxes will result in the desired correlation measure being displayed.
With the exception of the ‘Interactions’ check box, Ngene will display on the correlations for the
main effects only. Selecting the ‘Interactions’ checkbox will display the correlations for the main
effects and two way interaction terms for the design. This is shown in Figure 6.2.

Figure 6.2: Interaction and main effect correlations for a full factorial design output

71Orthogonal Designs

© 2012 ChoiceMetrics

6.2.2 Fractional factorial designs

In order to create a fractional factorial design (i.e., one that does not enumerate all possible attribute
level combinations), the user will need to specify the desired number of rows required for the design.
The number of choice situations or rows of the design is defined using the rows property, which is
used to restrict the number of choice situations in the design. For example, if a subset of only 12
choice situations is required, the rows property can be set as:

;rows = 12

Using the same design as in Section 4.2, the complete syntax would now be:

Design
? This will generate a fractional factorial design
;alts = alt1, alt2
;rows = 12
;fact
;model:
U(alt1) = b1 + b2 * A[0,1,2] + b3 * B[0,1] /
U(alt2) = b2 * A + b4 * C[2,4,6,8] $

The syntax would now generate a design of 12 choice situations by randomly choosing 12 choice
situations from the full set of 72 choice situations. Figure 6.3 shows the output generated for the
above syntax. Note that the generated design will change each time the syntax is run as the rows of
the design are randomly taken from the full factorial design. Further, the design generated will be
randomly constructed and hence need not display the attribute level balance property.

Figure 6.3: Fractional factorial design with interaction and main effect correlations

If the fact property is not used in conjunction with the rows property, Ngene will attempt to optimize
the design assuming that an MNL model is desired. Given that we have not assumed any priors,
Ngene will assume them to be zero (see Chapter 7). Ngene will continue to run until the user
intervenes and presses ‘Stop’. We discuss optimization and priors further in Chapter 7.

72 Ngene User Manual

© 2012 ChoiceMetrics

A restriction on the minimum number of rows that can be generated is the number of parameters to
be estimated, as well as the number of alternatives present in each choice task. As discussed in
Section 5.2.2, (J-1)S=K and hence S=K/(J-1). The rows property needs to be set to a value greater
than or equal to this number. In the above example, the number of parameters is four ('b1', 'b2', 'b3'
and 'b4'), whilst the number of alternatives is two. As such, S=4/(2-1)=4. If the value specified in rows
is not large enough, Ngene will again generate an error.

When the fact property is not included in the syntax and the number of rows is not equally divisible
by all attribute levels specified in the utility functions of the design, Ngene will by default generate
designs that do not necessarily display attribute level balance. In the above example, 12 choice
situations is feasible as this number is divisible without remainder by all numbers of attribute levels
(2, 3 and 4). If the number of rows is not feasible, then Ngene will generate a non-attribute level
balanced design.

6.2.3 Orthogonal fractional factorial designs

Rather than randomly choosing choice situations from the full factorial, choice tasks may
sometimes be chosen in such a way that the attribute levels are orthogonal (i.e., there are no
correlations between the levels of the two attributes). The property orth instructs Ngene to generate
such a design. Ngene can either generate a sequential orthogonal design, in which orthogonality
only holds within each alternative, or generate a simultaneous orthogonal design, in which
orthogonality also holds across alternatives. The properties would be:

;orth = seq

or

;orth = sim

for sequential or simultaneous orthogonal designs, respectively. Although attribute levels across
alternatives are not orthogonal in a sequential orthogonal design, the sequential method of
constructing orthogonal designs will typically lead to smaller designs in terms of the number of
choice situations of the design. In the sequential method, first an orthogonal array is determined for
the attributes of the first alternative. Next, the attribute levels of the other alternatives are derived from
the levels in the first alternative. Therefore, sequential orthogonal designs can typically only be
generated in cases where each utility function has the same attributes with the same levels (i.e.,
unlabelled alternatives). Where different alternatives have attributes with different attributes or
attributes with different levels, the sequential design method described above will not work. An
alternative approach available in Ngene for generating sequential orthogonal designs for experiments
that have different design dimensions across alternatives (i.e., certain types of labeled choice
experiments) combines separate orthogonal arrays for each alternative. That is, this approach will
generate different orthogonal arrays for different alternatives and hence, each alternative can have
different attributes and attribute levels. Note however that this procedure will cause correlations
between alternatives but not within (similar to using orth = seq). This procedure will be used if in the
syntax the orth property is defined differently, namely

;orth = seq2

To demonstrate, consider the following two syntax routines. In the first, we have requested a
simultaneously generated orthogonal design and in the second a sequentially generated design.
Both designs have requested four choice situations be generated.

73Orthogonal Designs

© 2012 ChoiceMetrics

? This will generate a sequential orthogonal factorial design
Design
;alts = alt1, alt2
;rows = 4
;orth = seq
;model:
U(alt1) = b1 + b2 * A[0,1] + b3 * B[0,1] /
U(alt2) = b2 * A + b3 * B $

? This will generate a simultaneous orthogonal factorial design
Design
;alts = alt1, alt2
;rows = 4
;orth = sim
;model:
U(alt1) = b1 + b2 * A[0,1] + b3 * B[0,1] /
U(alt2) = b2 * A + b3 * B $

Table 6.6 shows two designs generated from the above syntax whilst Table 6.7 reports the
correlation structures for the two designs. In generating the simultaneous design, Ngene was unable
to locate a design in four rows where all the attributes, independent of the alternative to which it
belongs to, are uncorrelated with each other. It should be noted that it cannot be guaranteed that an
orthogonal design can be found with the number of choice situations specified in rows. In that case,
Ngene will generate a warning message and attempt to locate an orthogonal design with more rows.
In some cases an orthogonal design cannot be found at all (it may not exist or is unknown). In that
case, the user will have to change some design dimensions (number of alternatives, attributes,
attribute levels) and try again. It is in general easier to find sequential orthogonal designs than
simultaneous orthogonal designs, as shown in the above example, where a sequential design could
be located in four rows.

Table 6.6: Simultaneous versus sequential orthogonal design generation processes

74 Ngene User Manual

© 2012 ChoiceMetrics

Table 6.7: Simultaneous versus sequential orthogonal correlation structures

For the example syntax, the smallest orthogonal design that Ngene was able to locate had eight
choice situations. For the sequential design, Ngene was able to generate the design with four choice
situations. Note however, that in doing so, there now exist correlations with the attributes between
the alternatives.

An example design using different orthogonal arrays for each alternative is given below. Note that the
first alternative has an additional attribute that is not included in the utility function given for the
second alternative.

? This will generate a sequential orthogonal factorial design
Design
;alts = alt1, alt2
;rows = 8
;orth = seq2
;model:
U(alt1) = b1 + b2 * A[0,1] + b3 * B[0,1] + b4*C[0,1] /
U(alt2) = b2 * A + b3 * B $

Figure 6.4 shows Ngene output for the above syntax.

Figure 6.4: Fractional factorial design using orth = seq2

75Orthogonal Designs

© 2012 ChoiceMetrics

Often the number of choice situations needed to obtain an orthogonal design is too high to give to a
single respondent. Therefore, the design is often blocked into smaller parts. Each block is not
orthogonal by itself, only in combination with the other blocks. However, attribute level balance is
maintained within each block as much as is possible. In order to automatically generate a blocked
(orthogonal) design in Ngene, simply add the block property. In case of creating a design consisting
of two blocks,

;block = 3

To demonstrate the blocking procedure, consider the following syntax. The syntax will produce an
orthogonal fractional factorial design with 3 blocks.

? this will generate a simultaneous orthogonal factorial design with
three blocks
Design
;alts = alt1, alt2
;rows = 12
;orth = sim
;block = 3
;model:
U(alt1) = b1 + b2 * A[0,1,2] + b3 * B[0,1,2] /
U(alt2) = b2 * A + b4 * C[2,4,6] $

Note that the number of blocks indicated in the blocking property represents the number of blocks
required and not the number of choice tasks per block. Thus, the above syntax will produce an
orthogonal blocking column with three blocks of four (12 / 3) choice sets each. An example design is
shown in Figure 6.5.

76 Ngene User Manual

© 2012 ChoiceMetrics

Figure 7.5: Orthogonal fractional factorial design with orthogonal blocking column

Note that this may be an issue if Ngene is unable to locate a design in the requested number of
rows and is forced to increase the number of rows in generating a design. In this case, the number of
blocks remains as specified but the number of choice tasks per block will automatically increase. If
such a situation arises, the user may wish to re-specify the number of rows and blocks and generate
a new design.

6.2.4 Orthogonal fractional factorial designs with two-way interactions

In case two-way interactions are important, one could generate a foldover design that will in many
cases make all two-way interactions independent of all main effects. Note that this will not always
work, but does appear to work in many instances. To create a foldover design, simply add the
following property to the syntax:

;foldover

In this case, the number of choice situations will be twice as large as specified in the rows property,
but the design will be blocked in two (a blocking column will be added), such that the total number of
choice situations given to a single respondent does not increase. For example,

? use of the foldover property
Design
;alts = alt1, alt2
;rows = 8

77Orthogonal Designs

© 2012 ChoiceMetrics

;orth = sim
;foldover
;model:
U(alt1) = b1 + b2 * A[0,1] + b3 * B[0,1] /
U(alt2) = b2 * A + b4 * C[0,1] $

will result in a design similar to that shown in Figure 6.6.

Figure 6.6: Orthogonal fractional factorial design with foldover

In Figure 6.6, it can be seen that the resulting design produces two-way interactions that are
uncorrelated within each alternative, but which are perfectly correlated between alternatives. For
unlabeled choice experiments, such correlation structures do not matter.

Rather than use foldover designs, the user may wish to specify specific interaction effects that are
uncorrelated with both the main effects and other specified interaction effects. For orthogonal
designs, Ngene allows the user to do so for two-way interaction effects. To specify a two-way
interaction effect, the user first specifies a parameter estimate and then nominates which two
attributes of the design to generate the interaction for. For example,

b3 * x1 * x2

will generate a design that will attempt to locate an uncorrelated two way interaction effect for the x1
and x2 attributes which must also be specified in the utility function of the model property. Note that
in constructing designs for two way interactions, Ngene employs a search process and that there is
no guarantee that such an uncorrelated interaction effect will be located. In such a case, Ngene will
display the design with the requested interaction effects that have the minimal level of correlations
that are possible within the search domain. Example syntax of how to construct an orthogonal
fractional factorial design with a two way interaction effect is given below. Figure 6.7 shows a screen

78 Ngene User Manual

© 2012 ChoiceMetrics

capture of a design generated using this syntax. In the screen capture, we have highlighted the
requested interaction effect to demonstrate that Ngene was able to locate the requested two-way
interaction effect.

? use of interactions specified in the model
Design
;alts = alt1, alt2, alt3
;rows = 8
;orth = sim
;model:
U(alt1) = b01 + b1 * x1[0,1] + b2 * x2[0,1] + b3 * x1 * x2 /
U(alt2) = b02 + b1 * x1 + b2 * x2 /
U(alt3) = b1 * x1 + b2 * x2 $

Figure 6.7: Orthogonal fractional factorial design with specified two-way interaction effects

79Orthogonal Designs

© 2012 ChoiceMetrics

6.3 Orthogonal optimal in the difference fractional factorial designs

A special type of a sequential orthogonal design is a so-called optimal orthogonal in the differences
(OOD) design, following the design principles of Street et al. These researchers have identified an
alternative optimality criteria to that used in generating efficient SC designs. As well as maintaining
orthogonality, these researchers suggest that SC experiments should be constructed such that
attributes common across alternatives should never take the same level over the experiment (see e.
g., Burgers and Street, 2005; Street and Burgess, 2004; Street et al., 2001, 2005). Such designs
are known as D-optimal designs. The argument for using this approach is that respondents are
forced to trade on all attributes in the experiment, whilst the orthogonality of the design ensures that
independent influence each attribute has upon choice can be determined. Optimality under this
definition differs from that of D-efficient designs, in that D-optimal designs attempt to maximize
attribute level differences whereas D-efficient designs attempt to minimize the elements that are
likely to be contained within the AVC matrices of models estimated from data collected using the
design. As such, a D-optimal design need not be optimal in terms of the criteria set out for D-
efficient designs, with the opposite also being true. Indeed, the two optimality criteria are likely to be
incompatible with one another for all but a small number of cases. Note that for constructing D-
optimal designs, no prior parameters are used (i.e.., we assume the priors are all zeros), as one
concentrates on the attribute level differences, hence efficiency will be lost in practice since the
parameters are typically not equal to zero. For the interested reader, the specific steps in generating
these types of designs (taken from Street et al., 2005) are outlined in detail in Appendix 6B.

In order to create these designs in Ngene, the orth property can be set as

;orth = ood

Optimal orthogonal in the difference choice designs suffer from a number of issues which has not
been widely discussed within the literature. Firstly, these designs may only be constructed for
unlabeled SC experiments. Labeled choice experiments where attributes may not be common
across alternatives, or where attribute levels may differ for common attributes are not possible for
such designs, as such designs are not covered by the definition of optimality offered. Secondly,
these designs may promote certain forms of behavioral response, such as lexicographic choice
behavior. By forcing each attribute to be different across alternatives, a particularly dominant attribute

level may govern the entire experiment3.

Example syntax used to construct an OOD design is given below.

Design
;alts = alt1, alt2
;rows = 9
;orth = ood
;model:
U(alt1) = b1 * A[0,1,2] + b2 * B[0,1,2] /
U(alt2) = b1 * A + b2 * C[0,1,2] $

Figure 6.8 presents a design generated using Ngene for the above syntax. Ngene will report a
number of additional output for OOD type designs. This output can be accessed by clicking on the
OOD tree structure located on the left hand side of the output screen. By clicking on the OOD click
box, as shown in Figure 6.8, Ngene will report the D-efficiency value of the design (see Appendix 6B
). This value represents the percentage of optimality of the design. Ngene also reports a number of
matrices upon request. These matrices are used in the calculation of the D-efficiency measure. For
information on what purpose these matrices serve, see Appendix 6B.

80 Ngene User Manual

© 2012 ChoiceMetrics

Figure 6.8: Orthogonal optimal in the difference fractional factorial design

6.4 Appendix 6A Correlation measures

Table 6A.1, adapted from Hensher and Smith, 1984, shows the appropriate formulae to use for
different scaled data.

Table 6A.1: Appropriate correlation formula

Random variable scale definitions: R: Ratio; I: Interval, O: Ordinal; D: Dichotomous; N, nominal

Scale Pair
(X1, X2)

Formula
1, 2, …, N observations
1, 2, …, m levels
X1, X2 = random variables Test Name

81Orthogonal Designs

© 2012 ChoiceMetrics

R,R or R, I Pearson product
moment
correlation

coefficient [ρ]

D,D

where
A = sum of positive agreeing responses (X

1
 = +ve, X

2
 = +ve)

B = sum of negative agreeing responses (X
1
 = -ve, X

2
 = -ve)

C = sum of non-agreeing responses (X
1
 = -ve, X

2
 = +ve)

D = sum of non-agreeing responses (X
1
 = +ve, X

2
 = -ve)

When the dichotomous variable (0, 1) is coded (-1, +1)

G index [G]

N,N or N,D

where

and d
x
 = number of categories for X

J index [J]

O,O

where

Spearman Rank
correlation [SR]

D,R Point Biserial
correlation [PB]

82 Ngene User Manual

© 2012 ChoiceMetrics

where is the standard deviation of the ratio scaled random
variable X

2
, µ

21
 and µ

22
 are the means of the values of X

2
,

corresponding to the dichotomous X
1
 variables values 1 and 0.

N,I

where
n

r
 is the number of individuals with Y=r

d is the number of categories of the nominal attribute

CP-coefficient
[CP]

I, I H-INDEX [H]

6.5 Appendix 6B Optimal orthogonal in the differences designs

The construction of OOD designs is described in detail by Street et al. (2005). OOD designs are
constructed to so as to maximise the differences in the attribute levels across alternatives, and
hence maximise the information obtained from respondents answering SC surveys by forcing trading
of all attributes in the experiment. OOD designs are limited orthogonal designs in that they are
orthogonal within an alternative but have (often perfect negative) correlations across alternatives. As
such, the design should generally only be applied to studies where all parameters are likely to be
treated as generic (i.e., typically unlabeled choice experiments). The design generation process, as
described here, also limits the experimental design to problems where each alternative has the
same number of attributes, and each attribute has the same number of levels. Work has been
conducted on removing some of these constraints, however we do not report on these here (see for
example, Burgess and Street 2005). We restrict here our discussion to generating OOD designs to
problems examining main effects only (those interested in constructing OOD designs for interactions
are referred to Street et al. (2005) for further details). The steps for generating OOD designs are now
presented.

Step 1: Construct an orthogonal design for the first alternative of the design (using design coding; i.
e., 0, 1, 2, ..., l). It is from this initial design that subsequent alternatives will be constructed. The
original orthogonal design can be obtained from software, cookbooks (e.g., Hahn and Shapiro 1966)
or generated from first principles (see e.g., Kuehl 1994). Any orthogonal design will suffice, provided
it has the same dimensions required for all alternatives in the design.

83Orthogonal Designs

© 2012 ChoiceMetrics

Step 2: Locate a suitable design generator. To do this, create a sequence of K values which are
either equal to zero or are positive integers, where K is the number of attributes per alternative and
each value in the sequence maps to an attribute of the second alternative. For each of the K values
in the sequence, the value assumed can be any integer up to l

k
 - 1, where l

k
 is the number of levels

that attribute k assumes.

For example, assuming the first attribute of an alternative has three levels and the second attribute
has two levels, then the first value in the design generator can be zero or any integer value between
one and two (i.e., between 1 and 3-1 = 2), whereas the second value in the design generator must
be either zero or one (i.e., non zero, an integer and a value up to 2-1 = 1). Thus, for example, the
analyst may consider as design generators sequences 11 or 21.

Subsequent alternatives are constructed in a similar fashion, however, where possible, design
generator sequences should attempt to use unique values for each attribute of each new alternative.
Design generators should also attempt to avoid using the value zero as this will lead perfectly
correlated attributes in the design. For example, if the sequence 21 were used as the design
generator for the second alternative, a third alternative might use the values 11 or 10. Where the
same attribute across two or more alternatives have the same value in their design generators, the
attributes will be perfectly confounded. For example, if we apply as design generators 21 and 11 for
the second and third alternatives, the second attribute for each alternative will be perfectly
confounded. Where zero is used in the generator, that attribute will be perfectly confounded with the
attribute in the first alternative. For example, if we apply as design generators 21 and 10, then none
of the attributes in alternatives two and three will be confounded, but the second attribute in
alternative three will be perfectly confounded with the second attribute of alternative one.

Step 3: For each choice situation, add the sequence of values of the design generator in order of
appearance to the attribute levels observed for the first alternative. For example, if the attribute levels
in an alternative are 2 and 1 respectively, adding the design generator 21 results in the values 4 and
2 respectively (using design coding).

Step 4: Apply modulo arithmetic to the values derived in step 3. The appropriate modulo to apply for
a particular attribute is equal to the number of levels for that attribute, l

k
. Thus, for attribute one which

has three levels, we use mod 3 and for the second attribute with two levels we would use mod 2.
Using the design generator 21, applying mod 3 to the first attribute results in 4 Ξ 1 (mod 3) and
applying mod 2 to the second attribute produces 2 Ξ 0 (mod 2). The values derived in this manner
represent the levels of the second alternative. Subsequent alternatives are constructed by applying
the appropriate design generator to the first alternative in the design, and applying the same modulo
arithmetic rules. Table 6B.1 shows a design with six choice situations for the example problem
above. Note that we have used the full factorial in constructing the first alternative. In generating
experimental designs using this method, one can use a fractional factorial instead and our use of a
full factorial is purely for demonstrative purposes only.

The above description represents a rather simplistic discussion on the construction of design
generators for OOD designs. The reader interested in finding out more about the process is referred
to Street et al. (2005) for a more detailed description.

84 Ngene User Manual

© 2012 ChoiceMetrics

Table 6B.1: Constructing a second alternative for an OOD design

Step 5: Construct a symmetric matrix, Λ. The Λ matrix represents the proportion of times over all
choice situations that each alternative (as represented by its sequence of attribute levels) appears
with all other possible alternatives in the design. The Λ matrix will be a square matrix with

dimensions equal to . Hence, working with the example above, the Λ matrix will be of
dimensions 6x6 (i.e., (3x2)x(3x2)). Each column and row of the matrix relates to a potential unique
combination of attribute levels that could exist within the design. In generating the matrix, we write
out the full enumeration of attribute level combinations contained within a single alternative. For the
above design, the combinations of attributes within an alternative can be expressed by the following
sequences (using design coding); 00, 01, 10, 11, 20 and 21, where the first value in each sequence
relates to the first attribute in the design and the second value, the second attribute.

To populate the Λ matrix, we simply count the number of times a particular sequence of attribute
levels for one alternative appears with sequences of attribute levels in all other alternatives. For the
above example, the sequence 00 appears in the first choice situation as the attribute levels in
alternative 1 against the attribute levels 21 in alternative 2; The same sequence also appears in
choice situation four, as the attribute levels for alternative 2 against the attribute level sequence 11
for alternative 1. Each time a combination appears together anywhere in the design, we add a -1 to
the corresponding coordinates in the Λ matrix. To complete the matrix, the values of the leading
diagonal are then chosen such that all rows and columns sum to zero.

We next need to scale the Λ matrix to account for the number of alternatives and choice situations

in the design. To do this, we multiple each element of the matrix by where J is the number of
alternatives in the design, and S is the number of choice situations. Table 6B.2 shows the Λ matrix
for the above example, both before and after scaling.

Table 6B.2: Λ matrix

Step 6: Construct a matrix of contrasts for the effects that are of interest in the design (e.g., linear,
quadratic, cubic, etc.). This matrix we call the B matrix. The number of rows of the B matrix will be

85Orthogonal Designs

© 2012 ChoiceMetrics

equal to where l
k
 -1 corresponds to the number of effects attribute k can be used to

test. Hence, each row will correspond to a particular effect of interest for each attribute in the design.
The number of columns in the matrix will be exactly the same as the Λ matrix, which will be equal to

 . For the example above, the B matrix will therefore have three rows (i.e., (3-1) + (2-1) = 3)
and six columns (i.e., 2x3 = 6), where the first two rows correspond to the linear and quadratic
effects of the first attribute (which has three levels) and the last row to the linear effect of the second
attribute (which has two levels).

To populate the B matrix, we first begin by determining what the coefficients of orthogonal
polynomials are that correspond to each of the attributes in the design. The values that populate the
matrix represent the full factorial of the possible combinations of coefficients of orthogonal
polynomials. For our example, the linear coefficients of orthogonal polynomials for the first attribute
are {-1, 0, 1}, and {1, -2, 1} for the quadratic effects. The linear effects for a two level attribute are
simply {-1, 1}. The linear coefficients of orthogonal polynomials for the first attribute constitute the
first row of the matrix, whilst the quadratic effects make up the second row. The final row represents
in our example, the second attribute of the design. This row is constructed such that each level of
the attribute appears against each of the linear and quadratic effects of the first attribute. Thus, the
matrix of coefficients of orthogonal polynomials for our example is:

We are next required to normalise this matrix by dividing each row of the matrix by the square root of
the sum of the squares for each row of the non-normalised matrix. For the above, squaring all
elements and summing each row produces values of four, 12 and six for rows 1, 2 and 3
respectively. Taking the square roots and dividing each row of the matrix of coefficients of orthogonal
polynomials by these values, we obtain the B matrix which we show below.

Step 7: Calculate the information matrix, C (El Helbawy and Bradley 1978). C is calculated using
matrix algebra such that C = BΛB'.

When the C matrix is diagonal, all main effects will be independent, which is not the case with our
example.

Step 8: Calculate the level of efficiency for the design. This requires first estimating the maximum
value the determinant of the C matrix could assume and comparing this to the actual value of the C
matrix for the design. The first step in determining the maximum value of the determinant of the C
matrix is to calculate the value M

k
 which represents the largest number of pairs of alternatives that

can assume different levels for each attribute, k , in a choice situation. This value for each attribute k ,

86 Ngene User Manual

© 2012 ChoiceMetrics

can be established using Equation (6B.1). Note that the particular formula to adopt to calculate M
k
 is

a function of the number of alternatives in the design, J, and the number of levels of attribute k .

(6B.1)

and x and y are positive integers that satisfy the equation J = l
k
x + y for 0 y l

k
. For the case

where an attribute has levels 2 < l
k
 J, the analyst will need to fit integer values for y between zero

and l
k
 to obtain values of x that satisfies this equation. Any value of y that results in an integer value

of x represents a possible candidate for the design.

For our example, the design has J = 2 with l
1
 = 3 and l

2
 = 2 and S = 6. As such, for the first attribute

we obtain M
1
 = J(J-1)/2 = 2(2-1)/2 = 1 and for the second attribute, M

2
 = J2/4 = 22/4 = 1.

Once the value of M
k
 has been established for each attribute, the maximum value of the determinant

of C is calculated as:

(6B.2)

Applying Equation (6B.2) to our example, the maximum value the determinant of C could possibly
achieve is

For OOD designs, the level of efficiency of a design is expressed as a percentage referred to as D-
efficiency in the literature. The D-efficiency of a design is calculated as follows:

(6B.3)

The closer the D-efficiency to 100 percent, the more efficient the design is. For our example, the
determinant of the C matrix is 0.00362. From Equation (6B.3), the D-efficiency for our design is
calculated as

87Orthogonal Designs

© 2012 ChoiceMetrics

Chapter 7

Efficient Designs

89Efficient Designs

© 2012 ChoiceMetrics

7 Efficient Designs

7.1 Theory of efficient designs

In this section, we discuss the theory underlying efficient designs. Subsequent sections of the
chapter outline how such designs are obtained using Ngene.

7.1.1 Efficient designs

In contrast to orthogonal designs, so-called efficient designs do not merely try to minimize the
correlation in the data for estimation purposes, but aim to result in data that generates parameter
estimates with as small as possible standard errors. These designs make use of the fact that the
AVC matrix (the roots of the diagonal of this matrix are the asymptotic standard errors) of the
parameters can be derived if the parameters are known. Unfortunately, since the objective of the SC
experiment is to estimate these parameters, they are unknown. However, if some prior information
about these parameters is available (e.g., parameter estimates available in the literature from similar
studies, or parameter estimates from pilot studies), then this asymptotic variance-covariance matrix
can be determined, assuming that the priors are correct. It can be argued that an orthogonal design
is efficient only in cases where there is no knowledge about the parameters, but whenever there is
any prior parameter information available (perhaps just knowledge of the sign of the parameter) then
the design can be improved.

7.1.2 Definition of efficiency

An experimental design is called efficient if the design yields data that enables estimation of the
parameters with as low as possible standard errors. These standard errors can be predicted by
determining the AVC matrix based on the underlying experiment and some prior information about
the parameter estimates. The following subsection will first briefly describe how to obtain this AVC
matrix. Then, we will present several proposed efficiency measures for expressing the efficiency of
an experimental design into a single value.

7.1.3 Deriving the asymptotic variance-covariance matrix

Let Ω
N
 denote the asymptotic variance-covariance matrix4 (AVC) matrix given a sample size of N

respondents (each facing S choice situations). This AVC matrix depends in general on the
experimental design, X = [X

n
], the parameter values, β, and the outcomes of the survey, Y = [y

jsn
],

where y
jsn

 equals one if respondent n chooses alternative j in choice situation s and is zero

otherwise. Since the parameter values β are unknown, prior parameter values are used as best
guesses for the true parameters.

The AVC matrix is the negative inverse of the expected Fisher Information matrix (e.g., see Train,
2003), where the latter is equal to the second derivatives of the log-likelihood function:

90 Ngene User Manual

© 2012 ChoiceMetrics

(7.1)

where l
N
(X, Y, β) is the Fisher Information matrix with N respondents, and L

N
(X,) is the log-

likelihood function in case of N respondents defined by

(7.2)

This formulation holds for each model type (MNL, NL, or MMNL), only the choice probabilities P
jsn

(X,

) are different. Further information on these model types are given in Appendix 7A. For the MNL
model, the choice probabilities given in Equation (7A.5) in Appendix 7A apply. Other probabilities are
used for other model types, as discussed in Appendix 7A. There are two ways of determining the
AVC matrix, either by Monte Carlo simulation, or analytically.

Most researchers have relied on Monte Carlo simulation. In this case, a sample of size N is
generated and parameters are estimated based on simulated choices (by simply computing the
observed utilities using some prior parameter estimates, adding random draws for the unobserved
utilities, and then determine the chosen alternative by assuming that each respondent selects the
alternative with the highest utility). Such an estimation also provides the results for the AVC matrix.
This procedure is repeated a large number of times and the average AVC matrix gives the AVC
matrix.

Many have not realized that the AVC matrix can be determined analytically, as suggested for MNL
models with all generic parameters by McFadden (1974). In this case, the second derivative of the
log-likelihood function in Equation (7.2) is determined and evaluated analytically. A potential problem
is, that the vector of outcomes, Y, is part of the log-likelihood function, the reason why most
researchers perform Monte Carlo simulations. However, it can be shown that the outcomes Y drop
out when taking the second derivatives in case of the MNL model. This has been shown by
McFadden (1974) for models with all generic parameters, and in Rose and Bliemer (2005a) for
models with alternative-specific parameters, or a combination. Furthermore, Bliemer et al. (2009)
have also derived analytical expressions for the second derivatives for the NL model. The outcomes
Y do not drop out, but as shown in their paper, they can be replaced with probabilities leading to
exactly the same AVC matrix, which has been confirmed by Monte Carlo simulation outcomes.
Although more tedious, the second derivatives can also be derived for the MMNL model and a similar
procedure holds for removing the outcome vector Y. Note that the MMNL model will always require
some simulations, as the parameters are assumed to be random and therefore expected
probabilities need to be approximated using simulation. However, these simulations have no
connection with the simulations mentioned earlier for determining the AVC matrix. To conclude, Ω

N

can be determined without knowing simulated outcomes Y, hence the dependency on Y disappears
in Equation (7.2).

In the special (and most considered) case that all respondents face exactly the same choice
situations, i.e., X

n
 = X for all n, it can be shown that (see Rose and Bliemer, 2005a)

(7.3)

91Efficient Designs

© 2012 ChoiceMetrics

In other words, the AVC matrix corresponding to a sample size of N can be derived directly from the
AVC matrix from a single respondent using a rate of 1/N. This means that the impact of sample size
on the design can readily be investigated (under all assumptions made so far). The asymptotic

standard errors se
N
(X,) are the roots of the diagonal of the AVC matrix, therefore these standard

errors decrease with a rate of 1/ of the sample size N. This is also illustrated in Figure 7.1 for a
single parameter, clearly indicating a diminishing decreasing asymptotic standard error when the
sample size increases. This is an important result, as it suggests that spending (much) more money
on collecting data using a larger sample size does in the end not lead to significantly better
parameter estimates, indicated by (*) in the figure. As the figure also suggests, it pays off much

more to determine a design with a higher efficiency (design with attribute levels XII instead of XI), in
which the standard error can decrease significantly, indicated by (**) in the figure, without spending
any extra money!

Figure 8.1: Asymptotic standard error as a function of the sample size

7.1.4 Efficiency measures

The efficiency of a design can be derived from the AVC matrix. Instead of assessing a whole AVC
matrix, it is easier to assess a design based on a single value. Therefore, efficiency measures have
been proposed in the literature in order to calculate such an efficiency value, typically expressed as
an efficiency ‘error’ (i.e., a measure for the inefficiency). The objective then becomes to minimize this
efficiency error.

The most widely used measure is called the D-error, which takes the determinant of the AVC matrix

Ω
1
, assuming only a single respondent5. A design with the lowest D-error is called D-optimal. In

practice it is very difficult to find the design with the lowest D-error, therefore we are satisfied if the
design has a sufficiently low D-error, called a D-efficient design. Different types of D-error have been

proposed in the literature, depending on the available information on the prior parameters . We will

92 Ngene User Manual

© 2012 ChoiceMetrics

distinguish three cases:
(a) No information is available; If no information is available (not even the sign of the parameters),

then set =0. This leads to a so-called D
z
-error (‘z’ from ‘zero’).

(b) Information is available with good approximations of β; If the information is relatively accurate,
is set to the best guesses, assuming they are correct. This leads to a so-called D

p
-error (‘p’ from

‘priors’)
(c) Information is available with uncertainty about the approximations of β;

Instead of assuming fixed priors , they are assumed to be random following some given probability
distribution to express the uncertainty about the true value of β. This Bayesian approach leads to a
so-called D

b
-error (‘b’ from ‘Bayesian’).

The D-errors are a function of the experimental design X and the prior values (or probability

distributions) , and can be mathematically formulated as:

(7.4)

(7.5)

(7.6)

where K is the number of parameters to be estimated. Note that the AVC matrix is a K x K matrix.
In order to let the D-error be independent of the size of the problem, the D-error is normalized by the
power 1/K. We recommend removing the rows and columns corresponding to the model constants in
the AVC matrix as these parameters in general do not have a clear meaning in a SC experiment (in
contrast to revealed choices). As the standard errors of these model constants can become fairly
large, they could dominate the D-errors, therefore we advise to remove them before taking the
determinant (and at the same time also adjust the value of K).

Equation (7.6) needs some more explanation. In the Bayesian D-error computation the priors are
assumed to be random variables with a joint probability density function Φ(.) with given parameters Θ

. For example, these priors could follow normal distributions ~ N(µ, Σ), or uniform distributions
~ U(u, v), or a mix, or other distributions. Normal and uniform distributions seem to be the only ones
used in the literature so far.

Besides the D-error, other inefficiency measures have been proposed as well. Another well-known
efficiency error is called the A-error, and the design with the lowest A-error is called A-optimal.
Instead of taking the determinant, the A-error takes the trace of the AVC matrix, which is the
summation of all diagonal elements of the matrix. Therefore, the A-error only looks at the variances
and not at the covariances. In order to normalize the A-error it is divided by K (the same
recommendation about the model constants applies). Similar to the D-error, different A-errors can be
determined based on the availability of information on the parameters. The A

p
-error is mathematically

formulated as

(7.7)

The A
z
-error and A

b
-error can be derived using formulations equivalent to Equations (7.4) to (7.6) (see

93Efficient Designs

© 2012 ChoiceMetrics

Bliemer and Rose, 2009). The A-error should be used with caution in case not all parameter values
are of equal scale. By the simple summation of the variances it is likely that parameters with large
values will overshadow the other parameters. Therefore, we suggest using a weighted summation.
Using weights it is also possible to give more importance to certain parameters, that is, enable the
estimating of these parameters more accurately than others.

A completely different efficiency measure has been introduced by Bliemer and Rose (2005a). They
propose a measure that is related to the sample sizes required to estimate each parameter
significantly. If the null hypothesis is that β

k
 = 0 for a certain parameter, then this hypothesis is

rejected if

(7.8)

where t
α
 is the t-value corresponding to the (1 - α)-confidence interval (e.g., t

0.05
 = 1.96). Assuming

that the priors are correct estimates for the true parameters and assuming that all respondents face
the same choice situations, i.e., Equation (7.3) holds, then Equation (7.8) can be rewritten as

(7.9)

This number provides a lower bound on the necessary number of the sample size in order to obtain
significant estimates for parameter β

k
 (see Bliemer and Rose, 2009). The measure proposed by

Bliemer and Rose (2005a, 2009) is derived from the observation that if some parameters need much
higher sample sizes than others, it may be better in the experiment to focus more on the parameters
that are difficult to estimate significantly. By spreading the information obtained from each choice
situation in the design over all parameters, the design can be optimized for sample size, and is
termed S-optimality (see Bliemer and Rose 2005a, 2009).

Note that Equation (7.9) merely provides a lower bound and does not guarantee significant parameter
estimates due to random choice behavior and in the case of the MNL model, the assumption that all
random components are independent, even if a single respondent faces multiple choice situations,
may also impact upon the value derived. This will lead to some biases, yielding higher necessary
sample sizes. The problem of dependent observations in a SC experiment is a known problem to
which unfortunately no simple solution exists, besides putting the correlation structure in a random
components model. Therefore, the S-optimality measure merely gives an indication in order to
compare different designs on lower bounds for the sample sizes.

Several other efficiency criteria have been proposed within the literature (see e.g., Kessels et al.,
2006) and many others can be formulated. Within Ngene, aside from D-, A-, and S-error measures of
efficiency, there also exists (implemented only for the MNL model) an additional efficiency measure
termed C-error (see Kanninen, 1993a,b and Scarpa and Rose 2008). The C-error measure in Ngene
attempts to minimise the variance of the ratio of two parameters and as such is ideal for working with
problems dealing with willingness to pay (WTP) issues. As shown in Scarpa and Rose (2008), the
variance of two parameters may be approximated using Equation (8.10)

(7.10)

94 Ngene User Manual

© 2012 ChoiceMetrics

The C-error criterion relates to the minimization of such variances. In most SC experiments, there
will exist more than one WTP, with indeed up to k -1 potential WTPs. In such cases, the C-error has
been set up to minimise the sum of the up to k -1 C-error values, with the user able to nominate
which WTP values to include in the calculation.

7.1.5 Drawing from parameter distributions

In the previous section, we saw that there exist multiple efficiency criteria that one may use when
generating efficient designs. We further saw that within each efficiency measure, there exist multiple
approaches regarding the parameter priors assumed in generating efficient SC experiments. In the
first approach, researchers have made the strong assumption that all parameter priors for the design
are simultaneously equal to zero (e.g., Burgess and Street 2005; Grasshoff and Schwabe 2007;
Huber and Zwerina 1996; Street and Burgess 2004; Street et al. 2001). Street et al. make this
assumption for analytical reasons, enabling them to locate truly optimal (most efficient) orthogonal
designs. This optimality will only exist under the assumption of zero parameter estimates, which is
unlikely to hold in reality. A second approach that has sometimes been used is to assume that the
parameter priors are non-zero and known with certainty (e.g., Carlsson and Martinsson 2003; Huber
and Zwerina 1996; Rose and Bliemer 2005). In such an approach, a single fixed prior is assumed for
each attribute. Whilst the assumption of perfect certainty is a strong one, the design generation
process is such that researchers are able to test its impact on a design’s efficiency assuming
misspecification of the priors. Sándor and Wedel (2001) introduced a third approach by relaxing the
assumption of perfect a priori knowledge of the parameter priors through adopting a Bayesian
approach to the design generation process.

The Bayesian approach to constructing efficient SC experiments requires that the efficiency of a
design be evaluated over numerous different draws taken from the prior parameter distributions
assumed in generating the design. The Bayesian efficiency of a design is then calculated as the
expected value of whatever measure of efficiency is assumed over all the draws taken. The Bayesian
approach therefore necessitates the use of simulation methods to approximate the expectations for
differing designs.

For computing the Bayesian efficiency, a number of different simulation procedures are available to
researchers, with the simplest being the use of pseudo random draws. In using pseudo random
draws (often referred to as pseudo Monte Carlo, or PMC, draws), points from a distribution are
randomly selected. Whilst simple to implement in practice, results obtained using PMC draws are
susceptible to being specific to the particular draws taken from whatever distribution is assumed,
with different sets of random draws likely to produce different coverage over the distribution space,
possibly leading to widely different results when calculating the expectations. This risk is especially
high with the use of a small number of draws. The precision of simulation processes may potentially
be improved by using a more systematic approach in selecting points when sampling from a
distribution. Such techniques are commonly referred to within the literature as quasi random Monte
Carlo draws (see, for example, Bhat 2001, 2003; Hess et al. 2005; Sándor and Train 2003). The
potential to provide better coverage of the distribution space for each prior parameter distribution
should theoretically result in a lower approximation error in calculating the simulated choice
probabilities for a given design. This in turn will result in greater precision in generating the design’s
AVC matrix, resulting in greater precision in terms of the Bayesian efficiency measure of that
design. Other methods, such as Gaussian quadrature, also aim to minimize the approximation error
when calculating the Bayesian efficiency.

Independent of the type of draws used, the researcher must decide on the number of draws to use. If

95Efficient Designs

© 2012 ChoiceMetrics

too few draws are taken, it is probable that the resulting Bayesian measure of efficiency will be far
from the true efficiency for a given design. If too many draws are used, the computation time in
generating an efficient design will be unnecessarily high. The issue therefore becomes one of how
many draws should be used before the Bayesian measure of efficiency will converge to the true
efficiency level for a given design, or alternatively, fall within some acceptable error range around the
true value. Unfortunately, the answer to this question will likely depend on the dimensions of the
design itself, the number of Bayesian priors assumed, the population of the prior distributions, the
type of econometric model used, as well as the type of draws employed. Kessels et al. (2006) argue
that a well-designed systematic 20-point sample may be sufficient to give a good enough
approximation of the Bayesian efficiency, at least in a first step of a search algorithm, although no
claims can be given for general experiments. Improvements in search algorithms and in faster
evaluations of the Bayesian efficiency should both lead to significantly smaller computation times for
determining a Bayesian efficient design. From a search algorithm perspective (for unlabeled
experiments), the reader is referred to Kessels et al. (2006) and Yu et al. (2008), which deal with
determining Bayesian efficient designs for the MNL and MMNL model, respectively.

Ngene allows the use of the PMC method alongside three different types of quasi random Monte
Carlo draws; namely Halton, Sobol, and Modified Latin Hypercube Sampling (MLHS) draws, and one
Gaussian quadrature method, namely Gauss-Hermite approximation. Independent of the method, the
principles in generating efficient SC experiments remain the same:

1) first, R values are drawn from the random distribution of the prior parameter values;
2) then, for each of these parameter values, the D-error is evaluated; and
3) an average D-error is computed over these values (giving the Db-error).

The PMC and quasi-random MC methods all take a simple (unweighted) average of the different Db-
errors (or any other efficiency method), but differ in the way they take the draws from the random
distribution. In the PMC method, these draws are completely random, whereas in the quasi-random
MC methods they are intelligent and structured, and in most cases deterministic. The Gaussian
quadrature methods construct intelligent and deterministic draws as well, but also determine specific
weights for each draw and compute a weighted average.

Sandor and Wedel (2001, 2002) suggested that when generating Bayesian efficient designs, the
generalised Asymptotic Fisher Information matrix be used instead of the Asymptotic Fisher
Information matrix. This approach has also been proposed and used by Kessels, et al. (2006) and
Yu et al. (2009). The generalised Asymptotic Fisher Information matrix is calculated as

 where Sβ are the prior parameter variances. Chaloner and

Verdinelli (1995) argue in favour of the common Db-error measure, as it allows for different prior

information, to be used in the design and analysis and is appealing when a non-Bayesian framework
is adopted in analysis. In addition, the traditional Db-error is based on an asymptotic approximation

of the posterior, and the prior vanishes in any case.

We now discuss each of these methods in turn. Further information on the impact of changing the
number of draws by type is available in Bliemer et al. (2008).

96 Ngene User Manual

© 2012 ChoiceMetrics

7.1.5.1 Pseudo-random Monte Carlo (PMC) simulation

In PMC simulation, for each of the K parameters, R independent draws are taken from their given
prior distributions. For each of these R draws of the prior parameters, the Db-error is computed.

Finally, the average is taken of all computed efficiency measures. Let (r) = [
1
(r), ...,

K
(r)] denote

draw r, r = 1, ..., R, from the corresponding prior random distributions described by the probability

density functions Φ
k
(

k
 | Θ

k
). The approximation of the efficiency-error can be formalized as

(7.11)

The total number of efficiency evaluations is equal to R. In order to determine the draws
k
(r), we let

the computer generate for each parameter R pseudo-random numbers u
k
(r) which are uniformly

distributed on the interval [0,1], and then compute the draws by

(7.12)

where (
k

 | Θ
k
) denotes the cumulative distribution function corresponding to the probability

density function Φ
k
(

k
 | Θ

k
).

7.1.5.2 Quasi-random Monte Carlo simulation

Randomness of the draws is not a prerequisite in the approximation of the integral; rather, Winiarski
(2003) has argued that (a) correlation or a systematic structure between draws for different
dimensions can have a positive effect on the approximation, and (b) one should aim for the draws to
be distributed as uniformly as possible over the area of integration. Hence, the draws can be
selected deterministically so as to minimize the integration error, which is exactly what quasi-
random MC simulation methods aim to do. For a more detailed discussion on these methods we
refer to Niederreiter (1992) and Fang and Wang (1994). Quasi-random MC simulation methods for
approximating say the D

b
-error are almost identical to the PMC simulation method, except that they

use deterministic draws for
k
(r) (as opposed to purely random draws). Instead of generating

pseudo-random numbers u
k
(r) ~ U(0,1), these numbers u

k
(r) are taken from different intelligent quasi-

random sequences, also called low discrepancy sequences. Using these quasi-random sequences,
faster convergence to the true value of the numerical integration can be achieved. PMC simulation

has a slow rate of convergence of , while quasi-random MC simulation typically has a rate

of convergence as good as O(1/R). 6

97Efficient Designs

© 2012 ChoiceMetrics

7.1.5.3 Modified Latin Hypercube Sampling (MLHS)

The MLHS method (Hess et al. 2005) produces multi-dimensional sequences by combining
randomly shuffled versions of one-dimensional sequences made up of uniformly spaced points.
Formally, the individual one-dimensional sequences of length R are constructed as:

(7.13)

where is a random number drawn between 0 and 1/R, and where a different random draw is used
in each of the K different dimensions. In the resulting sequence, the distances between adjacent
draws are all equal to 1/R, satisfying the condition of equal spacing. Multi-dimensional sequences
are constructed by simple combination of randomly shuffled one-dimensional sequences, where the
shuffling disrupts the correlation between individual dimensions.

7.1.5.4 Halton sequences

Halton sequences (Halton 1960) are based on the one-dimensional Van der Corput sequence (Van
der Corput, 1935) and are constructed according to a deterministic method based on the use of
prime numbers, dividing the 0-1 space into p

k
 segments (with p

k
 giving the prime used as the base

for parameter k), and by systematically filling in the empty spaces, using cycles of length p
k
 that

place one draw in each segment. Formally, the rth element in the Halton sequence based on prime p

k
 is obtained by taking the radical inverse of integer r in base p

k
 by reflection through the radical

point, such that

(7.14)

where determines the L digits used in base p
k
 in order to represent r (i.e., solving

equation (7.14)), and where the range for L is determined by The draw is then

obtained as:7

(7.15)

To allow for the computation of a simulation error, the deterministic Halton sequence can be
randomized in several ways. Here, we use the approach discussed by amongst others Tuffin (1996),

where the modified draws are obtained by adding a random draw to the individual draws in
dimension k , and by subtracting one from any draws that now fall outside the 0-1 interval. A different
random draw is used for each dimension.

98 Ngene User Manual

© 2012 ChoiceMetrics

7.1.5.5 Sobol sequences

The main problem with Halton sequences is the fact that the individual sequences are highly
correlated, leading to problems with poor multi-dimensional coverage in higher dimensions. Aside
from various transformations of the standard Halton sequence and other advanced methods (cf. Hess
 et al. 2005), one approach that has received exposure in the area of discrete choice modeling is the
Sobol sequence, used amongst others by Garrido (2003). Like Halton sequences, Sobol sequences
are based on Van der Corput sequences (cf. Niederreiter 1992). However, rather than in a K-
dimensional problem using the first K primes (as in Halton sequences), Sobol sequences are based
on prime 2 in each dimension, where different permutations are used to ensure that the resulting K-
dimensional sequence obtains good coverage. We will use a randomized version of the Sobol
sequences equivalent to the randomization in the Halton sequences by adding a random component
to each of the draws in each dimension.

7.1.5.6 Gaussian quadrature

Polynomial cubature methods aim to approximate integrals using orthogonal polynomials. Gaussian
quadrature is the best-known method, see e.g. Stoer and Bulirsch (2002). In case of a single
variable, the use of R draws yields an exact approximation if the integrand is a polynomial up to
degree (2R-1). General functions can be approximated by (high order) polynomials, hence the higher
the degree (yielding more draws), the more accurate the approximation will be.

The principle of Gaussian quadrature is that not only the draws
k
(r) for the priors are selected

intelligently, but also that weights w
k
(r) are associated with each draw. The approximation of the Db-

error using Gaussian quadrature can be formalized as

(7.16)

The draws for the priors and the associated weights depend on the random distribution. Different

draws
k
(r) for each individual parameter are called abscissas. The draws for the whole vector (r)

 are given by a rectangular grid of these abscissas8. In the case where
k

 ~ N(µ
k
, σ

k
), the

abscissas and weights can be computed using so-called Hermite polynomials. If
k
 ~ U(a

k
, b

k
), the

abscissas and weights can be computed using so-called Legendre polynomials. The abscissas and
weights for both situations are listed in Table 1 for up to 10 abscissas for each individual parameter.

The weights always sum up to one, i.e., = 1 for each k. For each of the K parameters,
the number of abscissas used, R

k
, can be different.

Note that the total number of D-error evaluations in Gaussian quadrature is equal to R = ,
that is, the total number of all combinations of abscissas in all dimensions. This number of D-error

evaluations grows exponentially if the number of random priors increases9. Therefore, Gaussian
quadrature is typically not suitable for integrals of high dimensionality, although it is extremely
powerful for low-dimensional problems.

99Efficient Designs

© 2012 ChoiceMetrics

7.1.6 Orthogonal versus efficient designs

In case any information about the parameters is available, then efficient designs will always
outperform orthogonal designs. This is due to the fact that efficient designs use the knowledge of the
prior parameters to optimize the design in which the most information is gained from each choice
situation (e.g., dominant alternatives can be avoided as the utilities can be computed). We will come
back to dominant alternatives when discussing the (un)importance of utility balancing in Section
7.1.8.

What happens in the case where no information about the parameters is available? In other words,

which design is better, an orthogonal design, or a D
z
-optimal design (which assumes =0)? As

mentioned in Bliemer and Rose (2005b), there is a close correspondence between orthogonal
designs and D

z
-optimal designs. In fact, in case all model parameters are alternative-specific, a D

z
-

optimal design is orthogonal. In case all model parameters are generic, it is not necessary to
choose between either orthogonality or D

z
-efficiency as it is possible to determine orthogonal D

z
-

optimal designs. Street et al. (2001), Street and Burgess (2004) demonstrate how to create such D
z
-

optimal designs for generic designs with only two alternatives and where each attribute has a
number of levels equal to the power of two (hence, two, four, eight, etc.). In Street et al. (2005) a nice
overview is given for determining D

z
-optimal (or nearly optimal) designs with multiple alternatives and

different levels. However, these remain limited to models with generic parameters.

The design principles in Street et al. (2005) have some limitations. First of all, they are limited to the
MNL model. Secondly, they are only optimal in case all parameters are equal to zero, which is
clearly not the case. The fact that their designs are sub-optimal under the nonzero parameter case
is due to the fact that they assume all equal probabilities in the MNL model. Finally, if alternative-
specific parameters are present, then a simple principle that will lead to a D

z
-optimal design does

not exist.

If correlations in the design have a negative impact on the parameter estimates, then this should
implicitly be reflected in the AVC matrix of the design, instead of explicitly in an orthogonal design.
Hence, an efficient design will to a certain degree implicitly minimize the correlations in a design,
hence it is not necessary to include orthogonality as an additional criteria to efficiency.

7.1.7 Importance of prior parameter values

The purpose of the SC experiment is to estimate the parameters of the specified model. But even
without estimating them, some information and/or educated guesses regarding parameters are
usually available. Again, we would like to stress that D

p
-optimal designs will always outperform D

z
-

optimal designs in case any information about the parameters (even only the sign of the parameters)
is available. We argue that it is always possible to obtain some information on the priors.

Just using reasoning alone, it should be possible to determine at minimum the signs of most
parameters. For example, price attributes are typically negatively perceived, while comfort and
service are attributes that will receive positive attitudes. Instead of using a prior parameter value
equal to zero, already a slight positive or negative value would already improve the design.

Many surveys have been conducted around the world, and it is likely to find at least a few similar
parameters. If no such studies can be found, then it may be very useful to conduct a small pilot
study in order to get an initial idea about the parameter values. With the same amount of money,

100 Ngene User Manual

© 2012 ChoiceMetrics

one could (i) conduct a large survey using an experimental design based on priors equal to zero (no
information case), or (ii) conduct a slightly smaller survey using an experimental design based on
priors obtained from a pilot study. As Figure 7.1 also suggested, the second option is preferred,
since it can lead to significantly more reliable parameter estimates.

Obviously, a D
p
-optimal design is sensitive to the chosen prior parameters. If they are not correct,

then the design is sub-optimal (note that D
z
-optimal will therefore always be sub-optimal).

Fortunately, the design can be tested for robustness in case one or more prior parameter values are
not correct. By taking a fixed design X and computing the AVC matrix as in Equation (7.1) (recall

that the outcomes Y drop out) for different values of , a sensitivity analyses of the design can be
performed. Once the sensitivity of the efficiency of the design to each prior parameter is known, one
can decide to either put more effort in determining the prior values for the most sensitive priors, or
determine a new design (which may be less efficient, but more robust).

Another way of dealing with uncertainty about prior parameters was already mentioned when
describing the Bayesian efficient designs. A Bayesian efficient design optimizes the expected
efficiency of the design over a range of prior parameter values, thereby making it more robust to mis-
specifying the priors. Priors with a higher uncertainty should see this uncertainty reflected into a
larger standard deviation or spread of its probability distribution.

7.1.8 Utility balance

A couple of times the words “dominant alternatives” or “more information from choice situations” have
been used. Here the concept of utility balancing, as suggested in (Huber and Zwerina, 1996) will be
described.

As a simple example, consider two choice situations in an unlabelled stated choice experiment as
illustrated in Figure 7.2. In the first choice situation, Route A has both a lower travel time as well as
a lower toll cost, making it clearly the preferred alternative. The Route A alternative therefore clearly
dominates in this choice situation, therefore no information will be gained. In contrast, in the second
choice situation there is no clear dominant alternative and the respondent has to make a clear trade-
off between travel time and toll cost, hence this will provide information.

The example illustrates that balancing the utilities of alternatives (i.e., having no alternatives that are
clearly dominating the others) is of importance. At least, if it is very unbalanced, the choice situation
does not provide information for estimating the parameters. This could lead to the understanding that
in the most efficient design, all the choice situations are perfectly utility balanced. This is however
not the case. If all alternatives have an equal observed utility, then the random unobserved
component dominates. In other words, then the respondent has no clear preference for any of the
alternatives and randomly selects one. This too does not give information. Therefore it can be
concluded that an efficient design has some degree of utility balance, but not too much, and not too
little.

101Efficient Designs

© 2012 ChoiceMetrics

Figure 7.2: Dominant alternative in choice situation 1

Utility balance of a choice situation and a whole design can be expressed in a percentage. Consider
a stated choice experiment with J alternatives. Consider a certain choice situation s. This choice
situation would have perfect utility balance if all alternatives j have an equal probability, that is, P

js
 =

1 / J. The utility balance of choice situation s can be defined as

(7.17)

For example, if J = 3 and all three alternatives have a probability of 1/3, then B
s
 = 100%. If the

probabilities are 1/2, 1/3, and 1/6, respectively, then the utility balance is B
s
 = 75%. If one or more of

the probabilities is equal to zero, then the utility balance is zero percent. The overall utility balance of
the design, B, can be determined by averaging over all choice situations (Kessels et al., 2006):

(7.18)

The optimal value for utility balance of a design cannot be given, but observations of the utility
balance of efficient designs suggest that it lies in the range of 70-90 percent. Utility balance can be
examined for each choice situation, thereby investigating if the design contains choice situations
with clearly dominant alternatives, which should not occur in an efficient design. Hence, utility
balance could be used in the algorithms for generating efficient designs. In Ngene, we refer to
attempts to maximize utility balance as B-error. Similar to the D-, A-, S- and C-error measures, B-
error may be implemented using either zero, fixed or Bayesian priors.

102 Ngene User Manual

© 2012 ChoiceMetrics

7.1.9 Generating efficient designs

The problem of finding an efficient design can be described as follows:
Given feasible attribute levels Λ

jk
 for all j and k , given the number of choice situations S, and

given the prior parameter values (or probability distributions of), determine a level
balanced design X with x

jks
 Λ

jk
 that minimizes the efficiency error in Equations (7.4), (7.5),

(7.6), (7.7), (7.9) or (7.10).

Note that in this formulation attribute level balance is added as a requirement, consistent with
current state of practice. It should be stressed that an efficient design does not necessarily require
attribute level balance. In fact, a more efficient design may be found by removing the level balance
requirement as will be discussed in Section 8.1.

In order to solve the problem of determining the most efficient design, one could determine the full
factorial design and then evaluate each different combination of S choice situations from this full
factorial. The combination with the lowest efficiency error is the optimal design. However, this
procedure is not feasible in practice due to an extremely high number of possible designs to
evaluate. For example, consider the problem of determining an efficient design for a hypothetical

case with three alternatives as shown in Table 7.1. The full factorial design has 21 x 38 x 42 =
209,952 choice situations. Suppose that we would like to find an efficient design with S = 12 choice
situations. Selecting 12 choice situations from this set of 209,952 different choice situations yields

7.3 x 1063 possible different designs. Clearly, it is not feasible to evaluate all possible designs,
hence a smart algorithm is necessary to find an efficient as possible design.

Table 7.1: Example dimensions for generating an efficient design

There are row based algorithms and column based algorithms for finding an efficient design. In a row
based algorithm choice situations are selected from a predefined candidate set of choice situations
(either a full factorial or a fractional factorial) in each iteration. Column based algorithms (such as
RSC algorithms) create a design by selecting attribute levels over all choice situations for each
attribute. Row based algorithms can easily remove bad choice situations from the candidate set at
the beginning (e.g., by applying a utility balance criterion), but it is more difficult to satisfy attribute
level balance. The opposite holds for column based algorithms, in which attribute level balance is
easy to satisfy, but finding good combinations of attribute levels in each choice situation is more
difficult. In general column based algorithms offer more flexibility and can deal with larger designs,
but in some cases (for unlabelled designs and for specific designs such as constrained designs, see
 Section 8.2) row based algorithms are more suitable.

The Modified Federov algorithm (Cook and Nachtsheim, 1980) is a row based algorithm and is
illustrated in Figure 7.3. First, a candidate set is determined, either the full factorial (for small
problems), or a fractional factorial (for large problems). Then, a (attribute level balanced) design is
created by selecting choice situations from the candidate set. After that, the efficiency error (e.g., D-
error) is computed for this design. Finally, if this design has a lower efficiency error than the current
best design, the design is stored as the most efficient design so far, and one continues with the next
iteration repeating the whole process again. The algorithm terminates if all possible combinations of
choice situations have been evaluated (which is in general not feasible), or after a predefined number

103Efficient Designs

© 2012 ChoiceMetrics

of iterations. Construction of D
z
-optimal as described in Street et al. (2005) is also row based, in

which in a smart way combinations of choice situations are made.

Figure 7.3: Modified Federov algorithm

RSC (Relabeling, Swapping & Cycling) algorithms (Huber and Zwerina, 1996; Sándor and Wedel,
2001) are column based algorithms, illustrated in Figure 7.4. In each iteration, different columns for
each attribute are created, which together form a design. This design is evaluated and if it has a
lower efficiency error than the current best design, then it is stored. The columns are not created
randomly, but as the name suggests are generated in a structured way using relabeling,
swapping, and cycling techniques. Starting with an initial design, each column could be altered by
relabeling the attribute levels. For example, if the attribute levels 1 and 3 are relabeled, then a
column containing the levels (1,2,1,3,2,3) will become (3,2,3,1,2,1). Swapping means that some
attribute levels switch place, for example if the attribute levels in the first and fourth choice situation
are swapped, then (1,2,1,3,2,3) would become (3,2,1,1,2,3). Finally, cycling replaces all attribute
levels in each choice situation at the time by replacing the first attribute level with the second level,
the second level with the third, etc. Since this impacts all columns, cycling can only be performed if
all attributes have exactly the same sets of feasible levels (e.g., in case all variables are dummy
coded). Sometimes only swapping is used, sometimes only relabeling and swapping is used, as
special cases of this algorithm type.

104 Ngene User Manual

© 2012 ChoiceMetrics

Figure 7.4: RSC algorithm

If for some reason orthogonality is required in a D
p
-efficient design, one could construct a single

orthogonal design, from this design easily create a large (but not huge) number of other orthogonal
designs, and then evaluate all these orthogonal designs and select the most efficient one. Creating
other orthogonal designs from a single orthogonal design is relatively simple, as discussed in
Section 6.1.3.

Evaluating each design for the efficiency error is the most time-consuming part of each algorithm,
therefore the number of D-error or other efficiency error evaluations should be kept to a minimum by
putting more intelligence into the construction of the designs. In determining Bayesian efficient
designs this becomes even more important, as the integral in Equation (7.6) cannot be computed
analytically, but only by simulation. Mainly pseudo-random Monte Carlo simulations have been
performed for determining the Bayesian D-error for each design, which enables the approximation of
this D-error by taking the average of all D-errors for the same design using pseudo-random draws for
the prior parameter values. This is clearly a computation intensive process, such that finding
Bayesian efficient designs is a very time consuming task. Bliemer et al. (2006) have proposed to use
quasi-random draws (such as Halton or Sobol sequences) or preferably Gaussian quadrature
methods instead of pseudo-random draws, which require less simulations and therefore enable the
evaluation of more designs in the same amount of time.

For further information on generating efficient designs, see Appendix 7B.

7.1.10 Discussion of efficient designs

Efficient or optimal designs have been embraced by more and more researchers as the current best
way of designing SC experiments. Practitioners are still somewhat hesitant to deviate from
orthogonal designs which have been claimed to be best for a long time, but there is a growing
support for such designs both in practice and within the academic literature.

Do the chosen feasible levels, determined before generating an efficient design, impact the potential

105Efficient Designs

© 2012 ChoiceMetrics

efficiency of the design? The answer is ‘yes’, they have a significant impact on the efficiency.
Broadly speaking, the less attribute levels and, more importantly, the wider the attribute level range,
the higher the efficiency of the design can be. A wide attribute level range usually translates into
smaller asymptotic standard errors. Therefore, the highest efficiency can theoretically be obtained
using so-called end-point designs, which are two-level designs with extreme (wide range) levels. The
disadvantage of this kind of designs is, that nonlinearities cannot be estimated (more levels are
needed for this purpose). Furthermore, the extreme levels should be realistic.

The number of choice situations does not seem to have a large impact on the efficiency of a design,
as long as the number of choice situations is not smaller than K/(J-1). Clearly, more choice
situations yield more data per respondent, hence the efficiency will automatically increase with more
choice situations. Compensating for this effect by normalizing the efficiency error (i.e., assuming the
same amount of data), it does not seem to make much difference how many choice situations are
chosen. Therefore, the number of choice situations does not have to be very high (blocking as in
orthogonal designs is therefore not necessary) and should mainly depend on the intuition how many
choice situations respondents can handle. A higher number of choice situations means a higher
task effort for the respondent. The maximum number of choice situations depends of course on the
complexity of each choice situation, but roughly 10 to 20 choice situations should be possible.

Still, the efficient designs discussed in this section may be improved due to the somewhat restrictive
assumptions commonly imposed. First of all, attribute level balanced has been imposed for efficient
designs, which is typically only required for orthogonal designs. Attribute level balance is viewed as
a desired property ensuring that all attribute levels appear equally in the data set, which intuitively
provides a good basis for estimation. However, the attribute level balance requirement is
mathematically speaking merely imposing another constraint on the problem of minimizing the
efficiency error, thereby always leading to less efficient designs. By relaxing this assumption a more
efficient design can be found (at least it is never less efficient). An optimal level unbalanced design is
likely to be (close to) an end-point design using just the two extreme levels.

Another assumption made in this section is the assumption of independent observations, i.e., the
outcomes of all choice situations from the same respondent are assumed independent. This
assumption makes it easy to derive analytical expressions of the AVC matrix. However, it is likely
that the data does not consist of independent observations, as the random unobserved utilities are
correlated within each respondent, and this has to be taken into account. Using an error
components structure one could simulate these correlations, but then the AVC matrix has to be
computed by simulation instead of analytically, see Scarpa et al. (2005) and Ferrini and Scarpa
(2006).

Some other assumptions were that all respondents face the same choice situations, and that socio-
economic data is ignored. These assumptions are relaxed in the next section. Instead of relaxing
some assumptions, it is also discussed how to deal with more constraints.

7.2 Generating efficient designs in Ngene

In contrast to orthogonal designs, more information on the model type and prior parameter values is
needed when dealing with efficient designs. In the following, different syntax commands will be
discussed for different model types. We will describe syntax for the MNL, the MMNL and the EC
models.

106 Ngene User Manual

© 2012 ChoiceMetrics

7.2.1 Efficiency measures

All model types share that the efficiency measure to be optimized on has to be set. In Ngene this
can be done using the property eff, by defining the model type together with the efficiency measure
required for optimisation. For example, using the D-error measure for finding an efficient design for
the MNL model, the following property is added to the syntax:

;eff = (mnl,d)

where the first part between brackets refers to the model type, while the second refers to the
efficiency measure. Other examples include

;eff = (ecpanel,d)
;eff =(ec,a)
;eff = (rp,s)
;eff = (rppanel,b)

where mnl refers to the multinomial logit model, ‘rp’ and ‘rppanel’ refer to the MMNL cross sectional
and panel models, and ‘ec’ and ‘ecpanel’ to the EC cross sectional and panel models. Furthermore,
instead of using D-error, the A-error is minimised when the second argument is set to ‘a’, the sample
size is minimised when set to ‘s’, and the utility balance of the design maximized when it is set to
‘b’.

For designs that are to be optimized based on the variance of the ratio of two or more parameters
(WTP designs), the optimization routine allows for up to k -1 ratios to be specified. The routine then
attempts to minimize the sum of the variances of the indicated parameter ratios. In this way, not all
ratios need be used in the optimization routine. As such, when using the ‘wtp’ property, the user is
required to also specify what parameter ratios to use in the calculation. This is handled via a
separate wtp property in conjunction with the eff property, as shown below.

;eff = (mnl,wtp(ref1))
;wtp = ref1(*/b1)

where the ‘wtp’ argument in the eff property indicates that C-error efficiency measure is to be used
(see Section 7.1.4) and ref1 links the eff property to the wtp property. For the wtp property the user
first specifies a name (any name will suffice; we have used ref1 here for demonstrative purposes
only) followed by what parameter ratios to use in the efficiency calculation. If an asterisk (i.e., *) is
used, as in the example provided, then all parameters specified in the models utility functions will be
used as numerators in the calculation, save for the parameter indicated after the back slash or divide
symbol (i.e., /). The parameter named after the back slash represents the parameter (usually a cost
parameter) that will be used as the denominator in the WTP calculations. Rather than use all
parameters in the calculation, it is also possible to specify only a subset of parameters as shown in
the following example.

;eff = (mnl,wtp(wtp1))
;wtp = wtp1(b2,b3,b5/b1)

In this case, the C-error measure will only be calculated using the sum of the variances of the ratios
of the b2, b3 and b5 parameters to the b1 parameter. Any other parameters specified in the models
utility specification will not form part of the calculation. Note that any name can be used in
specifying the WTP measure with the name WTP1 now being substituted for the name ref1 used
previously. Note also that the WTP property will only work for the MNL model.

107Efficient Designs

© 2012 ChoiceMetrics

Efficient designs are in general not orthogonal. However, it is possible to generate an efficient
orthogonal design by adding the orth property as described before. Ngene will then search for the
most efficient design that is orthogonal.

Although efficient designs typically require less choice situations than an orthogonal design, the
number of choice situations may still be too large to give to a single respondent. Similar to creating
blocks for orthogonal designs, add the block property to the syntax, and Ngene will block the design
automatically based on the minimum correlation principle. Basically, it will try to minimize the
average correlation between the blocking column and all other design columns.

It is possible that one would like to have a no-choice alternative (the option of not choosing any of
the other alternatives). This alternative does not have a utility function (so the utility is basically set
to zero for that alternative), but it does affect the choice probabilities and therefore the efficiency of
the design. In case one would like to add a no-choice alternative, this alternative should be added in
the alts property, but not have a utility function in the model property. Ngene automatically
recognizes the alternative without a utility function as a no-choice alternative.

The definition of the model property is different for each of the model types, hence they will be
discussed separately in the following.

7.2.2 Designs for estimating multinomial logit models

The multinomial logit (MNL) model is the basic logit model with fixed parameters. Prior parameters
need to be specified for each fixed parameter, and this is done by adding them between square
brackets in the model property behind the parameter names. For example, the syntax may look as
follows:

Design
;alts = alt1, alt2
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b1[-0.2] + b2[1.2] * A[0,1,2] + b3[2.5] * B[0,1] /
U(alt2) = b2 * A + b4[1.1] * C[2,4,6,8] $

When creating an efficient design, each parameter must have a prior value associated with it. For
generic parameters like ‘b2’, the prior value should only be defined the first time the parameter
appears and should not be defined again when the same parameter appears in another utility
function.

Attribute levels can be specified in an alternative way, with a lower and upper bound, and a step
size. These three values are specified in sequence inside the square brackets, separated by a
colon. Using this syntax, the above example would be:

Design
;alts = alt1, alt2
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b1[-0.2] + b2[1.2] * A[0:2:1] + b3[2.5] * B[0:1:1] /
U(alt2) = b2 * A + b4[1.1] * C[2:8:2] $

108 Ngene User Manual

© 2012 ChoiceMetrics

Figure 7.5 shows example output based on a design generated using the above syntax. In
presenting the output for efficient designs, Ngene always first presents information on the efficiency
measures related to the design, independent of what measure was used during optimization of the
design. In the example output, the generated design has a Dp-error of 1.42, Ap-error of 4.12, a Bp-
error of 33.12 percent and an Sp-error of 6.18(suggesting that given the priors assumed, the design
would need to be replicated at least 6.18 times for all parameters to be statistically significant with a
 t-ratio of at least 1.96). Note that these values assume that the prior parameters assumed are
correct.

Note that in calculating the efficiency measures, Ngene ignores any constants. The constant is
typically ignored in these kind of studies, since usually the constant is of less importance to the
researcher (indeed the constant is often considered meaningless in SC experiments as it is based
on the choice shares over the hypothetical situations, S). Further, in many SC studies, it is often the
ratios of two parameter values (e.g., to derive willingness to pay) that is of primary importance.
Therefore, in calculating the efficiency for each design, we ignore the row and column for the
constant in the AVC matrix when computing the efficiency statistic. If one wishes to include the
constant in these calculations, then the con property can be added to the syntax. That is,

;con

Underneath the efficiency measures, more detailed information related to the Sp -error is presented
for each (non-constant) parameter estimate of the design. The parameter estimate priors and Sp -
errors for each of the parameters are presented here, as too are the expected t-ratios for each of the
parameters assuming only a single replication of the design were to be used in practice. The last
item of output presented automatically is the design itself.

109Efficient Designs

© 2012 ChoiceMetrics

Figure 7.5: MNL design output

Additional output is also available by clicking on the check boxes located in the tree structure at the
left of the output screen. Figure 7.6 shows the additional output available for designs generated
assuming an MNL model formulation. Available to the researcher are the Fisher Information matrix,
AVC matrix, the utility estimates and choice probabilities for each choice task contained within the
design. The Fisher Information and AVC matrices are generated assuming a single design
replication. The utilities and choice probabilities are often useful for diagnostic purposes.
Examination of these outputs will often allow the user to observe if one alternative will tend to
dominate others within the design, in which case large efficiency measures (and/or small B-error
values) will generally be observed indicating difficulty in locating an efficient design. In the example
output shown in Figure 7.6, examination of the choice probabilities shows that the second alternative
will tend to dominate the first in most (but not all) choice situations. Should other attribute levels be
used or different priors be assumed, then it might be possible to locate a more efficient design. Note

110 Ngene User Manual

© 2012 ChoiceMetrics

however that assuming a different set of priors in generating the design might not be ideal given that
the priors assumed generally have to come from some other source (such as a pilot survey), and
hence disregarding these and simply assuming another set of priors for the sake of statistical
efficiency may have no scientifically valid basis.

Although not shown here, Ngene can calculate the correlation structure of the design in the same
manner as with orthogonal designs. The various correlation measures are located in the tree
structure to the left of the design output under the ‘Design’ button. Clicking on any of the correlation
click boxes will have Ngene generate and show the requested correlation structure for the design.

111Efficient Designs

© 2012 ChoiceMetrics

Figure 7.6: Additional MNL design output

7.2.3 Designs for estimating random parameters models

It is strongly advised to first generate a non-Bayesian design with the MNL model. This allows
problems to be much more quickly identified. For example, the priors might lead to extreme
choice probabilities of zero and one, and may need to be adjusted. An MNL design should always
be generated quickly, so if it is not, then you know there is a problem with your design
specification. Random parameter and Bayesian models are much slower to generate, and it may
not be clear for some time that there is a problem with the design. A good principle to follow is:
start simple, and gradually add complexity to the design.

In the mixed multinomial logit (MMNL) model, the parameters are assumed to be random instead of
fixed as in the MNL model. Therefore, the parameters in the model property need to be defined as
distributions. For example, suppose that parameter ‘b2’ is assumed to be normally distributed with a
mean of 1.2 and a standard deviation of 0.3 (1.2 and 0.3 are now prior parameter values for the
random parameter distribution), and suppose that ‘b4’ is uniformly distributed between 0.5 and 1.5,
then the following syntax could be used:

? Cross sectional RP model
Design
;alts = alt1, alt2
;rows = 12
;eff = (rp,d)
;model:
U(alt1) = b1[-0.2] + b2[n,1.2,0.3] * A[0,1,2] + b3[2.5] * B[0,1]
 /
U(alt2) = b2 * A + b4[u,0.5,1.5] * C
[2,4,6,8] $

Hence, [n,1.2,0.3] indicates a normal distribution with mean 1.2 and standard deviation 0.3, while
[u,0.5,1.5] indicates a uniform distribution between 0.5 and 1.5.

For generating designs for the MMNL model, simulations are needed for evaluating the design over
the complete parameter distributions. This is done by taking draws from the parameter distribution.
The number of draws is determined by setting the rdraws (random draws) property. For taking 1,000
(pseudo) random draws, the following is added to the syntax:

;rdraws = random(1000)

Not only are pseudo random draws available, but also more intelligent sequences can be used, such
as Halton sequences, Sobol sequences, or modified latin hybercube sampling (MLHS). These may
be used by adding for example:

;rdraws = halton(50)
;rdraws = sobol(100)
;rdraws = mlhs(80)

Another approach is to use Gaussian quadrature. For this method, the number of abscissas per
parameter is input. In the model described above, there are two random parameters. If one uses 5

112 Ngene User Manual

© 2012 ChoiceMetrics

abscissas per parameter, the total number of Gaussian draws will be 5×5 = 25 draws. In the syntax
this would be:

;rdraws = gauss(5)

In case of few random parameters, Gaussian quadrature is extremely efficient. For higher numbers of
random parameters, the number of Gaussian draws increases exponentially. For 5 random
parameters with 5 abscissas each, this would yield 55 = 3,125 Gaussian draws. It is possible to set
different numbers of abscissas per random parameter, for example:

;rdraws = gauss(3,3,2,4,5)

where the first two parameters have 3 abscissas, the third parameter 2 abscissas, etc. (in order of
appearance). The total number of Gaussian draws would now be 3×3×2×4×5 = 360 draws.

In the traditional (cross-sectional) MMNL model the observations from the choice situations are
treated as independent. However, in SC experiments these choice observations are not independent
as they are faced by the same respondent. Ngene has a unique feature in which this dependency
can be taken into account by considering the panel MMNL model. Instead of model type ‘rp’ one can
use ‘rppanel’ in the syntax. The evaluation of the design efficiency for the panel MMNL model is
much more complex and time consuming than for the cross-sectional MMNL model as it requires
sampling of respondents. The number of sampled (simulated) respondents is set by the rep property.
The higher this value, the more accurate the computations, but the higher the computation time. The
following two properties ensure that the panel MMNL model is used:

;eff = (rppanel,d)
;rep = 500

Thus the complete syntax for a MMNL design allowing for the pseudo panel nature of the SC design
would look:

? Panel RP model
Design
;alts = alt1, alt2
;rows = 12
;eff = (rppanel,d)
;rep = 500
;rdraws = halton(250)
;model:
U(alt1) = b1[-0.2] + b2[n,1.2,0.3] * A[0,1,2] + b3[2.5] * B[0,1]
 /
U(alt2) = b2 * A + b4[u,0.5,1.5] * C
[2,4,6,8] $

The type of output generated for a MMNL design (cross-sectional and panel formulation) is identical
to that for MNL designs discussed earlier. That is, Ngene will first display the overall efficiency
measures of the design followed by S-error measures for each of the parameter estimates (including
any standard deviation or spread parameters), after which the design itself is presented (see Figure
7.7 which shows a design generated using the above syntax).

113Efficient Designs

© 2012 ChoiceMetrics

Figure 7.7: MMNL design output

Unlike the output for MNL designs however, when a MMNL design is requested, Ngene will
automatically generate additional outputs for each of the normally reported efficiency measures
assuming other model types. This is shown in Figure 7.8 where Ngene reports the efficiency outputs
for the same design given in Figure 7.7, assuming MNL, MMNL cross sectional (RP) and MMNL
panel (RP Panel) model formulations. In generating the MNL model outputs, the means of any
random parameter distributions are assumed as the prior parameter inputs. Note that whilst these
values are both calculated and reported for the different model types, only the efficiency measure for
the model type requested in the eff property is used in the design optimization routine.

Finally, as briefly mentioned earlier, calculation of the Fisher Information matrix for the panel version
of designs generated for a MMNL model requires the generation of a sample of respondents. This
greatly increases the time required to construct such a design compared to designs generated
assuming other model types. Ngene allows the user to observe the sample generated for these
calculations (but only for panel MMNL designs) by clicking on the sample tick box within the RP
panel tree structure. An example sample is shown in Figure 7.8. The simulated sample of
respondents is set up in such a way that each row of data represents an alternative, with multiple
rows representing a choice task in the design. The parameter estimates in the sample for random
parameters are drawn from the prior parameter estimates provided by the user in generating the
design using Halton sequences. By using Halton sequences, the parameter estimates for each
simulated respondent is kept constant over multiple design generation iterations. Similarly, the EV1
error term is drawn using Halton sequences. The choice variable is constructed based on the
alternative that is observed to have the highest utility within each choice task.

114 Ngene User Manual

© 2012 ChoiceMetrics

Figure 7.8: MMNL design output by model type

115Efficient Designs

© 2012 ChoiceMetrics

Figure 7.9: Panel MMNL simulated sample

7.2.4 Designs for estimating error components models

In the error components (EC) model, the user can specifically add error terms (which are normally
distributed with mean zero and a given standard deviation) into the utility functions in the model
property. Prior values for the standard deviation need to be provided. The eff property will need to
reflect the fact that an error component model is being used, setting the model type (the first
argument of the eff property) to ‘ec’. In the utility functions, an error component will be recognized by
putting ‘ec’ as a first argument in the square brackets following the parameter name, e.g. ‘s1[ec,0.2]’
indicates that parameter ‘s1’ represents a normal distributed error component with mean zero and
standard deviation 0.2. Multiple error components can be used, for example:

;eff = (ec,d)
;model:
U(alt1) = b1[-0.2] + b2[1.2] * A[0,1,2] + s1[ec,0.2] /
U(alt2) = b3[0.9] + b3[0.8] * B[2,3,4,5] + s1 + s2[ec,0.5] /
U(alt3) = b4[1.5] * C[1,2,3] + s2

As in the MMNL model, draws need to be taken from the random error components, such that the
rdraws property needs to be set in a similar fashion.

Similar to designs for the MMNL model, it is also possible to generate a panel version of error
components type designs. This also requires the generation of a sample of simulated respondents
which is handled in the exact same manner as with MMNL designs, as shown in the following
syntax.

;eff = (ecpanel,d)
;rep = 500

116 Ngene User Manual

© 2012 ChoiceMetrics

An example set of syntax for an EC design allowing for the pseudo panel nature of the SC design
might therefore look as follows.

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (ecpanel,d)
;rep = 500
;rdraws = halton(250)
;model:
U(alt1) = b1[-0.2] + b2[1.2] * A[0,1,2] + s1[ec,0.2] /
U(alt2) = b3[0.9] + b3[0.8] * B[2,3,4,5] + s1 + s2[ec,0.5] /
U(alt3) = b4[1.5] * C[1,2,3] + s2 $

The output for EC designs is exactly the same as that reported for random parameter logits models.
As with MMNL designs, Ngene will report the efficiency measures for the MNL, EC cross sectional,
and EC panel models whenever an EC cross sectional or panel design is requested. Also, as with
panel MMNL designs, panel EC designs require the simulation of a sample of respondents. The
simulated sample may be viewed in a manner similar to that when dealing with panel MMNL designs
(see Section 7.2.3).

7.2.5 Designs for estimating combined random parameters and error components

In some cases, the analyst may wish to generate a design that contains both random parameters
and error components. Setting the model type to ‘rpec’ lets Ngene know that both are used in the
utility functions. In the following example, ‘b2’ and ‘b4’ are random parameters, while ‘s1’ and ‘s2’ are
error components:

Design
;eff = (rpec,d)
;model:
U(alt1) = b1[-0.2] + b2[n,1.2,0.3] * A[0,1,2] + s1[ec,0.2]
 /
U(alt2) = b3[0.9] + b3[0.8] * B[2,3,4,5] + s1 + s2
[ec,0.5] /
U(alt3) = b4[u, 0.2,1.5] * C[1,2,3] + s2

Similar to ‘rp’, ‘ec’ and ‘rpec’ can be used in a panel approach. Setting the model type to ‘ecpanel’ or
‘rpecpanel’ and setting the rep property will tell Ngene to create a sample of respondents for doing
the computations for the panel approach. A full example of syntax is provided below.

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (rpecpanel,d)
;rep = 500
;rdraws = halton(250)
;model:
U(alt1) = b1[-0.2] + b2[n,1.2,0.3] * A[0,1,2] + s1[ec,0.2]
 /
U(alt2) = b3[0.9] + b3[0.8] * B[2,3,4,5] + s1 + s2

117Efficient Designs

© 2012 ChoiceMetrics

[ec,0.5] /
U(alt3) = b4[u,0.2,1.5] * C[1,2,3] + s2
 $

In case the model specification contains error components, but the eff property indicates an ‘rp’
model, then the error components will be ignored in the efficiency calculations. Similarly, if the
model specification contains random parameters, but the model type is given as ‘ec’ in the eff
property, the random parameters will be assumed fixed (i.e., set to the mean value of the
distribution) when optimizing the design.

Once more, the output for this type of model is similar to that described earlier for the MMNL and EC
models, the main difference being that efficiency measures may now be obtained for all model types,
not just for MNL or MMNL or EC models. Also, as previously described, simulated samples may be
generated for the MMNL and error component panel models.

7.2.6 Reporting efficiency measures for different model types

In the previous sections, the example syntax assumed that the utility specifications matched
perfectly the model type described in the eff property. For example, in using

b2[n,1.2,0.3]

to specify a random parameter, we used either

;eff = (rppanel,d)

or

;eff = (rp,d)

Similarly, when an error component was included in the utility function, the eff property referred to
either a cross sectional or panel EC model form. In Ngene, it is possible however to specify one type
of model form in the set of utility functions but optimize on another type of model in the eff property.
The syntax below demonstrates one such case where the utility specification assumes random
parameters for b2 and b4, but the design is optimized assuming an MNL model (with fixed
parameters).

Design
;alts = alt1, alt2
;rows = 12
;eff = (mnl,d)
;rep = 500
;rdraws = halton(250)
;model:
U(alt1) = b1[-0.2] + b2[n,1.2,0.3] * A[0,1,2] + b3[2.5] * B[0,1]
 /
U(alt2) = b2 * A + b4[u,0.5,1.5] * C
[2,4,6,8] $

In cases such as this, Ngene will optimize on the model type requested in the eff property but will
also report the efficiency measure outcomes for model forms outlined in the utility specifications.

118 Ngene User Manual

© 2012 ChoiceMetrics

When optimized assuming an MNL model, Ngene will assume the average value of any random
parameter distribution as being the true prior value and ignore any error components. For designs
generated assuming a random parameter type model, any error component will be ignored in the
optimization routine. Similarly, for EC designs, any random parameter estimate located in the utility
functions will also be ignored in optimization of the design. The benefit of allowing different forms of
utility specifications from the efficiency measure being optimized is that the user can easily examine
how the design is likely to perform assuming a different model type than that for which it was
optimized for. We discuss a similar concept in Section 7.4 when we discuss the use of model
averaging in the design generation process.

7.2.7 Designs with no choice alternatives

The question as to whether or not to include a ‘status quo’ alternative (sometimes referred to as a
‘no choice’ or ‘opt out’ alternative in various literatures) in SC studies has been widely debated in
many discipline areas. Within the literature, significant differences in results of SC experiments with
and without the presence of status quo alternatives have been found (see e.g., Dhar and Simonson
2003), and in general, the recommendation has been that status quo alternatives should be used in
such experiments (e.g., Louviere et al. 2000; Adamowicz and Boxall 2001; Bennett and Blamey
2001; Bateman et al. 2003). These recommendations have grown from a number of arguments that
have been put forward for the use of status quo alternatives. These arguments include that the
inclusion of a status quo alternative leads to an increase in the realism of SC tasks (see e.g.,
Louviere and Woodworth 1983; Batsell and Louviere 1991; Carson et al. 1994), an increase in the
external validity of welfare estimates derived from SC experiments (see e.g., Adamozicz and Boxall
2001) and an improvement in the statistical efficiency of parameters estimated from discrete choice
models (see e.g., Louviere et al. 2000; Anderson and Wiley 1992). For a further overview of these
arguments, see e.g., Kontoleon and Yabe (2003) or Dhar and Simpson (2003).

Traditionally, where used, the no choice or status quo alternative has been represented in SC data
as either being an alternative labelled as ‘none’ and devoid of any attribute levels or alternatively as
an option labelled as ‘your current alternative’ with attribute levels given simply as 'at the current
level' (see e.g., Tversky and Shafir 1992; Dhar 1997; Kontoleon and Yabe 2003). Whilst both
versions of the status quo alternative have different implications given different interpretational
meanings (i.e., the ‘none’ option represents a complete opt-out of all non-status quo alternatives by
the respondent whereas the 'your current alternative' option represents the choice of an already
experienced or known alternative and hence is not strictly a no choice alternative), it is the impact
upon respondents of including such alternatives in SC experiments that requires careful
consideration. Where a ‘none’ option is used, there exists little possibility of interpretation
differences in terms of what the alternative means to respondents as the choice of selecting none of
the other alternatives presented within a choice task should have the same meaning for the entire
sample. Where the status quo alternative is described simply as 'your current alternative' however,
interpretation differences may arise as different respondents may have different current alternatives,
or in the case where all respondents face the same status quo alternative, may possess different
perceptions as to the current attribute levels that that alternative possesses.

Independent of the form of the no choice alternative, one or more no choice alternatives can be
accounted for in generating a design by naming an alternative in the alts property but not specifying
a utility function after the model property. Note that this can be done for any model type, and can
also be used when generating orthogonal designs. An example of syntax for an MNL design allowing
for a no choice alternative is given below.

119Efficient Designs

© 2012 ChoiceMetrics

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b11[-0.2] + b2[1.2] * A[0,1,2] + b3[2.5] * B[0,1] /
U(alt2) = b12[0.3] + b2 * A + b4[1.1] * C[2,4,6,8] $

In generating such designs, Ngene will assume that the utility for a no choice alternative is zero and
that no attribute levels are attached to the alternative. We therefore make a distinction between this
form of design and one where the no choice alternative does indeed have attribute levels. For
example, many designs employ a form of status quo option, which we term reference alternative,
which is similar to the 'at the current level' status quo alternative format but which involves the
capturing and often relation back to respondents as part of SC choice tasks of the (perceived)
attribute levels of respondent specific currently (or recently) experienced real life alternatives. That is,
respondents are asked what their perceptions are of the attribute levels for a current (usually chosen)
real world alternative, and these are used as an alternative in the choice tasks that they view. We
discuss this specific form of design in Section 8.3.

7.2.8 Designs with dummy and effects coded attributes

Rather than estimate a single parameter for each attribute (assuming a linear relationship between
changes in the attribute and utility), one can also estimate multiple unique parameters associated
with l-1 of an attribute's levels (suggesting that different levels have a different impact upon utility, and
hence assuming a nonlinear relationship). Typically, such nonlinear relationships are represented
using one of two data coding structures, these being dummy coding and effects coding.

To demonstrate, consider an example where an attribute representing color can take on three levels;
blue, red and yellow. Within the utility specification, this attribute might be represented as follows.

U(alt1) = color[0.17] * color[0,1,2]

Graphically, the marginal utility for this color attribute may be represented as per Figure 7.10. In this
case, the marginal utility difference between ‘blue’ and 'red', is the same as the difference between
the marginal utilities for ‘red’ and ‘yellow’. This is because a single parameter has been assigned to
the attribute and thus has the same impact upon utility as one moves from any one level to the next
adjacent level.

120 Ngene User Manual

© 2012 ChoiceMetrics

Figure 7.10: Linear relationship between color and utility

Rather than assume a linear relationship between the attribute levels of an attribute and utility,
dummy and effects coding requires that the analyst create unique variables for up to l-1 levels of an
attribute, each of which may then be associated with distinct parameter estimates. As such, rather
than having a single parameter estimate, the analyst now has l-1 parameter estimates, each of

which represents the marginal utility associated with their corresponding attribute levels, with the Lth

level having a marginal utility set to zero.

Dummy coding utilizes a series of 0s and 1s to relate each attribute level of the original variable to
the newly created columns. Table 7.2 demonstrates the dummy coding concept for the color
example given above. First, the analyst creates l-1 columns corresponding in this case to the
creation of 2 additional columns (3 levels 1 = 2). In this example, we relate the two new columns to
the colors ‘blue’ and ‘red’. Note that it does not matter which attribute levels one creates the new
columns for, as discrete choice models produce estimates of relative utility, and hence, any order
will produce the same result. Next, every time an attribute level appears in the design (data), the
column corresponding to that level receives a value of 1, otherwise it receives a value of 0. For the
attribute level with no corresponding column (in Table 7.2 this is represented by the color ‘yellow’),
for all constructed columns it will take the value of 0 (i.e., ‘blue’ and ‘red’). In the design generation
(or estimation process), the analyst now estimates parameters for the newly created l-1 dummy
variables.

Table 7.2: Example dummy code

Figure 7.11 demonstrates the marginal utilities that could arise from the dummy coding exercise
presented in Table 7.2. Using only the newly created ‘blue’ and ‘red’ dummy variables, two unique
parameter estimates will be obtained, one for each. The ‘yellow’ level, not having a dummy variable
column will automatically have a marginal utility of zero (hence the ‘blue’ and ‘red’ dummy variable
parameters will be relative to this ‘base’ level).

121Efficient Designs

© 2012 ChoiceMetrics

Figure 7.11: Nonlinear relationship between color and utility represented using dummy
codes

Dummy coding in Ngene is performed via minor modifications to how a parameter is handled in the
model utility functions. Firstly, in specifying the parameter value, the analyst will need to add the
syntax .dummy after naming the parameter, such as

<parameter name>.dummy

Next, the analyst needs to provide l-1 unique parameter priors associated with the l-1 newly created
dummy variables. This is done by separating l-1 parameter priors using a | symbol. Note that if the
analyst does not specify the attribute levels for a dummy coded variable, Ngene will use the levels
0,1,…, L when presenting the design. Where attribute levels have been specified, Ngene will report
these values when presenting the final design despite using the dummy coded variables in the
design generation process. Example syntax is presented below for the color example, where the first
color level has been assigned a prior parameter value of -0.15, the second 0.45 and the final omitted
level, a value of zero.

U(alt1) = color.dummy[-0.15|0.45] * color

or

U(alt1) = color.dummy[-0.15|0.45] * color[0,1,2]

Effects coding is similar to dummy coding in that it allows the analyst to detect nonlinearities in the
marginal utilities for levels of attributes rather than assuming a linear relationship between an
attributes levels and overall utility. However, effects coding offers a number of theoretical advantages
over dummy coding. In particular, if two or more attributes are dummy coded, then each will have its
own ‘base’ level where all dummy coded columns are set at zero. For example, if both color and
gender are dummy coded, then the marginal utility for ‘yellow’ will have the same marginal utility as
say ‘male’ (assuming male = 0). In this way, the ‘base’ levels of several dummy coded variables will
be perfectly confounded with each other, or a model constant if one is present.

Effects coding overcomes this by changing the base level in the coding structure in such a way as to

122 Ngene User Manual

© 2012 ChoiceMetrics

allow for a unique estimate for that level. This is done by changing 0 to -1 in each column for the
base attribute level, as shown in Table 7.3. In this way, the base level will not be equal to zero, but
rather will be equal to minus the sum of the remaining parameter estimates. This is shown both in
Equation (7.19) and Figure 7.12.

Table 7.3: Example dummy code

β
yellow

 = -β
red

 - β
blue (7.19)

Effects coding and dummy coding should provide the same results in terms of the estimated utilities
for each alternative as well as producing the same choice probabilities. Differences however will exist
in the parameter priors (estimates) for the model constants as well as between the dummy or effects
coded variables. Indeed, the effects coded priors (estimates) should be similar to the dummy coded
priors (estimates) up to some scale.

Figure 7.12: Nonlinear relationship between color and utility represented using effects
codes

In Ngene, the process to specify effects codes is similar to that for specifying dummy codes. The
analyst must still specify l-1 parameter priors, however rather than use the syntax .dummy, .effects
is used instead. This is shown in the following example. As with dummy codes, the analyst need not
specify the levels of the attribute (in which case Ngene will report the levels as 0,1,…L in the design
output), however if levels are provided by the analyst, these levels will be used in any output
provided. Also, just like the dummy coding, the Ngene automatically codes the last attribute level as
the base.

U(alt1) = color.effects[-0.36|0.4] * color[0,1,2]

An example syntax shown dummy codes is given below.

123Efficient Designs

© 2012 ChoiceMetrics

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b11[-0.2] + b2.dummy[1.2|0.8] * A[0,1,2] + b3[2.5] * B[0,1]
 /
U(alt2) = b12[0.3] + b2 * A + b4[0.4] * C
[2,4,6,8] $

Output showing a design generated using the above syntax is given in Figure 7.13. Note that in
presenting the design, Ngene does not present the dummy or effects coded columns but rather the
levels of the design as if they were not dummy or effects coded. This is because, even though the
optimization routine treated these variables as dummy or effects coded, conversion of the design into
a choice survey is best done if the attributes are viewed as per those given in Figure 7.13. Note once
more that even though the design is represented as if it were treated as linear in the attributes, the
optimization routine does indeed treat the design as if it were dummy or effects coded. This can be
confirmed by examining either the Fisher Information matrix or AVC matrix, where additional rows
and columns will be present for each dummy or effects coded prior parameter. This can be clearly
seen in Figure 7.13 where the AVC matrix now has additional rows and columns for the two dummy
priors assumed in the syntax.

124 Ngene User Manual

© 2012 ChoiceMetrics

Figure 7.13: Example Ngene design output with a dummy coded variable

Care should be taken when using dummy or effects codes in generating designs however. A
commonly observed problem occurs when a dummy or effects coded variable takes the value 1 over
the entire design only a few times. For example, if a variable is coded 0,1,2,4 and the design is
generated with 16 choice situations, then each attribute level will appear four times over the design. If
the variable is now dummy coded however, then the value 1 will appear only four times for each
dummy coded variable with the remainder of the variable taking the value of 0 (i.e., the variable will
have four 1s and 12 0s over the 16 choice situations). In this way, the design can become quite
sparse in terms of non-zero values, the result of which will either be an inefficient design, or a design
with a near singular Fisher Information matrix meaning that it cannot be inverted to obtain the
design’s AVC matrix.

125Efficient Designs

© 2012 ChoiceMetrics

7.2.9 Efficient designs with interactions

Previously, in Section 6.2.4, interactions were introduced in the context of orthogonal designs.
Interactions can also be specified for efficient designs. In fact, Ngene is not limited to two-way
interactions. It can handle interactions of any order.

The two-way interaction is the most basic form of interaction in Ngene. As with two-way interactions
for orthogonal designs, the syntax is specified by introducing a parameter, and multiplying that
parameter by two attributes that have already been specified. The key difference is that for efficient
designs, a parameter prior would typically be specified for the interaction parameter. An example is
provided below, where an interaction parameter i1, with a prior value of 0.1, is introduced in the first
alternative, for the interaction of attributes A and B.

Design
;alts = alt1, alt2
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b1[-0.2] + b2[0.7] * A[0,1,2] + b3[0.8] * B[0,1] + i1[0.1]
* A * B /
U(alt2) = b2 * A + b4[0.2] * C[2,4,6,8]
 $

The interaction parameter will be reported in the Fisher and AVC matrices, and be included in the
calculation of the efficiency measures. The design reported will include two columns for the
attributes, as well as an additional column for the interaction (even though this typically would not be
shown in a survey).

To specify interactions of a higher order, simply multiply the parameter by more attributes. In the
example below, a new attribute, D, has been introduced, and included in the interaction, resulting in
a three-way interaction.

Design
;alts = alt1, alt2
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b1[-0.2] + b2[0.7] * A[0,1,2] + b3[0.8] * B[0,1] + b5
[0.05] * D[1,2] + i1[0.1] * A * B * D /
U(alt2) = b2 * A + b4[0.2] * C[2,4,6,8]
 $

In some situations, an attribute is only important in an interaction term, not as a main effect. As of
version 1.1, Ngene allows an attribute to be introduced in the interaction, without first being specified
with a parameter for a main effect. The attribute will still be reported in its own column when the
design levels are reported, however the level will only be used in the interaction, and so no main
effect parameter will be included in the Fisher and AVC matrices. The example below is a
modification of the previous example, where the attribute D has been removed as a main effect, and
only included in the three-way interaction.

Design
;alts = alt1, alt2
;rows = 12

126 Ngene User Manual

© 2012 ChoiceMetrics

;eff = (mnl,d)
;model:
U(alt1) = b1[-0.2] + b2[0.7] * A[0,1,2] + b3[0.8] * B[0,1] + i1[0.1]
* A * B * D[1,2] /
U(alt2) = b2 * A + b4[0.2] * C[2,4,6,8]
 $

Finally, you may wish to specify an interaction with a dummy or effects coded attribute. In this
context, it probably does not make sense to treat the dummy or effects coded attribute as
continuous in the interaction. As of version 1.1, Ngene allows an interaction to be specified with a
specific attribute level, rather than all possible levels of an attribute. When referencing an existing
dummy or effects coded attribute in the interaction, use the syntax <attribute>.dummy[<exact

level of attribute>]. This will evaluate to 1 if the attribute takes on the attribute level

specified, or 0 otherwise. This is best demonstrated using the example below.

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b11[-0.2] + b2.dummy[-0.6|-0.35] * A[1,2,3] + b3[0.8] * B[1,2]
 + i1[0.1] * A.dummy[2] * B /
U(alt2) = b12[0.3] + b2 * A + b4[0.2] * C
[2,4,6,8] $

Here, attribute A is dummy coded, with a prior of -0.6 for level 1 and -0.35 for level 2, with level 3
forming the base. In the interaction, A.dummy[2] will evaluate to 1 if attribute A is 2. Note that in

this example, levels were specified for attribute A (A[1,2,3]), even though each level will be coded

as 0 or 1 internally when evaluating the dummy coded main effect. If the levels were not explicitly
specified, they would default to [0,1,2], and these levels would need to be referenced in the

interaction term. If each level of a dummy or effects coded attribute needs to be interacted with
another attribute, then one interaction needs to be added for each level.

Note that dummy coding of an attribute level in an interaction does not require that that attribute's
main effect be dummy or effects coded. The example below is the same as above, except that in the
interaction, level 2 of attribute B is dummy coded, even though it was not for the main effect.

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b11[-0.2] + b2.dummy[-0.6|-0.35] * A[1,2,3] + b3[0.8] * B[1,2]
 + i1[0.1] * A.dummy[2] * B.dummy[1] /
U(alt2) = b12[0.3] + b2 * A + b4[0.2] * C
[2,4,6,8] $

127Efficient Designs

© 2012 ChoiceMetrics

7.3 Bayesian efficient designs

It is strongly advised to first generate a non-Bayesian design with the MNL model. This allows
problems to be much more quickly identified. For example, the priors might lead to extreme
choice probabilities of zero and one, and may need to be adjusted. An MNL design should always
be generated quickly, so if it is not, then you know there is a problem with your design
specification. Random parameter and Bayesian models are much slower to generate, and it may
not be clear for some time that there is a problem with the design. A good principle to follow is:
start simple, and gradually add complexity to the design.

In the previously discussed efficient designs the parameter prior values are assumed known and
fixed. Since there is always some uncertainty about the true parameter values, these priors are
never known exactly, but only by approximation. In order to take into account the uncertainty about
the parameter priors, Bayesian efficient designs have been developed which make use of random
priors instead of fixed priors, described by random distributions. All previously described model
types can be used in conjunction with random priors. All that is needed is to substitute the fixed
prior values with random distributions in the model property. We will illustrate this using the example
for the MNL and the MMNL models.

In the MNL model, assume that the prior value for parameter ‘b3’ is uncertain and that the prior
distribution is a normal distribution with mean 0.5 and standard deviation 0.2. Then instead of having
[0.5] as a fixed prior for ‘b3’ it is now a random prior denoted by [(n,0.5,0.2)]. Note that the round
brackets within which the distribution is placed distinguishes a Bayesian parameter distribution from
a random parameter distribution. That is, the round brackets around the prior value indicate that it is
a Bayesian prior, which is not to be confused with a random parameter.

;eff = (mnl,d,mean)
;model:
U(alt1) = b1[-0.2] + b2[1.2] * A[0,1,2] + b3[(n,0.5,0.2)] * B[0,1] /
U(alt2) = b2 * A + b4[1.1] * C[0,1,2,3]

Observe that now in the efficiency method eff the term ‘mean’ is added as a third argument. When
computing the Bayesian D-error over different random draws, one can choose to take the mean
value, the minimum or maximum value (‘min’ or ‘max’), or the median value (‘median’) of the
efficiency measure being optimised. An additional argument that can be used is ‘fixed’, in which
fixed priors values are assumed (set to the mean values of the distribution) instead of Bayesian prior
distributions.

In the MMNL model, the random parameters have prior values to describe the distribution, and these
prior values can again be Bayesian by assuming a prior distribution. For example, assume that the
‘b2’ parameter is random, following a normal distribution with mean 1.2 and standard deviation 0.3.
These two values are not known with certainty, so we could assume prior distributions for them, e.g.,
a normal distribution for the prior mean, and a uniform distribution for the prior standard deviation:

;eff = (rp,d,median)
;model:
U(alt1) = b1[-0.2] + b2[n,(n,1.2,0.2),(u,0.1,0.3)] * A[0,1,2] + b3[0.5]
* B[0,1] /
U(alt2) = b2 * A + b4[0.4]
* C[0,1,2,3]

In this case, the mean of the random parameter ‘b2’ follows a Bayesian normal distribution with

128 Ngene User Manual

© 2012 ChoiceMetrics

mean 1.2 and standard deviation 0.2, while the standard deviation of this random parameter follows a
uniform distribution from 0 to 0.3. Note that negative standard deviations should not occur, hence the
Bayesian distribution for the standard deviation prior should be chosen with care.

Similarly, Bayesian prior parameter distributions can be used for EC models. For EC models
however, the error component term represents a normally distributed random parameter with a mean
of zero and an estimated standard deviation parameter. As such, only the Bayesian prior parameter
distribution for the standard deviation parameter of the error component need be established. This is
shown in the following syntax.

;eff = (ecpanel,s,mean)
;model:
U(alt1) = b11[-0.2] + b2[1.2] * A[0,1,2] + b3[(n,0.5,0.2)] * B[0,1] +
s1[ec,(u,0.8,1.2)] /
U(alt2) = b12[-0.3] + b2 * A + b4[1.1] * C[0,1,2,3]
+ s1 /
U(alt2) = b2 * A + b5[0.8] * D[0,1,2,3]

Similar to the MMNL model, for the Bayesian efficient designs several random draws have to be
taken from the Bayesian random distributions. This is defined by the property bdraws (Bayesian
draws) and can have the same arguments as the rdraws property, e.g.,

;bdraws = halton(100)
;bdraws = gauss(3,4)

Note that generating designs for the MMNL or EC model with Bayesian priors can be very
computationally intensive, even more so if a panel approach is applied. Therefore, the number of
random parameters, error components, and Bayesian priors should preferably be limited.

Example syntax demonstrating the use of fixed parameter priors, Bayesian distributions for fixed
parameters, Bayesian distributions for random parameter population moments and Bayesian prior
parameter distributions for error components is given below.

Design
;alts = alt1, alt2,alt3
;rows = 12
;eff = (rpecpanel,d,mean)
;rep = 250
;rdraws = gauss(2)
;bdraws = gauss(2)
;model:
U(alt1) = b1[-0.2] + b2[n,(n,1.2,0.2),(u,0.1,0.3)] * A[0,1,2] + b3
[(n,0.5,0.1)] * B[0,1] + s1[ec,(u,0.8,1.2)] /
U(alt2) = b2 * A + b4[0.4]
* C[0,1,2,3] + s1 $

In the above example, the ‘b4’ parameter prior is assumed to be fixed and known with exact
certainty (i.e., 0.4). The ‘b3’ parameter is assumed to be a fixed (i.e., non-random) parameter but
with a Bayesian prior parameter distribution assumed representing some uncertainty as to what the
true population parameter will be once data is collected using the design. The ‘b2’ parameter (which
is also generic across alternatives ‘alt1’ and ‘alt2’) is assumed to be a random parameter with
Bayesian prior parameter distributions for both population moments. The design also allows for an

129Efficient Designs

© 2012 ChoiceMetrics

error component with a standard deviation parameter that is not precisely known a priori and hence
draws values also from a Bayesian prior parameter distribution.

Figure 7.14 shows an example design generated using the above syntax. The output for designs
generated assuming Bayesian prior parameter distributions mirrors that given for designs
constructed assuming fixed parameters with one exception. In addition to the efficiency measures
assuming the fixed priors, Ngene reports the Bayesian efficiency measures used in the optimization
routine. Note that when Gaussian quadrature is used, as in this example, only the mean values for
each of the efficiency measures is reported. This is a byproduct of how Gaussian quadrature is
calculated. When other draw types are used, such as Halton sequences, Ngene will report additional
population moments for each of the efficiency measures, as shown in Figure 7.15.

Figure 7.14: Bayesian efficient design output screen

130 Ngene User Manual

© 2012 ChoiceMetrics

Figure 7.15: Output for non-Gaussian quadrature efficient designs

Finally, note that it is possible to combine Bayesian prior parameter estimates with dummy effects
coded variables. For example,

b1.dummy[(n,-0.7,0.2)|(n,0.4,0.2)|0.8]*A[5,10,15,20]

will assign Bayesian prior parameters for dummy variables associated with levels ‘5’ and ‘10’, and a
fixed prior parameter for the dummy variable associated with the attribute level ‘15’ (the attribute level
‘20’ will be the base level). Similar structures can be applied to effects coded variables.

Ngene also allows the user to optimise the design based on the generalised Asymptotic Fisher

Information matrix (see Section 7.1.5). To do this, the command

;gfim

is added to the syntax. For example, the previous syntax becomes

Design
;alts = alt1, alt2,alt3
;rows = 12
;eff = (rpecpanel,d,mean)
;rep = 250
;gfim
;rdraws = gauss(2)
;bdraws = gauss(2)
;model:
U(alt1) = b1[-0.2] + b2[n,(n,1.2,0.2),(u,0.1,0.3)] * A[0,1,2] + b3
[(n,0.5,0.1)] * B[0,1] + s1[ec,(u,0.8,1.2)] /
U(alt2) = b2 * A + b4[0.4]
* C[0,1,2,3] + s1 $

Note that use of the generalised Asymptotic Fisher Information matrix will not change the output

generated by Ngene, however it will affect the AVC matrix that the design is being optimised for.

7.4 Model averaging of efficient designs

Not only the prior parameter values are uncertain, the precise model type that one is likely to
estimate once data is collected using the design may also be uncertain. In order to provide greater
flexibility, Ngene is capable of evaluating different models at the same time for a single design.
These models may be of a different type, with different utility functions and different priors. Also,

131Efficient Designs

© 2012 ChoiceMetrics

different efficiency measures may be used in conjunction and/or Bayesian and fixed priors can be
taken into account. Since a single design is evaluated for different models, it is important that the
attribute levels specified in each model specification are the same when referring to the same
attribute. Not all attributes have to occur in each model specification, although the design generated
will contain levels for all attributes (attributes not used in the model specification will simply be
ignored when evaluating the efficiency of that model).

As described by Rose et al. (2009), Figure 7.16 schematically demonstrates the model average
approach. Given a single design, different parameter priors associated with different model types will
result in different AVC matrices. Based on these AVC matrices, a single combined AVC matrix can
be constructed from which efficiency measures can be calculated. In constructing the combined
AVC matrix, different weights can be attached to each of the model types assumed, thus giving
different model types different degrees of emphasis in generating the overall design.

Figure 7.16: Model average approach

In Ngene, to describe different models, the model property will be set a number of times, and each
model will be given a name. For example, below in the syntax we define five models and name them
‘M1’, ‘M2’, ‘M3’, ‘M4’, ‘M5’. Note that in separating the model types, no backslash (i.e., /) is used for
the last utility function as would typically be the case.

132 Ngene User Manual

© 2012 ChoiceMetrics

;model(M1):
U(Alt1) = SP1[0.7] + b1[(n,-0.7,0.2)]*A[5,10,15,20] + b2[1.2]*B[0,1,2,3]
+ b3[1.8]*C[0,1,2,3] + b4[-0.6]*D[1,2,3,4] /
U(Alt2) = SP2[0.5] + b1*A + b2*B
 + b3*C + b4*D

;model(M2):
U(Alt1) = SP1[0.6] + b1[(n,-0.6,0.2)]*A[5,10,15,20] + b2[1]*B[0,1,2,3] +
b3[1.5]*C[0,1,2,3] + b4[-0.5]*D[1,2,3,4] + EC[EC,(U,1,2)] /
U(Alt2) = SP2[0.4] + b1*A + b2*B +
b3*C + b4*D + EC

;model(M3):
U(Alt1) = SP1[0.8] + b1[n,(n,-0.8,0.1),(u,0.1,0.2)]*A[5,10,15,20] + b2
[n,1.2,0.2]*B[0,1,2,3] + b3[1.2]*C[0,1,2,3] + b4[-0.7]*D[1,2,3,4] /
U(Alt2) = SP2[0.6] + b1*A + b2*B
 + b3*C + b4*D

;model(M4):
U(Alt1) = SP1[10.4] + b1[n,(n,-1.2,0.1),(u,0.1,0.2)]*A[5,10,15,20] + b2
[n,1.4,0.3]*B[0,1,2,3] + b3[1]*C[0,1,2,3] + b4[-0.6]*D[1,2,3,4] /
U(Alt2) = SP2[10.2] + b1*A +
b2*B + b3*C + b4*D

;model(M5):
U(Alt1) = SP1[0.7] + b1[(n,-0.5,0.2)]*A[5,10,15,20] + b2[1.1]*B[0,1,2,3]
+ b3[1.2]*C[0,1,2,3] + b4[-0.4]*D[1,2,3,4] + EC[EC,(U,2,3)] /
U(Alt2) = SP2[0.5] + b1*A + b2*B
 + b3*C + b4*D + EC

The first model is a MNL model with some Bayesian priors, the second and fourth models are MMNL
models whilst the third and fifth are EC models. Note that the priors for the unique models can be
different, and although not shown here, not all parameters and attributes need appear in all model
utility functions.

When generating an efficient design for multiple models at the same time, a weighted efficiency
measure is computed and optimised on. The eff property has to be changed to compute this
weighted efficiency measure, for example as follows:

;eff = M1(mnl,d,mean) + 2*M2(rppanel,d,mean) + 1.5*M3(ecpanel,d,mean) +
M4(rp,d,mean) + M5(ec,d,mean)

The efficiency in this example consists of the Bayesian D-errors for MNL model ‘M1’, MMNL models
‘M2’ and ‘M4’ and EC models ‘M3’ and ‘M5’. Whilst it is possible to mix different efficiency
measures in this procedure Rose et al. (2009) suggest against this as each measure is based on a
different metric which may cause one efficiency measure to dominate all the others. In the above
example, note how we have suggested multiplying the efficiency measure for model ‘M2’ by two and
‘M3’ by 1.5. In this way, the efficiency measures for these models will be given these amounts of
weight more than the efficiency measures of the remaining models. Note that if no weight is
provided, then the efficiency measure for that model is automatically weighted by one.

In the above example, all alternatives in all model specifications are the same; each model uses
‘alt1’, ‘alt2’, and ‘alt3’. In general, these may be different for each model specification as well. In that

133Efficient Designs

© 2012 ChoiceMetrics

case, the alts property has to be defined for each model, such as:

;alts(M1) = alt1, alt2, alt4
;alts(M2) = alt1, alt3, alt5, alt6

Other properties set in the syntax, such as rdraws, bdraws, and rep, apply to all models specified.

Example syntax using the model averaging approach to generating an efficient design is provided
below.

134 Ngene User Manual

© 2012 ChoiceMetrics

Design
;alts(m1) = alt1, alt2, alt3
;alts(m2) = alt1, alt2, alt3
;alts(m3) = alt1, alt2, alt3
;alts(m4) = alt1, alt2, alt3
;alts(m5) = alt1, alt2, alt3
;rows = 16
;eff = M1(mnl,d,mean) + 2*M2(rppanel,d,mean) + 1.5*M3(ecpanel,d,mean) +
M4(rp,d,mean) + M5(ec,d,mean)
;rdraws=gauss(3)
;bdraws=gauss(3)
;rep=250

;model(M1):
U(Alt1) = SP1[-3.2] + b1[(n,-0.07,0.03)]*A[5,10,15,20] + b2[(n,1.2,0.2)]
*B[0,1,2,3] + b3[1.8]*C[0,1,2,3] + b4[-0.6]*D[1,0] /
U(Alt2) = SP2[-3.4] + b1*A + b2*B
 + b3*C + b4*D

;model(M2):
U(Alt1) = SP1[-2.4] + b1[n,(n,-0.08,0.01),(u,0.02,0.04)]*A[5,10,15,20] +
b2[n,1.2,0.4]*B[0,1,2,3] + b3[1.2]*C[0,1,2,3] + b4[-0.7]*D[1,0] /
U(Alt2) = SP2[-2.2] + b1*A +
b2*B + b3*C + b4*D

;model(M3):
U(Alt1) = SP1[-3] + b1[(n,-0.06,0.02)]*A[5,10,15,20] + b2[1]*B[0,1,2,3]+
b3[1.5]*C[0,1,2,3] + b4[-0.5]*D[1,0] + EC[EC,(U,1,2)] /
U(Alt2) = SP2[-2.8] + b1*A + b2*B +
b3*C +b4*D + EC

;model(M4):
U(Alt1) = SP1[-3.2] + b1[n,(n,-0.02,0.01),(u,0.01,0.03)]*A[5,10,15,20] +
b2[n,1.4,0.3]*B[0,1,2,3] + b3[1]*C[0,1,2,3] + b4[-0.6]*D[1,0] /
U(Alt2) = SP2[-3] + b1*A +
b2*B + b3*C + b4*D

;model(m5):
U(Alt1) = SP1[-3.3] + b1[(n,-0.05,0.02)]*A[5,10,15,20] + b2[1.1]*B
[0,1,2,3]+ b3[1.2]*C[0,1,2,3] + b4[-0.4]*D[1,0] + EC[EC,(U,1.5,2.5)] /
U(Alt2) = SP2[-3.2] + b1*A + b2*B
 + b3*C + b4*D + EC

$

Example output based on the above syntax is given in Figure 7.17. Note that the output provided is
similar to that provided for non model average efficient designs, although Ngene now also reports the
weights applied to the various model types in generating the design as well as the unweighted and
weighted efficiency measure values.

135Efficient Designs

© 2012 ChoiceMetrics

Figure 7.17: Model average output screen

The model averaging approach outlined here may also be used to examine different possible utility
specifications for the same model. For example, the analyst may be unsure as to whether they will
use dummy or effects codes or not post data collection. In such a case, the analyst may utilize the
same model form (e.g., MNL), but using the model averaging approach, specify linear in the
attributes for one model and dummy and/or effects codes for another model. For example, the
syntax below assumes a linear in the attributes specification for model ‘M1” but a nonlinear
specification using dummy coding for model ‘M2’. Similarly, one can use the same process to
average models with and without a no choice alternative if one is not sure what choice will be used in
the final experiment, or if a dual choice process will be used.

136 Ngene User Manual

© 2012 ChoiceMetrics

Design
;alts(M1) = alt1, alt2, alt3
;alts(M2) = alt1, alt2, alt3
;rows = 20
;eff = M1(mnl,d,mean) + M2(mnl,d,mean)

;bdraws=halton(150)

;model(M1):
U(Alt1) = SP1[0.7] + b1[(n,-0.7,0.2)]*A[5,10,15,20] + b2[1.2]*B[0,1,2,3]
+ b3[1.8]*C[0,1,2,3] /
U(Alt2) = SP2[0.5] + b1*A + b2*B
 + b3*C

;model(M2):
U(Alt1) = SP1[1.2] + b1.dummy[(n,-0.7,0.2)|(n,0.4,0.2)|0.8]*A
[5,10,15,20] + b2[1.2]*B[0,1,2,3] + b3[1.8]*C[0,1,2,3] /
U(Alt2) = SP2[0.9] + b1*A
 + b2*B + b3*C

$

7.5 Appendix 7A Discrete choice models

In this section, we outline the differences between the MNL, MMNL, and EC models. We begin by
examining different conceptualizations of utility specifications that result in each of the different
model formulations before discussing how these utility specifications impact upon the choice
probabilities and log-likelihood functions of each of the models.

7.5.1 Utility specification

Let U
nsj

 denote the utility of alternative j perceived by respondent n in choice situation s. U
nsj

 may be

partitioned into three separate components, an observed component of utility, V
nsj

, an unobserved (or

un-modeled) component of utility, η
nsj

, and an unobserved (and un-modeled) component, ε
nsj

, such

that

U
nsj

 = V
nsj

 + η
nsj

 + ε
nsj (7A.1)

The observed component of utility is typically assumed to be a linear relationship of observed
attribute levels of each alternative, x, and their corresponding weights (parameters), β. In the MNL
model, the parameter weights for each attribute are invariant over respondents, such that the
observed component of utility may be represented as

(7A.2)

137Efficient Designs

© 2012 ChoiceMetrics

Unlike the MNL model, some or all of the parameter weights of the MMNL model are assumed to
vary with density f(β | Ω) over the sampled population. Assumptions as to how these parameter
weights vary over the population have in the past resulted in two different formulations of the MMNL
model. One version of the model, known as the cross sectional MMNL formulation, assumes that
the parameter weights vary with density over both n and s suggesting that preference heterogeneity
exists both within and between individuals, even when the same individual is observed to make s
choices within a similar choice context. The second version of the model, known as the panel MMNL
formulation, assumes that preferences vary between individuals but not within. The assumption that
preferences vary between and not within respondents accounts for the pseudo panel nature of SP
data (Ortúzar and Willumsen, 2001; Revelt and Train, 1998; Train, 2003). Equations (7A.3a) and
(7A.3b) represent the observed components of utility under both the cross sectional and panel
formulations of the MMNL model specifications.

(7A.3a)

(7A.3b)

Like the MMNL model, the EC model involves estimation of one or more random parameters. Unlike
the MMNL model however, the random parameter estimates of the EC model are associated with
alternatives, j, not attributes, x. To estimate the model, the analyst first specifies a set of dummy
variables, with each dummy variable able to appear in the utility specifications of up to J-1
alternatives. Next, generic normally distributed random parameters with means normalised to zero,
represented as η

nsj
 in Equation (7A.1), are estimated for each of the defined dummy variables. By

associating each η
nsj

 with different subsets of alternatives, the parameters (which represent

standard deviations set around a mean of zero) capture different common error variances associated
with those alternatives for which they are estimated for. Note that utility specifications with
alternative specific constants and alternative specific error components will be equivalent to a MMNL
model with normally distributed random constant terms. Also, as with the MMNL model, the random
parameters of the EC model may be estimated with density over both n and s (cross sectional EC
model) or only over n (panel EC model).

Assuming the analyst fails to specify error components as part of the utility functions of the model,
then Equation (7A.1) will collapse to

U
nsj

 = V
nsj

 + ε
nsj (7A.4)

which represents the most common form of utility representation within the literature.

Finally, for all logit type models, the second unobserved component of utility, ε
nsj

, are assumed to be

identically and independently extreme value type 1 (EV1) distributed.

138 Ngene User Manual

© 2012 ChoiceMetrics

7.5.2 Model probabilities

Depending on the assumptions made about the utility specifications as outlined above, different
functional forms of the logit model will be arrived at. We now outline in turn how the assumptions
made about the different models influence the choice probabilities derived for each of the models.

The MNL Model

The choice probabilities of the MNL model are derived from a number of assumptions about the
choice behaviour of respondents. In particular, aside from the assumption that ε

nsj
are IID EV1, the

MNL model assumes that the marginal utilities for the attributes and variables specified within the
system of utility equations are fixed for the sampled population and that η

nsj
 = 0. Under these

assumptions, the probability, P
nsj

, that respondent n chooses alternative j in choice situation s is

given by

(7A.5)

MMNL and EC Models

Both the MMNL and EC models differ from the MNL model in that we now assume that (some of) the
parameters (or error components) are random, following a certain probability distribution. The choice
probabilities of the MMNL model therefore depend on the random parameters. Both models utilize
the MNL probabilities given in Equation (7A.5), however rather than calculate a single probability for
each alternative, both models calculate the choice probabilities for each random draw taken from the
assumed probability distribution(s). In this way, multiple choice probabilities are obtained for each
alternative, as opposed to a single set of probabilities as obtained from the MNL model. It is the
expectation of these probabilities over the random draws which are calculated and used in the model
estimation process. The expected choice probabilities for the MMNL logit and EC models are given
in Equations (7A.6a) and (7A.7b) respectively.

(7A.6a)

(7A.6b)

Equations (7A.6a) and (7A.6b) provide the choice probabilities at the level of the alternatives. In the
cross sectional formulations of the MMNL and EC models, it is these probabilities that are used
directly in model estimation. In the panel formulations of the MMNL and EC models, the choice
probabilities given in Equations (7A.7a) and (7A.7b), whilst calculated, are not of direct interest.
Rather, what are of interest are the probabilities of observing the sequence of choices made by each
respondent, not the probabilities that specific alternatives will be observed to be chosen. To this end,

we define the probability P
n
* that a certain respondent n has made a certain sequence of choices

 with respect to the set of choice situations, S
n
, by

139Efficient Designs

© 2012 ChoiceMetrics

(7A.7a)

(7A.7b)

for the MMNL and EC models respectively.

7.5.3 Model log-likelihood functions

Typically, the parameters β contained within each V
nsi

 are unknown and must be estimated from

data. Let y
nsj

 equal one if j is the chosen alternative in choice situation s shown to respondent n, and

zero otherwise. Then the parameters can be estimated by maximizing the likelihood function L,

(7A.8)

where N denotes the total number of respondents and S
n
 is the set of choice situations faced by

respondent n.

Rather than maximize the likelihood function, it is more common to maximize the log of the
likelihood function instead. This is because taking the product of a series of probabilities will
typically produce values that are extremely small and which most computing software packages will
be unable to adequately handle. By taking the logs of the probabilities first, large negative values will
result, which when multiplied, produce even larger negative values. As such, the log-likelihood
function of the model, shown below, is typically preferred.

(7A.9)

In the sections that follow, we attempt to differentiate between the log-likelihood functions of the
various models available in Ngene.

The MNL Model

In order to derive the log-likelihood function of the MNL model, an assumption is made that all choice
observations are independent of each other. That is, even in data where the same individual is
observed to make multiple choices, the log-likelihood function of the MNL model treats the data as if
the observed choices have been made by separate pseudo individuals. Using the mathematical

properties ln(n
1
n

2
) = ln(n

1
) + ln(n

2
) and , and applying the same mathematical

rules to choice tasks, s, and alternatives, j, this independence of choice observations assumption
results in Equation (7A.9) being rewritten in the more commonly known form of

140 Ngene User Manual

© 2012 ChoiceMetrics

(7A.10)

The Log-likelihood function of the MNL model given in Equation (7A.10) will be globally concave for
linear in the parameters utility specifications (see McFadden 1974) suggesting that there should
exist a single set of parameter estimates that will maximise this function.

Cross Sectional MMNL and EC Models

The log-likelihood functions of the cross sectional MMNL and EC models are derived under the same
assumptions of choice observation independence as made with the MNL model. The difference
between these two models and the MNL model however is that the choice probabilities used for the
MNL are replaced with the expected choice probabilities given in Equations (7A.6a) and (7A.6b).
Using the same mathematical rules used to derive the MNL model log-likelihood function, and noting
additionally that E(n

1
n

2
) = E(n

1
)E(n

2
), the log-likelihood functions of the cross sectional MMNL and

EC models may be represented as

(7A.11)

Panel MMNL and EC Models

The derivation of the log-likelihood functions of the panel formulations of the MMNL and EC models
differ to those of their equivalent cross sectional forms, as well as to that of the MNL model, in that
the choice observations are no longer assumed to be independent within each respondent (although
the independence across respondents assumption is maintained).

Mathematically, this means that E(s
1
s

2
) E(s

1
)E(s

2
), and hence we are no longer able to invoke

the mathematical rule ln(s
1
s

2
) = ln(s

1
) + ln(s

2
). Given this, the log-likelihood functions of the panel

MMNL and EC models may respectively be represented as

(7A.12a)

(7A.12a)

or

(7A.12c)

In the next section we outline the AVC matrices of each of the model types available in Ngene.

141Efficient Designs

© 2012 ChoiceMetrics

7.5.4 Model variance-covariance matrices

The generation of efficient SC experiments requires first an estimation of the AVC matrix of the
design, Ω

N
.. The AVC matrix Ω

N
 can be determined as the inverse of the Fisher Information matrix, I

N
, which in turn can be computed using the second derivatives of the log-likelihood function of the

discrete choice model to be estimated (see Train, 2003). Mathematically, the AVC matrix for the
MNL may be represented as

(7A.13a)

whilst the AVC matrix of the MMNL and EC models becomes

(7A.13b)

where E
N
(.) is used to express the large sample population mean. Hence, the AVC matrix can be

determined by calculating the Hessian matrix of the log-likelihood function for the specific model.

As was seen in Appendix 7A.3, different discrete choice models have different log-likelihood
functions. Given that the AVC matrix of a discrete choice model is calculated as the inverse of the
second derivatives of the log-likelihood function of that model, it is clear that each model will also
yield a different AVC matrix. In this section, we reproduce the second derivatives of the log-likelihood
functions for each of the models available in Ngene.

The MNL Model

The second derivatives of the log-likelihood function of the MNL depend on whether the parameter

estimates are generic or alternative specific (see Bliemer and Rose, 2005b). Let x*
nsj

 and x
nsj

represent attributes for which generic, given as β*, and alternative specific, represented by β
j
,

parameters are to be estimated for respectively. Assuming that all respondents face the same
choice situations, s, the second derivatives of the MNL log-likelihood function yields the following
expressions (see Rose and Bliemer, 2005b)

(7A.14a)

(7A.14b)

142 Ngene User Manual

© 2012 ChoiceMetrics

(7A.14b)

Note that the choice index, y
nsj

, drops out of the second derivatives of the MNL log-likelihood

function, with only the design, x, and choice probabilities remaining. Given this result, it is not
necessary to know a prior what alternatives will be chosen in the sample data in order to calculate
the expected AVC matrix of the model. All the analyst requires to know is the design, and the
choice probabilities. Given that the choice probabilities are a function of the design as well as the
parameter estimates (see Equation (7A.5)), in generating an efficient design, the analyst is required
to make certain assumptions regarding the parameter estimates in advance.

Cross Sectional MMNL and EC Models

The AVC matrix of the MMNL and EC models are somewhat more complicated than those of the
MNL model given that the parameter and error component estimates are now assume to be
randomly distributed. Let M

k
 represent a vector of parameters related to the probability distributions

of the k (either random or error component) parameters, β
k
, denoted by Θ

k
 = [Θ

km
], where m = 1, ...,

 M
k
. The second derivatives of this model is given as

(7A.15)

Unfortunately, unlike the MNL model, the choice index, y
nsj

, does not drop out when taking the

second derivatives of the log-likelihood function of this model. Thus, in order to derive Equation
(7A.15), we are forced to rely on asymptotic theory and substitute E

N
(y

nsj
) = E(P

nsj
), where E

N
(.) is

again the large sample mean. In this way, Equation (7A.15) becomes equivalent to that given in
Sándor and Wedel (2002).

Panel MMNL and EC Models

Relative to the other models explored herein, the second derivatives of the log-likelihood functions of
the panel MMNL and EC models are far more complex to compute as a result of the product terms
resident in Equations (7A.12a) to (7A.12b). Nevertheless, such derivations are possible. Bliemer and
Rose (2009) show that the second derivatives of Equation (7A.12c) is

143Efficient Designs

© 2012 ChoiceMetrics

(7A.16)

where

(7A.17)

and

(7A.18)

and where is the first derivative of the MNL probability,

(7A.19)

As with the cross sectional MMNL and EC models, the choice index, y
nsj

, does not drop out when

taking the second derivatives of the log-likelihood function of this model. Nevertheless, it is possible
once more to for the choice outcomes to be replaced by probabilities, since E

N
(y

nsj
) = P

nsj
 (y follows

a multinomial distribution). However, E
N
(P

N
*) cannot be approximated that easily, as it describes a

generalized multinomial distribution (Beaulieu, 1991). It is therefore necessary, unlike for designs
generated specifically for the MNL and cross sectional MMNL and EC models, to simulate a sample
based on the design x in order to calculate the second derivatives of the model. To do this, for each
respondent n, we first draw a random parameter β

k
 from each given parameter distribution, then

determine the observed utility V
nsj

 for each choice situation s based on design x. Next we separately

draw random values for the unobserved component ε
nsj

 for each alternative in each choice situation,

and determine y
nsj

 by selecting the alternative with the highest utility in each choice situation. Note

that the same random draw for β
k

 is used over all choice situations for each respondent,

representing the panel formulation.

144 Ngene User Manual

© 2012 ChoiceMetrics

7.6 Appendix 7B Steps in generating efficient stated choice
designs

Designs which attempt to minimise the elements contained within the AVC matrix are referred to as
efficient choice designs. We now go on to discuss the generation process for efficient choice
designs.

Step 1: Specify the utility specification for the likely final model to be estimated from data collected
using the SC design. This involves determining (i) what parameters will be generic and alternative
specific; (ii) whether attributes will enter the utility function as dummy/effects codes or some other
format; (iii) whether main effects only or interaction terms will be estimated; (iv) the values of the
parameter estimates likely to be obtained once the model is estimated; and (v) the precise
econometric model that is likely to be estimated from data collected using the experimental design.
Points (i) to (iii) impact directly upon the design matrix X, whereas point (iv) influences the AVC
matrix via the choice probabilities and point (v) via the choice probabilities as well as influencing the
dimensionality of the AVC matrix itself.

Point (iv) represents the most divisive aspect of generating efficient choice designs. In order to
estimate the AVC matrix of a design, point (iv) suggests that the analyst is required to have a priori
knowledge of the parameter estimates that will be achieved using the design, even though the design
has not yet been constructed. Fortunately, the analyst does not have to assume exact knowledge of
these parameter priors (e.g., the price parameter will be -0.4), but can use Bayesian methods to
reflect imperfect knowledge of the exact parameter value (e.g., the price parameter may be drawn
from a normal distribution with a mean of -0.4 and a standard deviation of 0.2, or from a uniform
distribution with a range between -1 and zero; see for example Sándor and Wedel 2001).
Independent of how the priors are treated, two methods, namely numerically by simulation or
analytical derivation (discussed in step 4) can be used to approximate the AVC matrix.

Point (v), determining the econometric model influences the AVC matrix not via the X matrix, but in
terms of the parameter estimates represented within the AVC matrix. For example, designs
assuming MNL will require only parameters related to each of the design attributes whereas designs
generated for NL models will require consideration of the scale parameters and designs constructed
for MMNL models will require elements in the AVC to be associated with the standard deviation or
spread parameters. Given interdependencies between the values that populate the AVC matrix of
discrete choice models, one cannot simply assume that a design that minimises the elements
contained within the AVC for one model form will necessarily minimise the AVC matrix for another
model form.

Step 2: Randomly populate the design matrix, X, to create an initial design. Unlike OOD designs,
the initial design need not be orthogonal, although if the analyst wishes to retain orthogonally it
should be. The initial design, however, should incorporate all the constraints that the analyst wishes
to impose upon the final design outcome. For example, if the analyst wishes to retain attribute level
balance, then the initial design should display this property. The initial design can be constructed
with the desired number of rows, however the number of rows should be greater than or equal to K/(J
-1). The utility specification expressed in step 1 should act as a handy guide in determining the
minimum number of choice situations to use. Similarly, step 1 should help determine the number of
columns that make up the X matrix; one for each attribute (or attribute level minus one in terms of
dummy or effects coded attributes). In constructing the X matrix, the precise levels that will likely be
used later during estimation should be used. That is, if an attribute is likely to be dummy coded in
estimation, then the X matrix should reflect this. Similarly, if a quantitative attribute is to be
estimated exactly as shown to a respondent during the survey (e.g., a price attribute takes on the
levels $2, $4 and $6), then these values should be used to populate the X matrix. Note that different

145Efficient Designs

© 2012 ChoiceMetrics

attributes may take on different coding schemes. Typically, a single design would be constructed
that will be applied to the entire sample population; however, multiple designs might be generated
corresponding to different sub segments of the sampled population (see e.g., Sándor and Wedel
2005 and Rose and Bliemer 2006).

Step 3: For the design, calculate the choice probabilities for each alternative in the design. For the
MNL and NL models calculating the choice probabilities is relatively straightforward when fixed
parameter priors are used (e.g., the price parameter is -0.4). When parameter priors are drawn from
Bayesian distributions, the analyst is required to take a number of draws from the given random
distributions and calculate the choice probability for each set of draws. Unlike the estimation
process of the MMNL model, the average probability is not calculated, but rather the average
efficiency measure is used (as calculated in step 5).

For designs assuming a MMNL, EC or probit model form, draws must be taken using the same
procedures as when estimating the parameters in order to calculate the choice probabilities at each
draw. When draws are taken from a Bayesian distribution for such models however, different
distributions may be required for each random parameter population moment (e.g., mean and
standard deviation). Bliemer et al. (2008) examined the use of various types of draws when drawing
from Bayesian parameter distributions. They conclude that the predominantly employed method of
using pseudo Monte Carlo draws is unlikely to result in leading to truly Bayesian efficient SC
designs and that quasi Monte Carlo methods (e.g., using Halton or Sobol draws), Modified Latin
Hypercube Sampling, or polynomial cubature methods should be employed instead.

Step 4: Once the choice probabilities have been calculated, the next step is to construct the AVC
matrix for the design. Let Ω

N
 denote the AVC matrix given a sample size of N respondents (each

facing S choice situations). This AVC matrix depends in general on the experimental design, X, the
parameter values, β, and the outcomes of the survey, Y = [y

jsn
], where y

jsn
 equals one if respondent

n chooses alternative j in choice situation s and is zero otherwise. Since the parameter values β are

unknown, prior parameter values are used as best guesses for the true parameters.

The AVC matrix is the negative inverse of the expected Fisher Information matrix (e.g., see Train,
2003), where the latter is equal to the second derivatives of the log-likelihood function:

(7B.1)

where l
N
(X, Y, β) is the Fisher Information matrix with N respondents, and L

N
(X, Y,) is the log-

likelihood function in case of N respondents defined by

(7B.2)

This formulation holds for each model type (MNL, MMNL or EC), only the choice probabilities P
jsn

(X,

) are different. There are two ways of determining the AVC matrix, either by Monte Carlo
simulation, or analytically.

Most researchers have relied on Monte Carlo simulation. In this case, a sample of size N is
generated and parameters are estimated based on simulated choices (by simply computing the
observed utilities using some prior parameter estimates, adding random draws for the unobserved

146 Ngene User Manual

© 2012 ChoiceMetrics

utilities, and then determine the chosen alternative by assuming that each respondent selects the
alternative with the highest utility). Such an estimation also provides the results for the variance-
covariance matrix. This procedure is repeated a large number of times and the average variance-
covariance matrix gives the AVC matrix.

Many have not realized that the AVC matrix can be determined analytically, as suggested for MNL
models with all generic parameters by McFadden (1974). In this case, the second derivative of the
log-likelihood function in Equation (7B.2) is determined and evaluated analytically. A potential
problem is, that the vector of outcomes, Y, is part of the log-likelihood function, the reason why most
researchers perform Monte Carlo simulations. However, it can be shown that the outcomes Y drop
out when taking the second derivatives in case of the MNL model. This has been shown by
McFadden (1974) for models with all generic parameters, and in Rose and Bliemer (2005a) for
models with alternative-specific parameters, or a combination. Furthermore, Bliemer et al. (2009)
have also derived analytical expressions for the second derivatives for the NL model. The outcomes
Y do not drop out, but as shown Bliemer et al. (2009), they can be replaced with probabilities leading
to exactly the same AVC matrix, which has been confirmed by Monte Carlo simulation outcomes.
Although more tedious, the second derivatives can also be derived for the MMNL model and a similar
procedure holds for removing the outcome vector Y. Note that the MMNL model will always require
some simulations, as the parameters are assumed to be random and therefore expected
probabilities need to be approximated using simulation. However, these simulations have no
connection with the simulations mentioned earlier for determining the AVC matrix. To conclude, Ω

N

can be determined without knowing the simulated outcomes Y, hence, the dependency on Y
disappears in Equation (7B.1).

Step 5: The next step is to evaluate the statistical efficiency of the design. Efficiency measures have
been proposed in the literature in order to calculate an efficiency value based on the AVC matrix,
typically expressed as in efficiency ‘error’ (i.e., a measure for the inefficiency). The objective then
becomes to minimize this efficiency error. The most widely used measure is called the D-error (not
to be confused with the D-efficiency measure of OOD designs (equation (7B.3)), which takes the

determinant of the AVC matrix Ω
1
, assuming only a single respondent10. Other measures exist,

such as the A-error, which takes the trace (sum of the diagonal elements) of the AVC matrix.
However, in contrast to the D-error, the A-error is sensitive to scaling of the parameters and
attributes, hence here only the D-error will be discussed.

The D-errors are a function of the experimental design X and the prior values (or prior probability

distributions) , and can be mathematically formulated as:

(7B.3)

(7B.4)

(7B.5)

where K is the number of parameters to be estimated. It is common to normalize the D-error by
taking the power 1/K. Within the literature, designs which are optimized without any information on

the priors (i.e., assuming =0) are referred to as D
z
–optimal designs (Equation (7B.3), whereas

designs optimized for specific fixed (non-zero) prior parameters are referred to as D
p
–optimal designs

(Equation (7B.4)). In (Bayesian) D
b
–optimal designs (Equation (7B.5)), the priors are assumed to

be random variables with a joint probability density function Φ(.) with given parameters Θ.

147Efficient Designs

© 2012 ChoiceMetrics

Step 6: In step 2, we began with a random start design. The next stage in generating efficient choice
designs is to change the design(s) and repeat steps 3 to 5 up to R number of times, each time
recoding the designs relative level of statistical efficiency. By changing the design R number of
times, the analyst is in effect able to compare the efficiency of each of the R different design
matrices. It is important to note that for only the smallest of designs will it be possible to search the

full enumeration of possible designs11. As such, it is common to turn to algorithms to determine as
many different designs with low efficiency errors as possible. A number of algorithms have been
proposed and implemented within the literature for determining how best to change the attribute
levels in locating efficient choice designs. Primarily, these consist of row based and column based
algorithms. In a row based algorithm choice situations are selected from a predefined candidate set
of choice situations (either a full factorial or a fractional factorial) in each iteration. Column based
algorithms create a design by selecting attribute levels over all choice situations for each attribute.
Row based algorithms can easily remove dominated choice situations from the canditure set at the
beginning (e.g., by applying some utility balance criterion), but it is more difficult to satisfy attribute
level balance. The opposite holds for column based algorithms, in which attribute level balance is
easy to satisfy, but finding good combinations of attribute levels in each choice situation is more
difficult. In general column based algorithms offer more flexibility and can deal with larger designs,
but in some cases (e.g., for unlabelled designs and for specific designs such as constrained
designs) row based algorithms are more suitable.

The Modified Federov algorithm (Cook and Nachtsheim, 1980) is the most widely used row based
algorithm. The algorithm first constructs a candidature set of choice situations which may either be
the full factorial (for small problems) or a fractional factorial (for large problems) drawn from the full
enumeration of choice situations possible for the problem. Next, a (attribute level balanced) design is
created by selecting choice situations from the candidature set, after which the efficiency error (e.g.,
D-error) is computed for the design. If this design has a lower efficiency error than the current best
design, the design is stored as the most efficient design so far, and one continues with the next
iteration repeating the whole process again. The algorithm terminates if all possible combinations of
choice situations have been evaluated (which is in general not feasible), or after a predefined number
of iterations.

RSC (Relabeling, Swapping & Cycling) algorithms (Huber and Zwerina, 1996; Sándor and Wedel,
2001) represent the predominant column based algorithms in use today. Each iteration of the
algorithm creates different columns for each attribute, which together form a design. This design is
evaluated and if it has a lower efficiency error than the current best design, then it is stored. The
columns are not created randomly, but are generated in a structured way using relabeling, swapping,
and cycling techniques. Relabeling involves switching all the attribute levels of an attribute. For
example, if the attribute levels 1 and 3 are relabeled, then a column containing the levels
(1,2,1,3,2,3) will become (3,2,3,1,2,1). Rather than switch all attribute levels within an attribute,
swapping involves switching only a few attribute levels within an attribute at a time. For example, if
the attribute levels in the first and fourth choice situation are swapped, then (1,2,1,3,2,3) would now
become (3,2,1,1,2,3). Finally, cycling works by replacing all attribute levels in each choice situation
at the same time by replacing the first attribute level with the second level, the second level with the
third, etc. Since this impacts all columns, cycling can only be performed if all attributes have exactly
the same sets of feasible levels (e.g., in case all variables are dummy coded). Note that it is not
necessary to use all three methods simultaneously, such that only relabelling, swapping or cycling,
or combinations thereof can be used.

Chapter 8

Advanced Features in Generating
Efficient Designs

149Advanced Features in Generating Efficient Designs

© 2012 ChoiceMetrics

8 Advanced Features in Generating Efficient Designs

So far we discussed orthogonal designs which remain the mainstream design type used by
practitioners, and efficient designs that have theoretical and practical advantages and are envisaged
to be used more and more by practitioners. In this section, several advanced designs will be
discussed. These designs are actually special efficient designs in which some of the assumptions
are relaxed to allow more flexibility in the design, or in which more constraints are added, both for
practical reasons. It is important to note that the designs discussed in this section are the current
state-of-the-art and certainly not state-of-the-practice, although practitioners may be highly
interested in these advanced designs. We note that there still remains a significant amount of
research to be done in this area.

8.1 Attribute level balance and fractional factorial designs

As mentioned in Section 6.2.2, most designs in Ngene default to the property of attribute level
balance, meaning that for each attribute, each level appears an equal number of times over the
choice situations. This will guarantee an even distribution of the levels, such that not just primarily
high or low levels are faced by respondents. However, like orthogonality, attribute level balance puts
another restriction on the design, such that some efficiency may be lost. Letting go of attribute level
balance typically produces more efficient designs, although in practice most people maintain
attribute level balance in their design as a desired property.

Ngene allows two methods to overcome the attribute level balance restriction in the types of designs
discussed to date. We briefly discussed the first method in Section 6.2.2. This involved designs
where the number of rows specified is greater than or equal to K/(J-1), but such that they do not
allow for attribute level balance. An example of this is given in the following syntax where the number
of rows specified is eight, but attribute A is specified with three levels.

Design
;alts = alt1, alt2
;eff=(mnl,d)
;rows = 8
;model:
U(alt1) = b1[-0.2] + b2[0.2] * A[0,1,2] + b3[-0.3] * B[0,1] /
U(alt2) = b2 * A + b4[-0.4] * C[2,4,6,8] $

In this case, Ngene will generate a design but in doing so provide the following warning.

“Warning: One or more attributes will not have level balance with the number of rows specified: alt1.
a, alt2.a”

In such cases, Ngene will generate a design while attempting to maintain attribute level balance as
much as possible. This is shown in Figure 8.1. When the number of attribute levels specified is less
than the number of rows, Ngene will ensure that each attribute level appears at least once in the
design. If the number of attribute levels for any given attribute exceeds the number of rows specified,
it becomes impossible for Ngene to ensure that each attribute level appears at least once over the
course of the design, forcing Ngene to select those levels that will maximize the efficiency criteria
selected. The following utility functions demonstrate this idea assuming the analyst maintained a
desire to generate the design in eight rows.

150 Ngene User Manual

© 2012 ChoiceMetrics

;model:
U(alt1) = b1[-0.2] + b2[0.2] * A[0,1,2,3,4,5,6,7,8] + b3[-0.3] * B[0,1]
/
U(alt2) = b2 * A + b4[-0.4] * C[2,4,6,8]
$

Figure 9.1: A non attribute level balanced design generated using Method 1

An alternative method for letting go of attribute level balance involves the user having to specify how
many times each level needs to occur within the design, by indicating a minimum and maximum
number. This is done by specifying this minimum and maximum in a range after the attribute levels
(using round brackets, and a dash, ‘-’, for indicating a range). This allows more flexibility than the
first method of letting go of attribute level balance by allowing the user to specify the number of times
an attribute level will appear (within some range) rather than have Ngene attempt to enforce attribute
level balance as much as is possible. Example syntax of this method is shown below.

151Advanced Features in Generating Efficient Designs

© 2012 ChoiceMetrics

Design
;alts = alt1, alt2
;eff = (mnl,d)
;rows = 9
;model:
U(alt1) = b1[1.1] + b2[-0.2] * A[2,4,6](1-4,4,2-4) + b3[0.8]* B[0,1,2]
/
U(alt2) = b4[-0.3] * C[0,3,6](0-9,2-9,0-9) + b3 * B
 $

In this example, a design will be generated with nine choice situations, where the levels of attribute
‘A’ do not necessarily have to be attribute level balanced (i.e., each of the three levels does not have
to appear exactly three times). In fact, the first level (2) has to appear 1 to 4 times, the second level
(4) exactly 4 times, and the third level (6) has to appear 2 to 4 times. Attribute ‘C’ does not put any
restrictions on the number of times each attribute level has to appear, indicated by a minimum of
appearing not at all (0) to appearing in all choice situations (9).

Figure 8.2 shows a design generated using the above syntax. Although not always the case, we
note that for designs with attributes with more than two levels, if the user allows non-end point levels
to appear zero times (i.e., the minimum number of times the middle attribute levels are allowed to
appear is set at zero; e.g., 0-9) then typically the most efficient design will be one that will have only
the two end point levels. As stated above, this need not be the case, as it depends upon the
attribute levels and priors assumed in generating the design, however our experience is that this will
be the case in many instances.

152 Ngene User Manual

© 2012 ChoiceMetrics

Figure 8.2: A non attribute level balanced design generated using Method 2

8.2 Constraints and fractional factorial designs

8.2.1 Constrained designs

Sometimes certain combinations of attribute levels in a choice situation are not feasible. These
infeasible choice situations need to be avoided by adding constraints.

Level constrained designs are most apparent in applications in health economics. For example,
consider two alternatives, treating and not treating a patient. Then the attribute ‘age of death’ in
these alternatives should be such that in each choice situation this age for the treating alternative is
never lower than the non-treating alternative, and the attribute ‘current age’ cannot be higher than the
‘age of death’. In transportation, one could think of route alternatives with different departure times,

153Advanced Features in Generating Efficient Designs

© 2012 ChoiceMetrics

free-flow travel times, and arrival times. Clearly, the arrival times should be later than the departure
times, and the difference between the arrival and departure time should be greater than or equal to
the free-flow travel time.

There are different ways of including these constraints. A straightforward way, implemented in
Ngene, is using an extended version of the modified Federov algorithm. After having determined the
candidate set, choice situations that do not satisfy the constraints are removed from this set. This
ensures that all designs generated from this candidate set will be feasible.

Note that it may be hard or even impossible to find an attribute level balanced design satisfying the
constraints, especially when the constraints impose many restrictions. Also note that in theory RSC
algorithms can also be used, but that after each relabeling, swapping, or cycling all choice situations
need to be checked for feasibility. Ensuring that all choice situations are feasible could be difficult,
hence RSC algorithms may not be suitable.

8.2.2 Constrained designs in Ngene

In order to avoid designs with choice situations that are not feasible, Ngene allows constraints to be
put on the attribute levels. Constraints can be included by specifying conditions for the attribute
levels. The cond property can be used to include these conditions, which are basically if-then
statements.

A first type of constraint is called ‘nesting’. If a specific attribute has a certain level, then another
attribute has to have a certain level as well (or perhaps is limited to a set of levels). For example,

;cond:
if(alt1.A = 0, alt2.B = 1) ,
if(alt1.A = [1,2], alt2.B = [2,3])

Each line contains a condition, and the conditions are separated with a comma, ‘,’. The first
condition states that if the attribute level of attribute ‘A’ of alternative ‘alt1’ equals zero, than the
attribute level of attribute ‘B’ of alternative ‘alt2’ should be equal to one. The second condition states
that if the level of attribute ‘A’ in alternative ‘alt1’ is either one or two, than the allowed levels of
attribute ‘B’ in alternative ‘alt2’ are two or three. Note that nesting will overrule the attribute levels
(and also possible ranges) defined in the model property.

Besides nesting constraints, more general constraints can be included in the cond property. Some
examples are:

;cond:
if(alt1.A + alt1.B > alt1.C, alt2.A = alt1.A) ,
if(alt1.A = alt2.A and alt1.B < 3, alt2.B = [2,3]) ,
if(alt1.A <> alt2.A or alt1.A = 0, alt2.A > 3)

Note that the operations ‘=’ (equal to), ‘>’ (greater than), ‘<’ (less than), ‘<=” (less than or equal to),
‘>=” (greater than or equal to), ‘<>’ (not equal to), ‘and’ (logical and), ‘or’ (logical or) can be used in
order to make logical expressions. This offers great flexibility in dealing with almost any constraints.

Important to keep in mind is that if the constraints are too strong, Ngene may not be able to find a
design that satisfies all constraints. Furthermore, it is very difficult (and often even impossible) to find
an attribute level balanced design when constraints are specified, such that Ngene aims to find a

154 Ngene User Manual

© 2012 ChoiceMetrics

design that is as much attribute level balanced as possible. Note that in case of nesting constraints,
only the nested attributes will not be attribute level balanced (such as ‘alt2.B’ in the example
mentioned above); all other attribute will be. Also note that the cond property will only work if a
swapping algorithm is used. It will not work for example if a Modified Federov algorithm is applied to
the design.

A further complication can arise if a large number of attributes are 'related' through multiple
conditions that 'overlap'. Ngene will attempt to generate a full factorial of all combinations of levels
from the related attributes that do not violate the conditions. This can lead to memory problems. A
warning will be provided if this problem is likely to occur. The solution is to add to the comma
separated list in the cond property the following: fractional=X%. A sufficiently low value of X will

solve the memory problem, although several attempts may be required to find a suitable value.

A fully complete example of syntax employing two constraints is shown below.

Design
;alts = A, B, C
;rows = 24
;eff = (mnl, d)
;cond:
if(a.att1=2, b.att1=[4,6]),
if(a.att2<3, b.att2=[3,5])
;model:
U(A) = A0[-0.1] + G1[-0.4] * att1[2,4,6] + G2[-0.3] * att2[1,3,5] + A1
[0.7] * att3[2.5,3,3.5] + A2[0.6] * att4[4,6,8] /
U(B) = B0[-0.2] + G1 * att1 + G2 * att2 + B1
[-0.4] * att7[2.5,4,5.5] + B2[0.7] * att8[4,6,8] $

A screenshot of an example design generated using the above syntax is given in Figure 8.3. We
leave it to the reader to verify that the conditions specified have actually been meet as well as the
degree of attribute level balance of the design shown (a good starting point would be to examine
attribute b.att2).

155Advanced Features in Generating Efficient Designs

© 2012 ChoiceMetrics

Figure 8.3: Example design with constraints

Similar to the cond property, users may use the require property to force certain attribute level
combinations to be present within the design within all choice situations. The require property
constructs a set of candidate choice situations that meet some criteria in terms of the attribute level
combinations allowed within each choice situation. All other choice situations that do not meet the
required choice criteria are then rejected from the design. Note that this method, unlike the cond
property, cannot be used in conjunction with any form of swapping algorithm but rather requires use
of the Modified Federov algorithm or factorial design. Note also that the require property will also
likely not display the attribute level balance property for the generated design unless the user
specifically restricts the number of times each level appears within the design in a manner similar to
that discussed in Section 8.1. However, a combination of these restrictions may result in an inability
to locate a design, or even if a design can be located, the efficiency level of the design is likely to be
poor.

An example of the require property is shown below. In this property, the design would require that
attribute a.att1 be greater than or equal to that of attribute b.att1 for all choice situations in the

156 Ngene User Manual

© 2012 ChoiceMetrics

design.

;require:
a.att1 >= b.att1

Note that the operations ‘=’ (equal to), ‘>’ (greater than), ‘<’ (less than), ‘<=” (less than or equal to),
‘>=” (greater than or equal to), ‘<>’ (not equal to), ‘and’ (logical and), ‘or’ (logical or) can be used in
order to make logical expressions, as per the cond property. Note also that unlike the cond property,
the require property does not use if statements.

Design
;alts = A, B, C
;rows = 24
;eff = (mnl, d)
;alg = mfederov
;require:
a.att1 >= b.att1
;model:
U(A) = A0[-0.1] + G1[-0.4] * att1[2,4,6] + G2[-0.3] * att2[1,3,5] + A1
[0.7] * att3[2,3,4] /
U(B) = B0[-0.2] + G1 * att1 + G2 * att2 + B1
[-0.4] * att7[3,4,5] $

In addition to using the cond and require properties, Ngene also allows users to use the reject
property to force attribute level constraints within a design. Whereas the cond and require properties
force the attributes within the design to meet certain criteria, the reject property disallows a design
from having choice situations in which the attributes can take on certain combinations of levels.
Unlike the cond property, but as with the require property, the reject property does not allow the use
if statements.

;reject:
a.att1 > a.att2

Example syntax using the reject property is given below. Figure 8.4 provides a screen capture of a
design generated using this syntax, demonstrating that the attribute levels of the design met the
required restrictions set.

Design
;alts = Alt1, Alt2
;rows = 6
;eff = (mnl, d)
;alg = mfederov
;reject:
Alt1.X1 > Alt2.X3
;model:
U(Alt1) = b1[-0.2] + b2[0.3] * X1[2,4,6](1-3,1-3,1-3) + b3[0.4] * X2
[1,3,5](1-3,1-3,1-3) /
U(Alt2) = b2 * X3[2,4,6](1-3,1-3,1-3) + b4[0.3] * X4
[1,2,3](1-3,1-3,1-3) $

157Advanced Features in Generating Efficient Designs

© 2012 ChoiceMetrics

Figure 8.4: Example design with constraints using the reject property

8.3 Reference or pivot (customized) designs

8.3.1 Pivot designs

So far we have assumed that all respondents face the same choice situations. From a cognitive and
contextual point of view, this may not be optimal. The use of a respondent’s knowledge base to
derive the attribute levels of the experiment has come about in recognition of a number of supporting
theories in behavioral and cognitive psychology, and economics, such as prospect theory, case-
based decisions theory and minimum-regret theory. This leads to the notion of so-called reference
alternatives, which may be different for each respondent. As Starmer (2000, p. 353) remarks: “While
some economists might be tempted to think that questions about how reference points are
determined sound more like psychological than economic issues, recent research is showing that
understanding the role of reference points may be an important step in explaining real economic
behavior in the field.” Reference alternatives in stated choice experiments act to frame the decision
context of the choice task within some existing memory schema of the individual respondents and
hence make preference-revelation more meaningful at the level of the individual.

In a pivot design the attribute levels shown to the respondents are pivoted from reference alternatives
of each respondent. In Table 8.1 an example is shown, where for compactness only the first
alternative is presented. The actual underlying design is shown in grey, where the attributes are
either a relative pivot (as in the travel time), or an absolute pivot (as in the toll cost). The attribute
levels shown in the stated choice experiment are based on the reference alternative of the
respondents. For example, suppose that respondent 1 has answered in an earlier question in the
survey that he or she currently has a travel time of 10 minutes and pays $2 toll, then the attribute
levels for the first alternative in the first choice situation will be determined as 10-1 = 9 minutes (10
percent less travel time), and a toll cost of 2+2 = $4 ($2 extra). Therefore, this choice situation will
be different from the choice situation presented to respondent 2 (facing a travel time of 27 minutes
and a toll of $5 for the first alternative in the first choice situation).

158 Ngene User Manual

© 2012 ChoiceMetrics

Table 8.1: Designs pivoted from a reference alternative

Hence, instead of creating a design with the actual attribute levels, a pivot design is created with
relative or absolute deviations from references. Suppose that a single pivot design is created. The
efficiency of this design depends on the references of the respondents, as these determine the
actual attribute levels in the choice situations and therefore the AVC matrix. However, in advance the
references of the respondents are typically not available. Rose et al. (2008) have compared several
different approaches for finding efficient pivot designs:

(a) Use the population average as the reference (yields a single design);
(b) Segment the population based on a finite set of different references (yields multiple designs);
(c) Determine an efficient design on the fly (yields a separate design for each respondent); and
(d) Use a two-stage process in which the references are captured in the first stage and the design is

created in the second stage (yields a single design).

Intuitively, approach (a) should give the lowest efficiency (individual reference alternatives may differ
widely from those assumed in generating the design), while the last approach should yield the
highest efficiency (likely to produce truly efficient data). This was also the outcome of the study.
Approach (a) worked relatively well, and approach (b) only performed marginally better. Approach (c)
and (d) performed best. The outcomes were also compared with an orthogonal design, which
performed poorly. Pivot designs for approaches (a) and (b) are relatively easy to generate, for
approaches (c) and (d) more effort is needed. Approach (c) requires a CAPI or internet survey, and
an efficient design is generated while the respondent is answering other questions. Approach (d) is
sensitive to drop-outs, as the design will only be optimal if all respondents in the second stage
participate again in the survey.

8.3.2 Pivot designs in Ngene

Instead of a traditional no-choice alternative, one may want to generate a design with a reference (or
status-quo) alternative. Similar to the traditional no-choice alternative, the reference alternative has a
fixed utility across choice situations (at least fixed within all choice situations for a single
respondent). However, unlike the traditional no-choice alternative, the attribute levels of the
alternative need not be absent and hence the utility need not be equal to zero. Figure 8.5 shows an
example of a SC questionnaire involving a reference alternative, where the attributes of the first
alternative are non-zero and fixed across choice situations.

159Advanced Features in Generating Efficient Designs

© 2012 ChoiceMetrics

Figure 8.5: Example choice situations based on a pivot design

In the simplest case, where all respondents observe the same reference or status quo alternative,
Ngene is able to construct pivot style designs quite easily via the utility specifications of the model.
For example, the attribute levels of the reference alternative can be assigned a single attribute level
rather than multiple levels as in

b2[-0.1] * B[5]

160 Ngene User Manual

© 2012 ChoiceMetrics

Next, the attribute levels of the non-reference alternatives can then be chosen so that they vary
either by some absolute value from the reference alternative, or by some percentage. For example, if
the non-reference alternative levels are to vary by 0% and ±25% from the reference level, then
assuming the reference level is 5 (as above), then the levels 3.75, 5 and 6.25 could be assigned to
the common attribute of the non-reference alternative. The syntax below demonstrates this concept
with the attribute A1 varying by fixed amounts of -1, 0 and 1 around the reference attribute A (= 2)
and attribute B1 varying by -25%, 0% and 25% around the reference attribute B (=5).

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b1[0.6] * A[2] + b2[-0.1] * B[5] /
U(alt2) = b1 * A1[1,2,3] + b2 * B1[3.75,5,6.25] /
U(alt3) = b1 * A1[1,2,3] + b2 * B1[3.75,5,6.25] $

Figure 8.6: Example pivot design assuming everyone observes the same reference
alternative (method 1)

Rather than having to calculate the attribute levels of the non-reference alternatives manually (e.g., -
25% of 5 is 3.75) and insert these as the attribute levels of the non-reference alternatives, Ngene has
available syntax that will automatically do this for you. This first requires the user to specify what
attributes represent a reference attribute and which represent those which should be pivoted around
the reference attribute. This is handled by adding either the suffix .ref or .piv after an attributes name.
For example B.ref is used to specify attribute ‘B’ as a reference alternative, whereas B.piv would

be used to specify the same attribute (but for another alternative) as an attribute that will be pivoted
around the previously specified reference attribute. In specifying the reference alternative, only a

161Advanced Features in Generating Efficient Designs

© 2012 ChoiceMetrics

single attribute level is required. (e.g., B.ref[5]). For the pivoted attribute, the analyst may specify

either absolute pivot levels or percentage pivot levels. For absolute pivot levels, the analyst simply
places the levels, + or -, that are to be pivoted around the reference attribute (e.g., B.piv[-2,0,1]

). For pivoted attributes which are to be a percentage change from the reference attribute level, the
analyst simply specifies the percentages, + or -, that are required (e.g., B.piv[-25%,0%,25%]).

Example syntax showing the use of both absolute and percentage change pivot levels is given
below.

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b1[0.6] * A.ref[2] + b2[-0.1] * B.ref[5] /
U(alt2) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] $

Figure 8.7 provides example output produced using the above syntax. Note that the output differs to
that shown previously, in that the actual levels for the non-reference attributes are not given, but
rather the absolute or percentage changes. This may be useful where the attribute levels of the
reference alternative are not fixed over respondents, but in generating the design a ‘sample average’
is assumed to generate a design that will be applied to all individuals irrespective of their real
reference alternative.

Figure 8.7: Example pivot design assuming everyone observes the same reference
alternative (method 2)

The above two methods generate designs assuming all respondents have the same reference
alternative in terms of the attribute levels shown. In many cases, different respondents will have
reference alternatives with different attribute levels. In Ngene, the analyst is able to generate i) a
single design that can be applied to different respondent segments, despite the segments having
different attribute levels for their reference alternatives, or ii) different designs for different respondent

162 Ngene User Manual

© 2012 ChoiceMetrics

segments based on the fact the different segments face attributes with different reference attributes.
We call the first type of design a ‘homogenous pivot design’ and the second type of design a
‘heterogeneous pivot design’. Both types of designs require additional syntax to generate the
required design.

To demonstrate the syntax requirements for these two types of pivot designs, assume that there
exist three different respondent segments. To generate both homogenous and heterogeneous pivot
designs, syntax for the utility specifications is employed similar that used to generate model
averaging designs as described in Section 7.4. That is, separate utility specifications are required
for each data segment. For example, assuming three segments, small, medium and large, the
following utility specifications might be used. Note that as with the model averaging approach, each
segment must be given a unique name, and that the last utility specification for all but the last data
segment does not end in a / or $.

;model(small):
U(alt1) = b1[0.6] * A.ref[2] + b2[-0.1] * B.ref[5] /
U(alt2) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%]

;model(Medium):
U(alt1) = b1[0.6] * A.ref[4] + b2[-0.1] * B.ref[10] /
U(alt2) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%]

;model(Large):
U(alt1) = b1[0.6] * A.ref[6] + b2[-0.1] * B.ref[15] /
U(alt2) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] $

Next the user is required to use the fisher property to specify i) homogenous or heterogeneous pivot
designs is required, and ii) how much weight each data segment should be given in calculating the
overall Fisher Information matrix (and hence AVC matrix) of the design. In generating the design,
only a single Fisher Information matrix (and hence AVC matrix) is constructed to represent the fact
that the data segments are to be combined into a single data set post data collection. If the different
segments are to be treated separately in data estimation, then separate designs should be
generated as shown at the beginning of this section.

The fisher property requires several items of information in order to function properly. Firstly, the user
is required to give the Fisher Information matrix a name (n.b., any name can be used). Next, in the
case of a homogenous pivot designs, the user is required to provide a name for the design that is to
be generated. In the case of heterogeneous pivot design, separate names must be provided for each
data segment specific design required. In either design type, the user may use any name to
designate the designs. Finally, the analyst is required to specify the weights that each segment is to
have in calculating the Fisher Information matrix in generating the designs.

In order to generate a homogenous pivot design, each segment name is associated with a single
design, separated by commas. This is done by placing all segment names and attached weights in
round brackets after the design name. This is shown below for up to k data segments.

;fisher(<Fisher Information matrix name>) = <design name>(<model 1 name>
[<model 1 weight>], <model 2 name>[<model 2 weight>], ..., <model k
name>[<model k weight>])

163Advanced Features in Generating Efficient Designs

© 2012 ChoiceMetrics

In specifying the segment weights, the model names must be those provided in the utility
specifications. Also, it is important to note that the weights must sum to one. Thus, given the above
system of utility functions, the fisher property might look something like

;fisher(fish) = design1(small[0.33], medium[0.33], large[0.34])

In the above syntax, we have called the Fisher Information matrix ‘fish’ and the design ‘design1’. All
designs have been associated with design1 as they are included in the round brackets linked to this
design. For the first segment, represented by the utility specifications given in the ‘small’ model
segment, we have assigned the segment a 0.33 weight in calculating the overall Fisher Information
matrix. Similarly, we have applied the same weight to the second data segment ‘medium’. In order to
make the weights sum to one, we have assigned a weight of 0.34 to the last data segment, ‘large’.

To construct a heterogeneous pivot design, the different model data segments are linked to designs
with different names. Rather than separate the different model data segments with a comma, + signs
are used. This is shown below.

;fisher(<Fisher Information matrix name>) = <design name>(<model 1 name>
[<model 1 weight>]) + <model 2 name>([<model 2 weight>]) + ... + <model
k name>([<model k weight>])

An example fisher property for generating a heterogeneous pivot design for our three segment
example is given below.

;fisher(Fish) = des1(small[0.33]) + des2(medium[0.33]) + des3(large
[0.34])

In the above syntax, the small model data segment is linked to a design which we have designated
‘des1’, whereas the medium and large model data segments are linked to different designs, ‘des2’
and ‘des3’ respectively. As such, different designs will be generated for each of the model data
segments. As per the homogenous pivot designs, each model data segment must be given a weight
in calculating the overall design Fisher Information matrix.

Note that it is also possible to generate designs which both specify that different data segments be
generated with both homogenous and heterogeneous pivot designs over different subsets of data
segments, as in

;fisher(Fish) = des1(small[0.33]) + des2(medium[0.33], large[0.34])

In addition to the fisher property, additional syntax is required for the efficiency measure. Rather than
optimize on a single Fisher Information matrix (the inverse of the AVC matrix), the design is now to
be optimized based on the weighted average Fisher Information matrix named in the fisher property.
To handle this, the name of the Fisher Information matrix is added to the eff property, much like
different models are added to the eff property in the model averaging process. For the above
example, the eff property would look as follows.

;eff = fish(mnl,d)

Although we show a design specifically generated for an MNL model, the pivot design syntax can be
applied to any model type available in Ngene. The complete syntax for a homogeneous pivot design
is given below.

164 Ngene User Manual

© 2012 ChoiceMetrics

Design
;alts(small) = alt1, alt2, alt3
;alts(medium) = alt1, alt2, alt3
;alts(large) = alt1, alt2, alt3
;rows = 12
;eff = fish(mnl,d)
;fisher(fish) = design1(small[0.33], medium[0.33], large[0.34])

;model(small):
U(alt1) = b1[0.6] * A.ref[2] + b2[-0.1] * B.ref[5] /
U(alt2) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%]

;model(Medium):
U(alt1) = b1[0.6] * A.ref[4] + b2[-0.1] * B.ref[10] /
U(alt2) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%]

;model(Large):
U(alt1) = b1[0.6] * A.ref[6] + b2[-0.1] * B.ref[15] /
U(alt2) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] $

Figure 8.8 shows output generated for the above syntax. From the output screen, it can be clearly
seen that despite the reference alternatives taking on different attribute levels, the design itself has
been constrained to be the same across each segment. Although not shown, the analyst is also
able to examine the design properties as related to each data segment by clicking on the relevant
click boxes located on the left of the output screen.

165Advanced Features in Generating Efficient Designs

© 2012 ChoiceMetrics

Figure 8.8: Homogeneous pivot design output screen

For the same data segments, the following syntax will generate a heterogeneous design.

166 Ngene User Manual

© 2012 ChoiceMetrics

Design
;alts(small) = alt1, alt2, alt3
;alts(medium) = alt1, alt2, alt3
;alts(large) = alt1, alt2, alt3
;rows = 12
;eff = fish(mnl,d)
;fisher(Fish) = des1(small[0.33]) + des2(medium[0.33]) + des3(large
[0.34])

;model(small):
U(alt1) = b1[0.6] * A.ref[2] + b2[-0.1] * B.ref[5] /
U(alt2) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%]

;model(Medium):
U(alt1) = b1[0.6] * A.ref[4] + b2[-0.1] * B.ref[10] /
U(alt2) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%]

;model(Large):
U(alt1) = b1[0.6] * A.ref[6] + b2[-0.1] * B.ref[15] /
U(alt2) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] $

Output generated using the above syntax is shown in Figure 8.9. Examination of the output
demonstrates that the non-reference alternatives are indeed different across the different data
segments, meaning that each data segment has its own unique design.

167Advanced Features in Generating Efficient Designs

© 2012 ChoiceMetrics

Figure 8.9: Heterogeneous pivot design output screen

The optimization process for generating pivot designs requires that each data segment be given a
weight in calculating the overall design Fisher Information matrix. The previous syntax assumed that
the analyst knew a priori the proportions that each segment will appear within the sample. It is
possible however to not only optimize the efficiency of a design, but also simultaneously the
proportions of various segments that should be exposed to the design. As described in Rose and
Bliemer (2006), the optimization routine first generates a random design (using whatever algorithm),
and then searches over different segment proportions to determine if the overall efficiency level can
be improved. If the efficiency level cannot be improved beyond the current best level, then another
design is then examined.

This is handled in the weighting section of the fisher property. Rather than assign a single weight to
each data segment, the analyst may specify a range of weights. This is done by separating a lower
weight bound from an upper weight bound by a colon. For example, the syntax small[0.1:0.6]

168 Ngene User Manual

© 2012 ChoiceMetrics

will allow the small data segment to have a weight anywhere between 0.1 and 0.6 in the optimization
of the overall design Fisher Information matrix. Note that for this to work, the upper weight bounds
provided must sum to one or more. Note also, that this function may be applied to both homogenous
and heterogeneous pivot designs. Example syntax for this is given below.

Design
;alts(small) = alt1, alt2, alt3
;alts(medium) = alt1, alt2, alt3
;alts(large) = alt1, alt2, alt3

;rows = 12
;eff = Fish(mnl,d)
;fisher(Fish) = des1(small[0.1:0.6]) + des2(medium[0.1:0.6], large
[0.1:0.6])
;model(small):
U(alt1) = b1[0.6] * A.ref[2] + b2[-0.1] * B.ref[5] /
U(alt2) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%]

;model(Medium):
U(alt1) = b1[0.6] * A.ref[4] + b2[-0.1] * B.ref[10] /
U(alt2) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%]

;model(Large):
U(alt1) = b1[0.6] * A.ref[6] + b2[-0.1] * B.ref[15] /
U(alt2) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1 * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] $

Figure 8.10 shows design generated using the above syntax. Based on this design, the output
suggests that the most efficient results will be obtained if the first segment is represented by 10% of
the final sample, whereas the remaining two segments should make up 45.5% and 44.5% of the final
sample. In this way, if there exists only enough budget to collect data from 200 respondents, then
20 respondents should be sampled from segment 1 (i.e., the ‘small’ segment), 91 from segment 2 (i.
e., the ‘medium’ segment), and the remaining 89 from segment 3 (i.e., the ‘large’ segment).

169Advanced Features in Generating Efficient Designs

© 2012 ChoiceMetrics

Figure 8.10: Heterogeneous pivot design output screen

8.4 Including covariates in generating efficient designs

8.4.1 Designs with covariates

Including covariates (e.g., socio-economic data such as income, gender, car-ownership, etc.) in the
model estimation may result in loss of efficiency when the design was generated ignoring these
covariates. So far, only attributes have been considered in the model specification, but it is common
to include covariates in the estimation process. Analysts should primarily be interested in the
efficiency of the SC data collected rather than being concerned about the efficiency of the underlying
SC design. Designs should be constructing in a manner that will reflect the final data to be collected,
including any possible covariates.

Rose and Bliemer (2006) demonstrate how efficient SC experiments may be constructed to account
for covariates, and how minimum quotas may be established in order to retain a fixed level of
efficiency. The procedures for doing this are not much different for constructing efficient designs
without considering any covariates. Assuming categorical covariates (or continuous covariates coded
categorically), it is possible to calculate the AVC matrix for a SC study by constructing a set of
segments based on combinations of covariates, and assigning to each segment one or more SC
designs. If multiple covariates are to be analyzed, the analyst may wish to construct a full factorial or
fractional factorial of the possible combinations formed by the covariates and assign to each the
generated design. Next the analyst may generate segment specific efficient designs that minimize
the AVC matrix for the pooled data. Procedures similar to those discussed here may be used to do

170 Ngene User Manual

© 2012 ChoiceMetrics

this, however, rather than having one design, the analyst now has to deal with multiple ‘stacked’ or
pooled designs.

Figure 8.11 shows two different designs; the one on the left generated without a gender covariate and
the one on the right with. Below each of the design are the AVC matrices for the two designs
assuming that gender either is or is not included in the model utility function during the estimation
process. Examination of the different AVC matrices highlights the fact that an efficient design
generated without accounting for possible covariates may potentially lose efficiency when the
covariate is included in the estimation process. This is because any covariate will impact upon the
choice probabilities of the design and hence will impact upon the elements contained within the AVC
matrix.

Figure 8.11: Comparison of efficient design with and without accounting for covariates

If the covariates are continuous in nature, then the above methods cannot be handled easily. If the
above procedure is to be employed, then the number of segments that can be formed may be so
large as to not be computationally possible to handle. If this is the case, then the analyst may have
to resort to Monte Carlo simulations to simulate the likely data that is expected to be collected.
Whilst this will generally take much longer to locate an efficient design than when using the true
analytical AVC matrix, given the full factorial of possible covariate combinations that may possibly
be formed by combining certain covariates, the use of Monte Carlo simulations may actually require
much less time in this instance.

In Ngene, covariates are handled similarly to pivot type designs in that they require the use of the
fisher property. As with pivot style designs, the fisher property may be used to generate
homogenous or heterogeneous covariate style designs. Also, similar to pivot designs, the analyst is
required to nominate a weight representing the proportion that each covariate will appear in the final
sample. For example, assuming that the analyst wishes to construct a design allowing for a gender
covariate (male = 1) and assuming that the analyst believes that males and females should be
sampled equally, the fisher property for a homogeneous covariate design might look thus

;fisher(F1) = des1(Male[0.5], Female[0.5])

Similarly, the fisher property for a heterogeneous covariate design for the same example might look

;fisher(F1) = des1(Male[0.5]) + des2(Female[0.5])

171Advanced Features in Generating Efficient Designs

© 2012 ChoiceMetrics

Also similar to pivot designs, the analyst is required to inform Ngene what variables in the utility
specification are covariates. For covariates, the suffix .covar is added after an attributes name (e.g.,
gender.covar).

Within a single model, a number of rules exist related to the specification of covariates. Firstly, a
covariate can only have one level per model (e.g., gender.covar[1]). As such, different levels of

the covariate design must be assigned over models. Secondly, covariates can only be assigned to J-
1 alternatives.

Example syntax for a homogeneous covariate design is represented below. Note that in setting out
the utility specifications, both of the above mentioned rules are met. For example, the gender
covariate appears in only 2 of the three utility functions within each model. Secondly, the two levels
of the gender variable are spread over the two models (‘male’ and ‘female’).

Design
;alts(Male) = Alt1, Alt2, Alt3
;alts(Female) = Alt1, Alt2, Alt3
;rows = 12
;eff = F1(rp,d)
;fisher(F1) = des1(Male[0.5], Female[0.5])
;rdraws = Halton(150)
;con

;model(Male):
U(Alt1) = Con1[1.2] + A[n,-0.6,0.1] * A[6,8,10,12] + B[-0.4] * B[4,8] +
C1[0.3] * C1[0,1] + gender[n,-0.6,0.1]*gender.covar[1] /
U(Alt2) = Con2[0.8] + A * A + B * B +
C2[0.8] * C2[0,1] + gender[n,-0.6,0.1]*gender.covar[1] /
U(Alt3) = A * A +
C3[-1.0] * C3[0,1]

;model(Female):
U(Alt1) = Con1[1.2] + A[n,-0.6,0.1] * A[6,8,10,12] + B[-0.4] * B[4,8] +
C1[0.3] * C1[0,1] + gender[n,-0.6,0.1]*gender.covar[0] /
U(Alt2) = Con2[0.8] + A * A + B * B +
C2[0.8] * C2[0,1] + gender[n,-0.6,0.1]*gender.covar[0] /
U(Alt3) = A * A +
C3[-1.0] * C3[0,1] $

Figure 8.12 shows a design generated using the above syntax. In presenting the output, design for
the gender equal to zero (female) can be seen to be shown second, with the associated covariate
columns taking the value zero for all choice situations. Similarly, the design for ‘male’ is shown
taking the value 1 for the associated covariate columns for all choice situations.

Also, as with pivot designs, Ngene allows for the simultaneous optimization of the design and the
proportions of the covariates required within the final sample collected. Once more, this is handled in
the weighting section of the fisher property. Rather than assign a single weight to each level of a
covariate, the analyst may specify a range of weights. This is done by separating a lower weight
bound from an upper weight bound by a colon. For example, the syntax female[0.1:0.6] will

allow the proportion of females in the final data set to have a weight anywhere between 0.1 and 0.6 in
the optimization of the overall design Fisher Information matrix. Note that for this to work, the upper
weight bounds provided must sum to one or more. Note also, that this function may be applied to
both homogenous and heterogeneous covariate designs. For more information on this, see the

172 Ngene User Manual

© 2012 ChoiceMetrics

earlier discussion on pivot designs (Section 8.3.2).

Figure 8.12: An example covariate design

8.5 Designs within designs: Designs with scenarios in Ngene

Typically, in presenting SC experiments to respondents, the analyst must first construct a scenario
to frame the experiment. In most studies, the constructed scenarios are fixed over choice situations
and respondents. Figure 8.13 shows an example choice situation for a health study. Above the
choice situation, respondents are presented with a scenario of confronting a 30 year old patient with
congenital heart disease. In most studies, this scenario would be replicated (i.e., it would not vary)
over repeated choice situations.

173Advanced Features in Generating Efficient Designs

© 2012 ChoiceMetrics

Figure 8.13: Example choice situation with a fixed scenario

Often however, the analyst may wish to vary the scenario from one choice situation to the next. An
example of this is presented in Figure 8.14 where the characteristics of the patient are varied over
two different choice tasks. In varying the characteristics of the scenario over the different choice
tasks, it should be noted that within any given choice task, the levels shown in the scenario are
constants across all J alternatives. That is, the patient remains 30 years of age for the ‘Brand A’,
‘Brand B’ and ‘none’ alternatives. In this way, when setting up the experimental design, scenario
characteristics should be treated in the same manner as covariate attributes in terms of being
entered into only J-1 utility functions (alternatively, one could interact them with design attributes).

174 Ngene User Manual

© 2012 ChoiceMetrics

Figure 8.14: Example choice situation with changing scenarios

In Ngene, it is possible to force an attribute level to be the same for two or more different alternatives
via a slight variation in the usual utility function specification. Typically, in a utility function, the
values supplied after an attribute’s name will represent the levels that that attribute may take. For
example, age[20,30,40,50], suggests that the age variable may take the values 20, 30, 40 or

50. In Ngene, if the age variable appears in a second alternative, it is possible to reference the
original attribute and constrain the value that the attribute level in the second alternative takes to be
the same as the level in the first alternative. This is done by specifying the name of the original
attribute rather than providing attribute levels when writing out the utility function for the second
attribute. For example,

U(Alt1) = A[-0.6] * age[20,30,40,50]
U(Alt2) = A * age[age]

In the second alternative, the age attribute references the level provided in the first alternative and will
constrain the level to be the same across the two alternatives. This is precisely what is required for
designs where the analyst wishes to vary levels in the scenarios presented to respondents. Note
that in setting out the syntax in this manner, the age characteristics will vary from one choice
situation to the next (taking the values 20, 30, 40 or 50), but take the same value for the commonly
named attribute across the two (or more) alternatives within the same choice situation. Note
however, as previously mentioned, such variables may only be entered into J-1 utility functions

175Advanced Features in Generating Efficient Designs

© 2012 ChoiceMetrics

unless they are to be specified as interaction effects. Thus, whilst the attribute may appear in any
choice situation presented to a respondent across all J alternatives (as per Figure 8.14), in the
actual modeling process, the variable will need to be treated similar to any socio-demographic
variable. Thus in the example given in Figure 8.14, the patient characteristics could be treated as
factors differentiating between a respondent choosing to prescribe medication (either ‘Brand A’ or
‘Brand B’) relative to not prescribing any medication.

Example syntax showing the full set of syntax for the above example is given below. In this syntax,
we have two such scenario attributes.

Design
;alts = alt1, alt2, alt3
;rows = 20
;eff= (mnl,d,mean)
;bdraws= halton(150)
;model:
U(Alt1) = SP1[3.2] + b1[(n,0.07,0.03)] * A[5,10,15,20] + b2[(n,1.2,0.3)]
* B[0,1,2,3] + b3[1.8] * C[0,1,2,3]
+ b4[0.6]*D[0,1] + age[-0.06]*age[20,30,40,50] + condition[0.4] * cond
[0,1,2,3] /
U(Alt2) = SP1[3.4] + b1 * A + b2
 * B + b3 * C
+ b4 * D + age * age[age] + condition * cond
[cond] $

Figure 8.15 shows output based on the above output. In the figure, we have highlighted the ‘age’ and
‘cond’ variables as they appear in the design to demonstrate that they are indeed constrained to
take the same levels across alternatives. Figure 8.16 shows the AVC matrix for the design given in
Figure 8.15. Note that the ‘age’ and ‘cond’ variables are represented in this matrix.

176 Ngene User Manual

© 2012 ChoiceMetrics

Figure 8.15: Example design output with constrained attribute levels

Figure 8.16: Example design output with constrained attribute levels

8.6 Algorithms for generating designs in Ngene

When executing the syntax (see Chapter 4), Ngene will generate a design according to the specified
properties. Different search algorithms have been implemented in order to generate a design.
Depending on the properties set, different algorithms will be defaulted by Ngene. If using the default,
no algorithm has to be specified in the syntax. However, if one would like to overrule the default, or
change settings of the algorithms, then one could add the alg property in the syntax.

For different types of designs (e.g., orthogonal, efficient, orthogonal efficient, with constraints, etc.)
different algorithms are used, including RSC (relabelling-swapping-cycling) algorithms, swapping
algorithms, and Modified Federov algorithms. For efficient designs, the swapping algorithm is the

177Advanced Features in Generating Efficient Designs

© 2012 ChoiceMetrics

default. The parameters for this algorithm can be changed, or even a different algorithm can be
selected.

If one would like to use a specific algorithm, one can specify this in the alg property, by choosing
one of the following:

;alg = swap
;alg = rsc
;alg = mfederov

Note that for the RSC algorithm, different combinations of the individual aspects of the algorithm can
be employed. For example, one could employ only the relabeling and cycling methods by specifying
only the appropriate letters in the alg property. This is shown below.

;alg = rsc

For example

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (mnl,d)
;alg = rc
;model:
U(alt1) = b11[-0.2] + b2[1.2] * A[0,1,2] + b3[2.5] * B[0,1] /
U(alt2) = b12[0.3] + b2 * A + b4[1.1] * C[2,4,6,8] $

will use only relabeling and cycling in searching for an efficient design.

Each algorithm also has a number of default settings. One can overrule these default settings by
changing the settings in the alg property. For example,

;alg = swap(random = 50, swap = 10, swaponimprov = 20, reset = 200,
resetinc = 50)

For a more detailed explanation of all the algorithm settings we refer to the alg property in the
Syntax Reference.

It is also possible to use an existing design as the initial starting design for the algorithm (which for
example can be used as a starting point for the swapping algorithm), one can add the start property
to the syntax, defining the filename of the initial design. First, the design should be present in the
project, either by importing a Microsoft Excel file (*.xls, *.xlsx, *.xlsm) or importing an Ngene design
file (*.ngd), see Section 3.3. Then it can be used as an initial design in the algorithm, for example:

;start = efficient design.xls

or

;start = design.ngs

Note that spaces are allowed in the filename.

Most algorithms will keep running indefinitely. It is possible to force an algorithm to stop after a

178 Ngene User Manual

© 2012 ChoiceMetrics

certain amount of time, or a certain number of iterations. For example,

;alg = swap(stop=total(10 mins))

will run the swapping algorithm for a total of 10 minutes, and

;alg = mfederov(stop=total(100000 iterations))

will run the Modified Federov algorithm for a total of 100000 iterations. An algorithm can also be
instructed to stop after a specified amount of time or number of iterations since the latest
improvement was found. For example

;alg = swap(stop=noimprov(80 secs))

will run the swapping algorithm until 80 seconds have elapsed since an improvement was found.

It is also possible to run several algorithms one after the other, so long as all but the last algorithm
have stopping criteria. The best design found from the previous algorithm will be used as the starting
design of the current algorithm. Specify a single alg property, and place a comma between the
algorithms you wish to run. For example:

;alg = mfederov(stop=total(10 secs)), swap

Finally, for very small designs, it may be possible to sequentially evaluate all possible designs. This
can be achieved by specifying ;alg=all . However it is only feasible for very small designs. The
percentage of all possible designs evaluated so far is shown below the trace in the output window, in
addition to the current evaluation.

;alg = all

8.7 Evaluating existing designs in Ngene

Instead of generating a new design, one may be interested in evaluating an existing design, for
example to check the efficiency under certain model assumptions. Similar as to using a start design
in an algorithm, we can read in an existing design that is currently in the project (importing again a
Microsoft Excel file or an Ngene design file), and refer to this file in the eval property. This property
overrules the alg property, in the sense that it will not search for a better design, but merely
evaluates the design and then finishes. For example,

;eval = efficient design.ngd

Instead of just evaluating the design, it is also possible to block an existing design (independent of
whether it was originally blocked or not). If the block property has been specified in the syntax,
Ngene will use this to block the design that is being evaluated. If a blocking column already exists
(possibly with a different number of blocks), it will be replaced with a new blocking column. For
example,

;block = 3
;eval = efficient design.ngd

Ngene will read in the design, evaluate it (with whatever model and efficiency measure specified in

179Advanced Features in Generating Efficient Designs

© 2012 ChoiceMetrics

the syntax), and also block the design in 3 blocks by adding (or replacing) a blocking column in the
design.

Note that if the design was saved using an evaluation version of Ngene, the number 0 was inserted in
place of all design levels, and so you will be unable to use the eval property.

8.8 Handling unlabeled alternatives

Stated choice experiments can contain either labeled or unlabeled alternatives. Labeled alternatives
occur where a heading conveys some meaning to the respondent beyond the order of the alternative
shown, for example, bus, car and train (see Figure 8.17a). Unlabeled alternatives occur where
headings convey no pertinent meaning beyond the order of the alternatives shown, for example,
Option A, Option B, etc (see Figure 8.17b for an example). Labeled and unlabeled choice
experiments are typically used for different purposes and to achieve different outcomes. For
forecasting purposes where brand may influence preference, labeled alternatives may be preferred.
Labeled experiments may also be preferred when one wishes to generate brand specific willingness
to pay values. Where forecasting is not the main objective of the study, but where understanding
preferences is, unlabeled experiments may be preferred as such experiments remove brand
influences from the choice and hence focus the trade-offs upon the attributes in the study. There
exist advantages and disadvantages for each type of experiment and the interested reader is referred
to Hensher et al. (2005) for a full discussion.

180 Ngene User Manual

© 2012 ChoiceMetrics

(a)

(b)
Figure 8.17: Example labeled and unlabeled stated choice tasks

When generating an experimental design, the distinction between labeled and unlabeled
experiments may be an important one. To understand why, consider the labeled and unlabeled
choice tasks shown in Figure 8.18. In both cases we have used the same attributes and attribute
levels, with the only difference being the headings of the alternatives. Two things stand out in terms
of the attribute levels we have chosen. Firstly, the attribute levels of the first two alternatives are
exactly the same. Secondly, the attribute levels of the last alternative are always the same, or worse
than the first two alternatives. When we consider the labeled experiment example, the fact that the
train and bus alternatives have the same attribute levels is not too problematic in that respondents
may still differentiate between the two alternatives based on the fact that one is a train and one is a
bus. As such, any respondent observed to choose the train alternative is revealing a preference for
train over bus, all other things being constant. Similarly, a respondent observed to choose the bus
alternative is revealing a preference for bus over train, all other things being constant. Consider now
the fact that the attribute levels of the car alternative are never better than the other alternatives.
Such a situation does not preclude the possibility of a respondent rationally selecting the car
alternative if both the unobserved and observed effects combined (i.e., the overall utility) associated
with car is greater than that of both train and bus. In terms of generating the experimental design,
this situation may manifest itself via a larger positive alternative specific constant associated with the
car alternative than for the train or bus alternatives.

181Advanced Features in Generating Efficient Designs

© 2012 ChoiceMetrics

(a)

(b)
Figure 8.18: Examples of problematic labeled and unlabeled stated choice tasks

Now consider the unlabeled choice task. The two issues discussed above, that is, two alternatives
taking the same attribute levels, and the fact that one alternative is never better on any attribute, will
now have a different impact upon how respondents would be expected to react to the experiment.
Taking the case of the first two alternatives being the same, any respondent facing this situation will
not be able to distinguish between the two alternatives and hence the choice becomes purely
random (however this may strictly not be true, as most people read left to right and hence the left
most alternative, option A in this case, is more likely to be selected). Thinking about the second
issue presented in the choice task, that is the fact that the last alternative is never better on any
attribute, then there exists no rational explanation for a respondent to select this alternative (i.e.,
other than left to right bias in answering the question, there is no reason that the unobserved effects
of the option should be any better or worse than the other alternatives, that is unless the respondent
has a fetish for the words option C, a highly improbable circumstance). We call such alternatives
dominated alternatives. As such, issues of alternatives being dominated and the repetition of all
attribute levels across alternatives may have a larger bearing on generating unlabeled choice
experiments than when generating labeled ones. This is not to suggest that dominance and attribute
level repetition may not be important for labeled choice experiments. Indeed, labeled choice
experiments may have dominated alternatives, however the dominance occurs purely as a result of
preferences for the labeled alternatives and not purely as an artefact of the attribute levels being
dominated.

An additional concern typically associated with unlabeled choice experiments relates to the fact that
the order of combination of the attributes associated with alternatives matters over the experimental
design, much more so than with labeled choice experiments. To see why, consider the series of
choice tasks shown in Figure 8.19. Assume that we were to present the two labeled choice tasks
given in Figure 8.19a to a respondent. Examination of the two choice tasks reveals that the bundles
of attribute levels we have used are the same, however the alternatives that we have assigned these
bundles of attributes to are different across the two choice tasks. In this instance, rotating the entire
bundle of attributes across the alternatives has not impacted upon how sensible the overall survey
would be to any given respondent. As such, the order of bundles of attribute levels is not likely to

182 Ngene User Manual

© 2012 ChoiceMetrics

have a behavioural impact upon the design (it might have a statistical impact however depending
upon the parameter priors).

183Advanced Features in Generating Efficient Designs

© 2012 ChoiceMetrics

Task 1

Task 2

(a)

Task 1

Task 2

(b)
Figure 8.19: Example of choice tasks with repeated alternatives

Now consider the two unlabeled choice tasks shown in Figure 8.19b. As with the two labeled choice
tasks, we have simply rotated the bundles of attribute levels that make up the alternatives of the first
choice task to make up the new choice task. Now, given the unlabeled nature of the experiment, the

184 Ngene User Manual

© 2012 ChoiceMetrics

order that the attribute level bundles appear do matter. This is because if the respondent
demonstrated a preference for the bundle of attribute levels associated with Option B in the first
choice task, then clearly they should prefer Option A in the second choice task (again, ignoring any
preference the respondent may have for the words ‘Option B’). As such, when a particular
combination of attribute levels is repeated in an unlabeled choice experiment, even if the attribute
level bundles are associated with different alternatives, no additional information is theoretically
obtained from the respondent.

It is possible to prevent these problems from occurring in Ngene. This is achieved via the alts
property, by placing an asterisk next to the names of the alternatives that one wants to prevent from
having
i) within choice task alternative repetition,
ii) strict attribute level dominance and
iii) choice task repetition given attribute bundle ordering.
Whilst this may apply to labeled choice experiments, it is more likely to prove useful in generating
unlabeled choice experiments. To demonstrate the property, consider

;alts = alt1*, alt2*, alt3*

Note that several other conditions must be met in the specification of the utility expressions to allow
the checks to take place. To prevent within choice task alternative repetition (i), and to prevent row
repetition in unlabeled choice situations (iii), all attribute names must be identical in the alternatives
that are to be compared. Every attribute specified in one alternative must be specified in the other,
and vice versa. Failure to do this for any alternative pair will result in the alternative repetition check
not being performed for that alternative pair, and a warning being issued. The order in which the
attributes are specified must not vary across alternatives. The presence of an alternative specific
constant, while unusual for unlabeled alternatives, will not affect the check for repeated alternatives
or row repetitions.

This design would be checked for alternative repetition:
Design
;alts = alt1*, alt2*
;rows=9
;eff=(mnl,d)
;model:
U(alt1) = a[-0.1]*A[96,114,126,144] + b[-0.5]*B[25,28,31,34] + c[0.1]*C
[20,40,60,80] /
U(alt2) = a*A + b*B + c*C

$

while this would not:
Design
;alts = alt1*, alt2*
;rows=9
;eff=(mnl,d)
;model:
U(alt1) = a[-0.1]*A[96,114,126,144] + b[-0.5]*B[25,28,31,34] + c[0.1]*C
[20,40,60,80] /
U(alt2) = a*A + b*B + c*D
[25,45,65,85]
$

185Advanced Features in Generating Efficient Designs

© 2012 ChoiceMetrics

To prevent dominance, all prior names must be identical in the alternatives that are to be compared.
Every prior specified in one alternative must be specified in the other, and vice versa. Failure to do
this for any alternative pair will result in the dominance check not being performed for that alternative
pair, and a warning being issued. The order in which the priors are specified must not vary across
alternatives. If multiple model specifications are provided for the same underlying design, the
dominance check will be performed for each model specification. Failure of the dominance check by
a choice situation on any of the model specifications will result in the design being rejected.

8.9 Handling probabilities and other attributes that must sum to a
number

In some situations, it is necessary to ensure that the attribute levels of multiple attributes sum to a
certain number, within each choice alternative. A key application is when probabilities are attached
to various outcomes.

Consider for example an SC choice scenario which contains two alternative travel routes. The travel
times via these routes vary from one trip to the next, resulting in what could broadly be called early,
on time, and late trips, where each of these times may be experienced with a certain probability. The
travel times will be attributes in the choice scenario, but so too will the probabilities. The challenge
then is to constrain the probabilities to sum to one.

In Ngene, such a constraint cannot readily be achieved with mechanisms such as the ;cond and ;
reject properties. An alternative approach is to specify levels for all probabilities bar one, then define
the final probability as one minus the sum of all other probabilities. This can be achieved using the
attribute level function feature, by placing 'fcn()' within the square brackets that define the attribute
levels, and placing an expression within these round brackets. Syntax for the above example is
provided below:
Design
;alts = alt1, alt2
;rows = 12
;eff = (mnl,d)
;alg = swap
;model:
U(alt1) = b1[0.5] * prEarly[0.2,0.4] * Early[10,12,14] +
 b2[0.2] * prOntime[0.5,0.3] * Ontime[20,22,24] +
 b3[-0.4] * prLate[fcn(1 - alt1.prEarly - alt1.prOntime)]
 * Late[25,27,29] /
U(alt2) = b1 * prEarly * Early +
 b2 * prOntime * Ontime +
 b3 * prLate[fcn(1 - alt2.prEarly - alt2.prOntime)] * Late
$

Care must be taken to ensure that no combination of explicitly defined probabilities can exceed one.
Note that each attribute in the function is defined by both the alternative and attribute names, with a
full stop placed in between. Also, in this example, the probability attributes enter the utility
expression only within an interaction (possible since version 1.1), although they could also enter the
utility expression as a main effect. At this point in time, only constants, attributes, and plus and
minus symbols can enter the expression. When functions are employed, only column based
algorithms can be used. This excludes the modified Federov and RSC algorithms, orthogonal
designs, and optimal orthogonal in the difference (OOD) designs.

Chapter 9

Designs With Continuous Attribute
Levels

187Designs With Continuous Attribute Levels

© 2012 ChoiceMetrics

9 Designs With Continuous Attribute Levels

9.1 Theory of designs with continuous levels

Simply put, any constraint one places on a design will impact upon the overall efficiency of that
design (where efficiency is defined in the terms outlined in Chapter 7). Orthogonality, as traditionally
viewed within the literature (see Chapter 6), represents one such constraint. A second constraint
often imposed on designs is attribute level balance. Attribute level balance occurs when each level of
an attribute is forced to occur an equal number of times in the design. This constraint is imposed so
that each point in preference space (represented by the attribute levels) is covered an equal number
of times. The attribute level balance constraint is often imposed on efficient designs, although this
need not be the case. Typically, when this constraint is relaxed, a minimum number of times each
level must appear is imposed, otherwise the levels of the design will tend to all go to the extremes of
the attribute level range, thus not allowing for tests of non-linearity in preference (e.g., see Section
8.1).

Where such a constraint is maintained, the overall efficiency of a design may be impacted upon as
changing one attribute level in one choice situation may result in an overall improvement in the
design, but such a change would require that another attribute level be changed somewhere else in
the design, possibly resulting in an overall worsening of overall level of efficiency of the design. For
example, consider an efficient design constructed using the following syntax.

design
;alts = alt1, alt2, alt3
;rows = 8
;eff = (mnl,d,fixed)
;con
;model:
U(alt1) = b1[1.2] + b2[-0.6]*A[6,8,10,12] + b3[-0.4]*B[4,8] + b4[0.3] *C
[0,1] /
U(alt2) = b5[0.6] + b2 *A + b3 *B + b6[0.8] *C
 /
U(alt3) = b2 *A + b7[-1.0]*C
 $

Table 9.1 presents an efficient design generated based on the above syntax. The overall D
p
-error of

the design is 0.799. In Table 9.1, we have highlighted the attribute level for the first attribute for
alternative 3 in choice situation 2. Keeping the remainder of the design fixed, if we change this
attribute level from a value of 8 to a value of 10, the D

p
-error of the design will improve to 0.789,

however in doing this, this attribute will no longer exhibit the attribute level balance property (10
would now appear three times whilst 8 would now appear only once over the eight choice situations).
As such, to maintain attribute level balance, we would be required to change one of the already
existing attribute levels of 10 to a value of 8. If we change the level 10 in choice situation three, then
the overall D

p
-error of the design will worsen to a value of 0.820. If we change the level 10 in choice

situation seven to 8, then the overall D
p
-error of the design worsens to 0.829. Thus, whilst changing

the original value led to an overall improvement in the efficiency of the design, the attribute level
balance property, which requires us to change another level in another choice situation somewhere
else in the design, prevents us from maintaining this gain, and in fact, results in a worsening in the

188 Ngene User Manual

© 2012 ChoiceMetrics

designs statistical efficiency. As such, we would prefer the existing design shown in Table 9.1 to
one where we swap the attribute levels as discussed above.

Table 9.1: Attribute level balance and efficient designs

Toner et al. (1999), Fowkes (2000) and Kanninen (2002) offer a number of different design methods
which we collectively call optimal choice probability designs that are designed to overcome this
problem. Both Toner et al. and Kanninen show analytically that utility or probability balance in choice
tasks represent an undesirable property, and in doing so suggest rules that minimize the variance of
estimates in an optimal manner, based on desirable or what Toner et al. refer to as magic p’s.
Although using a different set of arguments, Fowkes (2000) arrived at a similar conclusion deriving a
set of designs he termed boundary value designs. In each case, K-1 attribute levels are first
generated for each J alternatives, typically using an orthogonal or optimal orthogonal approach. The

last Kth attribute for each alternative is then generated as a continuous variable (usually a price
attribute). The values of these continuous variables are chosen such that the choice probabilities
take certain values that minimize the elements of the AVC matrix under the assumption of non-zero
prior parameters. Toner et al. (1999) achieves a similar result to those reported by Kanninen and
Fowkes. The boundary value method of Fowkes is somewhat different in derivation although the
implications remain the same. Toner et al. (1999), Kanninen (2002) and Johnson et al. (2006) have
determined the desirable probabilities for a limited number of designs (i.e., those involving two
alternatives), although non-linear programming may be used to determine these for a wider number of
designs. The boundary value method of Fowkes is somewhat different in derivation although the
implications remain the same. Appendix 9A outlines the steps required for generating this form of
design. We now discuss how to generate these designs in Ngene. In all cases however, prior
parameters are still required to generate this class of designs.

9.2 Designs with continuous levels in Ngene

In order to generate an optimal choice probability design, the first step is to generate a design with
non-continuous attribute levels. This initial design should have the same number of design
dimensions (i.e., alternatives, attributes, attribute levels and choice situations) with the exception of

the Kth attribute which is to be treated as continuous. For this attribute, any the levels can be
provided as long as they do not violate attribute level balance and hence require a different number of
rows be generated. For example, assuming the price attribute as the attribute to be later treated as
continuous, assigning it two attribute levels for a design to be generated in nine rows will require a
change in the number of rows required. Also, whilst not necessary, the specific levels chosen are
best selected if they are within the range that will be allowed when the attribute is later treated as
continuous. For example, if in the final design, the analyst will allow the price attribute to take any
value between $0 and $20, then the attribute levels for price in the initial design should be within this
range also. In generating the initial design, any type of design can be constructed. Note that, in

189Designs With Continuous Attribute Levels

© 2012 ChoiceMetrics

generating the design with continuous attribute levels, only the attributes that are allowed to take on
continuous levels will be changed. That is, all other attributes will be fixed based on the initial
design. Kanninen (2002) and Johnson et al. (2006) suggest using optimal orthogonal designs as the
initial start design, however other design types might provide more efficient results, particularly if
they are closer to the ‘optimal’ level of statistical efficiency.

To demonstrate, consider the following two sets of syntax used to generate potential start designs.
The first generates an optimal orthogonal design whilst the second creates an efficient design. In
specifying the optimal orthogonal design, no priors are required, whilst priors are required for the
efficient design. We will use both to construct initial start designs using both sets of syntax.

Design
;alts = Alt1, Alt2
;rows = 12
;orth = ood
;model:
U(Alt1) = b1 * X1[2,4,6] + b2 * X2[1,3,5] + b3 * X3[2,5,8] /
U(Alt2) = b1 * X1 + b2 * X2 + b3 * X3 $

Design
;alts = Alt1, Alt2
;rows = 12
;eff = (mnl, d)
;model:
U(Alt1) = b1[-0.2] + b2[0.3] * X1[2,4,6] + b3[0.4] * X2[1,3,5] + b4[-
0.6] * X3[2,5,8] /
U(Alt2) = b2 * X1 + b3 * X2 + b4
 * X3 $

Figure 9.1 shows the two designs generated using the above syntax. Both designs have been saved
as part of a project as can be seen by their appearance in the ‘Output’ tab of the project bar. The
designs were saved as ‘Initial OOD.ngs’ and ‘Initial Efficient.ngs’ respectively. Although not shown,
the D

p
-error of the efficient design was 0.058 versus a D

p
-error of 0.154 for the optimal orthogonal

design based on the set or priors assumed in generating the efficient design.

190 Ngene User Manual

© 2012 ChoiceMetrics

Figure 9.1: Two different initial designs

The next step in generating optimal choice probability designs is to construct the design, using the
initial design as the start point. As discussed in Section 8.6, an already saved design can be used
as the initial design when searching for a more efficient design via the start property. Thus for
example, to use the already saved ‘Initial OOD.ngd’ design as the start design, we would specify

;start = initial OOD.ngd

Kanninen (2002) and Johnson et al. (2006) derived analytically, a set of probabilities that will result in
an ‘optimal’ MNL design (i.e., the most efficient design possible, with the smallest standard errors).
These derivations however apply only to designs generated for MNL models as well as for only a
small subset of possible design dimensions (e.g., these probabilities are known only for designs with
two alternatives with between two and eight attributes, and are limited to designs with generic
parameters; see Appendix 9A). Rather than limit the type of model and dimensions of the design
allowed, Ngene uses a search algorithm known as the Nelder-Mead algorithm to determine the final
attribute levels for the attribute that is to be treated as continuous (see Appendix 9B). Whilst this
means that the design cannot be guaranteed to be ‘optimal’, the resulting design should be close to
optimal. In any case, the user must specify that they wish to use the Nelder-Mead algorithm when
generating designs with continuous variables. This is done via the alg property (see Section 8.6). The
syntax to do this is

;alg = neldermead

The Nelder-Mead algorithm has a number of associated parameters that may be useful in limiting the
amount of output reported. Unlike efficient designs, when one allows for continuous attribute levels in
a design, the number of possible designs effectively becomes infinite (e.g., an attribute might take
the value 2.21421452 or 2.21421453 or 2.21421454) with very slight changes producing

191Designs With Continuous Attribute Levels

© 2012 ChoiceMetrics

improvements in statistical efficiency. Specific parameters for the Nelder-Mead algorithm are listed
below. Note that these are option parameters, and the syntax above will work without them.

neldermead(converge=<float>, runs=<integer>, nointerim, seed=<integer>)

where

converge: minimum distance required between the best and other all candidate solutions in order to
terminate (default=0.001). Distance is relative to attribute level lower and upper bounds.

runs: the number of runs to perform (default=1). Each run is an independent trial and begins with an
entirely new set of random allocations to the continuous attributes. The sole exception is the first run
where one copy of the original design is maintained.

nointerim: only report improved designs upon convergence, not as they are found (which is default).
Duplicate designs will be reported if there is no improvement between restarts.

seed: a number to initialize the pseudo-random number generator. This allows experiments to be
repeated if so desired.

Note, that where specified, not all parameters are required. Thus for example, the analyst may
specify a convergence criteria in addition to the nointerim criteria but omit the runs and seed
parameters.
Note also that in addition to these parameters, stoping criteria, as reported in Section 8.6 may also
be applied to the Nelder-Mead algorithm. Thus, for example the following syntax may be used.

;alg = neldermead(nointerim=0, stop=total(5000 iterations))

The final syntax used to generate a design with continuous variables is handled within the utility
specifications. In generating a design with continuous attribute levels, the analyst must specify
which attributes are to be treated as continuous as well as place a range on the levels that these
attribute may take. Traditionally, attribute levels in Ngene are specified in square brackets after the
attribute name, with different levels separated by commas (e.g., X3[2,5,8]). Where an attribute is

to be treated as a continuous variable, the analyst must specify the lower and upper values of the
range separated by a colon (for example, X3[2:10] would allow the attribute levels of X3 to take

any value, between 2 and 10). Note that adding a second colon will generate discrete attribute levels,
from the lower bound to the upper bound, with a step size specified after the second colon (e.g.
[2:10:0.5]). Complete syntax for generating a design with continuous levels is given below. In the

syntax shown, the start design is given as the ‘Initial OOD.ngs’ design. This syntax can be easily
changed to use the ‘Initial Efficient.ngs’ as the initial start design.

Design
;alts = Alt1, Alt2
;rows = 12
;eff = (mnl, d)
;alg = neldermead(nointerim=0, stop=total(5000 iterations))
;start = initial OOD.ngd
;model:
U(Alt1) = b1[-0.2] + b2[0.3] * X1[2,4,6] + b3[0.4] * X2[1,3,5] + b4[-
0.6] * X3[2:10] /
U(Alt2) = b2 * X1 + b3 * X2 + b4
 * X3[2:10] $

192 Ngene User Manual

© 2012 ChoiceMetrics

Figure 9.2 shows the resulting design based on the above output, whilst Figure 9.3 shows the
resulting design based on using ‘Initial Efficient.ngs’ as the initial design. A comparison of these two
Figures suggests that using the efficient design as the initial design resulted in a lower D

p
-error

(0.058) than the optimal orthogonal design (D
p
-error = 0.072), hence hinting at the fact that the

results may be sensitive to the initial design assumed. The primary reason for this sensitivity lays in
the fact that ‘optimality’ is linked to the choice probabilities and by imposing too narrower a range on
the values that a continuous variable might take, the algorithm may not be able to achieve these
desirable probabilities. In any case, it need not hold that using an efficient design as the start design
will always be a better choice than using a non-efficient design. Nevertheless, this result does
highlight that for the specific example chosen, there appears greater room for improvement in terms
of statistical efficiency for the initial optimal orthogonal design (D

p
-error = 0.154 to 0.072) then there

was for the initial efficient design (D
p
-error = 0.058 to 0.057).

Examination of Figures 9.2 and 9.3 reveals that the attribute levels for the attributes that were not
allowed to take continuous levels are the same as those assumed in the initial designs (see Figure
9.1). The attribute levels of attribute X3 however are now no longer fixed integers, but rather
continuous levels fixed within the range specified in the syntax.

Figure 9.2: Continuous level design based using an optimal orthogonal design as the start
design

193Designs With Continuous Attribute Levels

© 2012 ChoiceMetrics

Figure 9.3: Continuous level design based using an efficient design as the start design

Figure 9.4 show the choice probabilities for the continuous attribute level design shown in Figure 9.2.
Whilst the choice probabilities are not exactly the same within each choice situation (as should
occur if one used the analytical choice probabilities to design the experiment), there does appear to
be certain probabilities that re-occur over the design. This once more highlights problems with trying
to impose utility or probability balance in a design (see Section 7.1.8), as such probabilities will
typically result in a significant loss of statistical efficiency.

194 Ngene User Manual

© 2012 ChoiceMetrics

Figure 9.4: Choice probabilities for a continuous level design

The examples shown above are for MNL designs with only two alternatives and generic parameter
estimates. As suggested however, the Nelder-Mead algorithm is not limited to problems dealing with
MNL designs or to problems involving only two alternatives. Indeed, the procedures outlined above
may be applied to any model type, as well as to experimental design problems with any number of
alternatives. Further, the method can also be applied with Bayesian prior parameter distributions.
Figure 9.5 shows a design generated with continuous attribute levels for a panel MMNL with generic
and alternative specific parameters allowing for Bayesian prior parameters based on the syntax
below. We present this Figure to demonstrate the flexibility of the approach.

Design
;alts = Alt1, Alt2, Alt3
;rows = 12
;eff = (rppanel, d)
;bdraws = gauss(2)
;rdraws = gauss(2)
;model:
U(Alt1) = b1[-0.2] + b2[n,0.3,0.1] * X1[2,4,6] + b3[(n,0.4,0.1)] * X2
[1,3,5] + b5[-0.6] * X3[2,5,8] /
U(Alt2) = b2 * X1 + b4[(n,0.3,0.1)] * X2
 + b5 * X3 $

Design
;alts = Alt1, Alt2, alt3
;rows = 12
;eff = (rppanel, d)
;bdraws = gauss(2)
;rdraws = gauss(2)
;alg=neldermead
;start= RP panel efficient.ngd
;model:
U(Alt1) = b1[-0.2] + b2[n,0.3,0.1] * X1[2,4,6] + b3[(n,0.4,0.1)] * X2
[1,3,5] + b5[-0.6] * X3[2:10] /
U(Alt2) = b2 * X1 + b4[(n,0.3,0.1)] * X2
 + b5 * X3[2:10] $

195Designs With Continuous Attribute Levels

© 2012 ChoiceMetrics

Figure 9.5: Choice probability design with continuous attribute levels for a panel MMNL
model

9.3 Appendix 9A Steps in generating choice designs with
continuous attribute levels

There exist three main steps in generating CP types of designs. We now outline these steps.

Step 1: Generate an initial start design. Kanninen (2002, 2005) and Johnson et al. (2006) suggests
that this initial design be such that it represents only k -1 attributes (i.e., the initial design omits a

single (common across alternatives) attribute for each of the alternatives). The kth omitted attribute in
CP designs must be continuous in nature, otherwise the method will not work. Given that most

choice problems will contain a price or cost attribute, Kanninen suggests that the k th omitted
attribute be that attribute (in transport problems, time attributes will often also be present, and hence
may also be used in generating CP designs). For best results, Johnson et al. (2006) recommends
that the initial design be orthogonal and in the case of two alternatives with all attributes taking two
levels, that the second alternative be constructed using the foldover of the first alternative.

Step 2: Select attribute levels for the k th omitted attribute such that the choice probabilities for each
choice situation in the design assume certain values. Note that as with efficient designs, the
generation of CP designs requires the use of prior parameter estimates in order to determine the
choice probabilities over the design. If zero-valued priors are assumed, as with optimal orthogonal
designs, then the choice probabilities will simply be fixed and equal to 1/J and hence it will not be
possible to generate the design. In allocating the attribute levels, the desirable choice probabilities
that the analyst should attempt to aim for are shown in Table 9A.1 for a small number of designs. In

196 Ngene User Manual

© 2012 ChoiceMetrics

generating values for the k th attribute, the analyst may have to let go of the attribute level balance
assumption common in generating designs, and further, may have to let go of the assumption that
the attribute can only take on integer values.

Table 9A.1: Optimal Choice probability values for specific designs (adapted Johnson et al.
2006)

The probabilities shown in Table 9A.1 were derived analytically. Rather than rely on these
probabilities which are known only for designs generated for MNL models, as well as for only a small
subset of cases, Ngene uses the Nelder Mead algorithm to search for an optimal design. The Nelder
Mead algorithm is discussed in Appendix 9B.

Step 3: The final stage, advocated by Kanninen, is to update the prior parameter values and attribute
levels so as to optimise the AVC matrix for the data. Seeing that discrete choice modelling is
undertaken on choice data and not on choice designs, Johnson et al. (2006) advocates using a
large pilot or pretest sample, and/or stopping the main sample partway through so as to update the
prior parameter values used in generating the original design. With the new updated priors, the levels
of the changing attribute can be reworked so as to produce the desired choice probabilities for the
data. As such, over the course of data collection, different respondents may be given different
versions of the design, at least in terms of what they observe for the attribute that is allowed to
change.

9.4 Appendix 9B The Nelder Mead algorithm

9B.1 Introduction

The Nelder-Mead method (Nelder & Mead, 1965) is a computational technique for solving non-linear
optimisation problems. The method is what is known as a local search technique (also referred to as
an incomplete method). This means that although the method will locate a solution to a problem,
that solution may only be locally optimal rather than globally optimal (so there may exist a better
solution that the method fails to find). The motivation for the use of local methods is that
guaranteeing the optimality of a solution is for many problems too computationally intensive to be
feasible and is often of little practical benefit. Although in theory there are situations where the
Nelder-Mead method will not terminate, in practice the finite precision and bounds of the floating
point numbers used in digital computers guarantee that the method will (eventually) converge and
terminate.

9B.2 Operation

The method maintains a set of tentative solutions. The size of this set is determined by the number
of unknowns in the problem. For a problem with N unknowns, a set of N+1 tentative solutions will be

197Designs With Continuous Attribute Levels

© 2012 ChoiceMetrics

maintained. With respect to optimising SP experimental designs with continuous attributes, the
number of unknowns is the number of continuous attributes multiplied by the number of rows in the
design. For the initial set of solutions, the levels for the continuous attributes are allocated randomly.
Following the initial random allocation of attribute levels, the algorithm iteratively either improves
upon the current worst tentative solution or shrinks all tentative solutions towards the best solution.
The specific process is as follows.

9B.3 Reflection/Extension

The centroid of the set of tentative solutions (excluding the worst) is first calculated. A new tentative
solution is obtained by reflecting the worst solution through this centroid, the rationale being that
moving away from the worst solution towards the others should result in an improved solution. If the
reflected solution does not improve upon the objective value of the worst solution the procedure skips
to contraction. Otherwise, if the new solution is an improvement, a further extension away from the
worst solution is considered. When the worst solution is a distance d from the centroid then the
reflected and extended solutions are a distance of 2d and 3d respectively from the worst solution.
The better of these two solutions replaces the worst tentative solution and the iteration is complete.

9B.4 Contraction

If reflection does not result in an improved solution, alternate solutions involving smaller changes are
considered. Two solutions are considered: one halfway between the current worst and the centroid,
the second halfway between the centroid and the reflected solution. Continuing the previous
discussion, these solutions will be distances of 0.5d and 1.5d from the worst solution respectively. If
neither of these solutions improves upon the worst the method instead applies shrinking. Otherwise,
the contracted solution with the better objective function valuation is adopted in place of the current
worst and the iteration is complete.

9B.5 Shrinking

If neither of the above steps has produced an improved solution, then all tentative solutions (including
the worst) are moved towards the best solution by a factor of 0.5, irrespective of whether this leads
to improvements in their respective objective function valuations. This concludes the iteration.

Unless the procedure exhausts its computational resources (i.e. a specified time or number of
iterations has elapsed) it will continue to iterate until all tentative solutions are within a distance of
the best solution. For a design with N rows and K continuous attributes, is defined to be:

where α is a user-definable value within the range 0 < α < 1. Smaller values of a lead to tighter
convergence criteria and hence more iterations prior to convergence.

9B.6 Multiple Runs and Tries

As with most local search algorithms, the solution obtained will depend on the starting conditions
(the initial set of random tentative solutions). Running the procedure multiple times from different
starting locations ensures that a single bad starting location does not unduly prejudice the final
outcome. The version of the Nelder-Mead procedure implemented in Ngene allows multiple repeated

198 Ngene User Manual

© 2012 ChoiceMetrics

runs and tries for this reason.

Each run is entirely independent and may involve multiple tries. Tries are not independent. Within a
run, the best solution from each try is conveyed to the subsequent try (as one of the initial tentative
solutions) so only the first try of a run uses an entirely random set of initial solutions. This ensures
that each try within a run produces an improved (or at least not worsened) solution. A try ends when
computational resources are exhausted or the tentative solutions converge. If computational
resources remain, a new try begins.

As runs are independent, additional runs do not necessarily lead to improved solutions. It must also
be noted that on the first run, a single copy of the design that is initially passed to the procedure is
preserved as a tentative solution, meaning that on this run only, the solution set for the first try is not
entirely random.

Chapter 10

Formatting experiments

200 Ngene User Manual

© 2012 ChoiceMetrics

10 Formatting experiments

The purpose of generating an experimental design is to create attribute levels for choice situations in
a survey. The respondent cannot be directly faced with the experimental design, as a matrix of
numbers does not have any meaning for the respondent. Instead, the experimental design matrix
has to be converted to choice situations that make sense to the respondent.

Ngene has the capability of transforming the design matrix to actual choice situations that can be
shown to respondents. In the design window, clicking on the “Formatted scenarios” tab brings up a
new screen in which the choice situations in the design are presented in a format that can be
understood by respondents (see Figure 10.1). Each row in the design will be put in a separate table
that presents the alternatives and attributes in a choice setting.

Figure 10.1: Moving from the design matrix to actual choice situations

201Formatting experiments

© 2012 ChoiceMetrics

Different style sheets can be applied, changing the colors and fonts. Users can create their own
stylesheets (*.css files) and put them in the Stylesheets folder found within the Ngene install folder.
An example of a different style sheet being applied is shown in Figure 10.2.

Figure 10.2: Style sheets change the look of the choice situations

Clicking on the “Configure scenario formatting” button brings up the scenario formatting screen as
shown in Figure 10.3.

202 Ngene User Manual

© 2012 ChoiceMetrics

Figure 10.3: Scenario formatting screen

The user can enter titles, headers and footers to the choice screens. Furthermore, the names of the
alternatives and attributes presented to the respondent can be entered, changing the names
obtained from the syntax file. This is shown in Figure 10.4.

203Formatting experiments

© 2012 ChoiceMetrics

Figure 10.4: Entering title, header and footer text, and change names of alternatives and
attributes

In case the user would like to change the order of the attributes or alternatives, the appropriate cell
can be selected, and from the pull-down list the required alternative/attribute combination can be
selected, see Figure 10.5.

Figure 10.5: Changing attribute order

To include radio buttons for the respondent to be able to select the preferred alternative, choices
have to be added. In the lower left corner, a choice can be added and named. Once at least one
choice has been added, it can be selected from the pull-down menu, see Figure 10.6. Choices with
the same name are grouped, i.e. only one of the radio buttons in such a group can be selected. In
some cases, multiple choices are required (such as a forced and an unforced choice if a no-choice
alternative is included).

204 Ngene User Manual

© 2012 ChoiceMetrics

Figure 10.6: Including choices in the choice experiment

Finally, the attribute levels can be formatted by clicking on the “Edit” button on the left, which brings
up the attribute formatting window, see Figures 10.7 and 10.8. For each attribute in each alternative,
the format of the attribute levels can be altered, such that it does not show just numbers (coding),
but shows the true levels to be presented to the respondent. The levels can be formatted for each
attribute separately, or for multiple attributes at the same time. For this purpose, select multiple
attributes on the left hand side (using <shift>-click to select a whole range, or <ctrl>-click to add
extra attributes). The numerical levels from the design and the actual formatted levels are shown.
Using the “#” symbol in the format adds the (numerical) level. Instead of numerical levels, words can
be used, etc.

205Formatting experiments

© 2012 ChoiceMetrics

Figure 10.7: Formatting attribute levels (using numbers)

Figure 10.8: Formatting attribute levels (using text or symbols)

While formatting the scenarios, the result can be previewed by clicking the “Preview” tab, see Figure
10.9.

206 Ngene User Manual

© 2012 ChoiceMetrics

Figure 10.9: Previewing the formatted scenarios

After formatting the scenarios, the scenario formatting screen can be closed by pressing “OK”. One
can go back to the design and display the final formatted choice screens (with functional radio
buttons). The design is formatted using HTML coding, which can be viewed by clicking on the “HTML
source code” tab, see Figure 10.10. This way, one can more readily implement the choice
experiment as an internet survey, although adding extra questions, managing multiple screens, and
storing the results in a database requires extra work.

207Formatting experiments

© 2012 ChoiceMetrics

Figure 10.10: Final formatted choice scenarios and HTML source code

If the design is saved, the design formatting will be included in the syntax so that the formatting is
preserved when the design is reopened. Clicking on the “Syntax” tab shows the syntax in which
extra lines have been added to describe the formatting, see Figure 10.11. It is recommended that
these properties not be altered directly from the syntax, but through the above tools instead. Directly
altering the properties might cause Ngene to crash.

208 Ngene User Manual

© 2012 ChoiceMetrics

Figure 10.11: Formatting syntax

Note that currently only the first design will be shown with scenario formatting. So if multiple designs
are specified with the fisher property, only the first will be shown.

Chapter 11

Syntax Reference

210 Ngene User Manual

© 2012 ChoiceMetrics

11 Syntax Reference

The following is an alphabetically ordered list of commands and properties for each command.

11.1 Definitions of syntax components

Routine
A routine consists of a single command and one or more properties. When a routine is run, a single
task is performed. Below is an example routine, which will be referred to in the following definitions.

Design
;alts(model1) = car, bus, train
;rows = 12
;eff = model1(d)
;alg = swap(reset=10000, resetinc=5000)
;model(model1):
 U(car) = /
 U(bus) = /
 U(train) =
$

Command
(e.g. Design)

A command instructs Ngene to run a particular type of task. It needs to be configured with one or
more properties.

Property
(e.g. alts, rows)

A property provides Ngene with information on how to run the task specified in the command. The
property word is specified immediately after a semicolon.

Property value
(e.g. 12, car)

A property value is a piece of information assigned to a property.

Property qualification
(e.g. (model1))

Some properties can be specified more than once. When this happens, each property that is
repeated needs to be qualified by a label that is specified between brackets immediately after the
property.

Label
(e.g. car, model1)

A label is a user specified word that is used to identify something that has been defined in syntax. In
the above example, the label 'car' identifies one of the alternatives, while 'model1' identifies a single

211Syntax Reference

© 2012 ChoiceMetrics

model specification. Labels cannot be reserved words.

Directive
(e.g. ;rows = 12)

A directive is the combination of a property and a property value. Any configured property will be
referred to as a directive in the manual and in error messages to improve clarity.

Parameter
(e.g. reset=10000)

Some properties allow additional information to be specified. These are specified in brackets as a
series of comma separated parameter name-parameter value pairs. In the above example, the
alg=swap directive has two parameters specified that provide additional information.

11.2 How this manual specifies syntax

Some of the Ngene syntax is very complex, and hence we have adopted some conventions in how
we prescribe the syntax, so as to avoid ambiguity.

Syntax in italics is optional

User specified values
In many instances, the user will need to enter their own value into the syntax. e.g. 12 in ;rows=12.
These user specified values will be treated as follows in our syntax prescription:
<data type(label)>

where data type can be:
integer - a whole number
decimal - a number with any level of precision
string - a text value

The label will be a very concise description of what the user specified value is for, and will typically
be referred to in the comments section using italics ("label").

Text colour
Blue text is used to represent syntax that must be specified verbatim. e.g. ;con

Red text is used for other instructions, and should not be entered as is. Examples include user

specified values, [mutually | exclusive | alternatives] (see below), and repetition (

..., see below).

Mutually exclusive alternatives
Sometimes several options are available, but only one can be applied. In this case, the mutually
exclusive options are surrounded by red square brackets ("[]"), and separated by red pipe symbols
("|"). The orth property is a good example:
;orth = [sim
 | seq
 | seq2
 | ood]

where the four possible cases are:
;orth = sim
;orth = seq

212 Ngene User Manual

© 2012 ChoiceMetrics

;orth = seq2
;orth = ood

It is also possible to have multiple levels of square brackets, nested inside each other.

Repetition
Often, several items, each with the same syntax rules, can be specified in some sort of list. They
may be separated by commas, plus symbols, pipe symbols or forward slashes. Rather than
repeatedly list the same syntax prescription, the ... symbol is inserted after the relevant separator
symbol. The actual syntax that can be repeated will be highlighted in a colour, as will the associated
... symbol and the separation character that immediately precedes it.

In the first example, the syntax that can be repeated is entirely highlighted:
<decimal(weight)> * <string(parameter)> , ...

This could be expanded to:
0.4*G1, 0.6*B1, 1.2*B2

In the second example, all rows of syntax that can be repeated are spanned a vertical line of colour:
 [<string(parameter)>[<PRIOR>]
 | <string(parameter)>.d[<PRIOR> |...]
 | <string(parameter)>.e[<PRIOR> |...]
]
 *
 <string(attribute name)><LEVELS>
 * ...
+ ...

This could be expanded to:
G1[0.4] * att1[2,4,6] * att2[3,5,7] + G2.d[0.6|0.8] * att3 + G3[-1.7] *
att4[1,2,3]

Examples
Finally, the syntax prescription, while unambiguous, can appear very confusing. Closely examining
examples is a useful way to become familiar with how the syntax is applied.

11.3 Design

Used to generate designs.

11.3.1 alg

description: Specifies what algorithm to use when generating efficient designs.

values: ;alg = [swap(random=<integer>, swap=<integer>,
swaponimprov=<integer>, reset=<integer>, resetinc=
<integer>, <STOP>)
 | rsc(<STOP>)
 | rs(<STOP>)
 | rc(<STOP>)

213Syntax Reference

© 2012 ChoiceMetrics

 | sc(<STOP>)
 | r(<STOP>)
 | s(<STOP>)
 | c(<STOP>)
 | all
 | mfederov(candidates=<integer>, <STOP>)
 | neldermead(converge=<float>, runs=<integer>,
nointerim, seed=<integer>)
 | eval(<string(name or path)>)]

where
<STOP> is
stop = [total(<integer> [secs | mins | iterations])
 | noimprov(<integer> [secs | mins | iterations])
]

default: If the property is not specified, an efficient design search (;eff) will use
;alg=swap.

;alg = swap(random=500, swap=1, swaponimprov=40, reset=10000,
resetinc=5000) (MNL model)
;alg = swap(random=500, swap=1, swaponimprov=40, reset=10000,
resetinc=5000) (RP model)
;alg = swap(random=500, swap=1, swaponimprov=40, reset=10000,
resetinc=5000) (RP panel model)
;alg = swap(random=500, swap=1, swaponimprov=40, reset=10000,
resetinc=5000) (EC model)
;alg = swap(random=500, swap=1, swaponimprov=40, reset=10000,
resetinc=5000) (EC panel model)
;alg = swap(random=500, swap=1, swaponimprov=40, reset=10000,
resetinc=5000) (RPEC model)
;alg = swap(random=500, swap=1, swaponimprov=40, reset=10000,
resetinc=5000) (RPEC panel model)
;alg = swap(random=500, swap=1, swaponimprov=40, reset=10000,
resetinc=5000) (model averaging)

;alg = mfederov(candidates=200000)

;alg = neldermead(converge=0.001, runs=1)

If the stop parameter is not specified, the algorithm will run indefinitely, and
will only terminate when the user chooses Stop.

comments: ;alg = swap
Elaborate swapping algorithm.

random: How many seed iterations to perform during the initial phase of
complete design randomization.
swap: How many swaps to perform for each attribute.
swaponimprov: How many swaps to perform for each attribute after an
improvement has been found by modifying that attribute.
reset: How many iterations with no improvement must elapse before a new
starting point with complete design randomization is generated.
resetinc: How many iterations to increase 'reset' by after each complete

214 Ngene User Manual

© 2012 ChoiceMetrics

design randomization.

;alg = rsc (rs, rc, sc, r, s, c)
Relabelling(r), swapping(s) and cycling(c) algorithm. And combination of the
three techniques can be specified.

;alg = all
Attempt to evaluate all possible designs. This is only feasible for very small
designs. The percentage of all possible designs evaluated so far is shown
below the trace in the output window, in addition to the current evaluation.

;alg = mfederov
Modified Federov algorithm.

candidates: The maximum size of the candidate set.

;alg = neldermead
Performs a local-search to allocate the continuous attributes of a design.
Discrete attributes will not be changed. Note: this algorithm requires that a
pre-existing design be loaded using ;eval first.

converge: minimum distance required between the best and all other
candidate solutions in order to terminate. Distance is relative to attribute
level lower and upper bounds.
runs: the number of runs to perform. Each run is an independent trial and
begins with an entirely new set of random allocations to the continuous
attributes. The sole exception is the first run where one copy of the original
design is maintained.
nointerim: only report improved designs upon convergence, not as they are
found (which is default). Duplicate designs will be reported if there is no
improvement between restarts.
seed: a number to initialize the pseudo-random number generator. This
allows experiments to be repeated if so desired.

;alg = eval
Evaluates an existing design (does not generate or optimize).

name or path: Either the filename of an open data file, or the complete path
of a data file.

;alg = <any algorithm>(stop = total(200 secs))
The algorithm <any algorithm> will stop after running for 200 seconds.

;alg = <any algorithm>(stop = total(3 mins))
The algorithm <any algorithm> will stop after running for 3 minutes.

;alg = <any algorithm>(stop = noimprov(10000 iterations))
The algorithm <any algorithm> will stop if no improvement has been found for
10000 iterations.

requirements:

incompatibilities
:

Factorial designs (;fact). Factorial designs are generated with a fixed
algorithm.
Orthogonal designs (;orth). Orthogonal and orthogonal efficient designs are
generated with a fixed algorithm.

215Syntax Reference

© 2012 ChoiceMetrics

Design evaluation (;eval).
Continuous attributes and ;alg=mfederov.
Attribute level rejection (;reject) and any non row based algorithm (all
except ;alg=mfederov).
Attribute level requirements (;require) and any non row based algorithm (all
except ;alg=mfederov).

example(s): ;alg = rs
;alg = rsc(stop = total(15 mins))
;alg = (random=500, swap=1, swaponimprov=40,
reset=10000, resetinc=5000)
;alg = mfederov(candidates=200000)

relevant manual
sections:

Appendix 7B: Steps in generating efficient SC designs
8.6: Algorithms for generating designs in Ngene
Appendix 9B: The Nelder Mead algorithm

11.3.2 alts

description: Specifies the alternatives in the model.

values: ;alts(<string(model label)>) = <string(alternative 1
name)>*, <string(alternative 2 name)>* , ...

default: This property and its property values are mandatory.

comments: Names of alternatives may contain numbers, but no spaces. These names
need to be used when defining the utility functions in the model property.

All alternative names that are followed by an optional asterix (*) will be treated
as unlabeled. A full discussion of the checks performed on unlabeled
alternatives is documented in Section 8.8.

;alts =
When a single model specification is present in the syntax, the alts property
does not need to be qualified.

;alts(<string(model label)>) =
When multiple model specifications are present in the syntax, the alts
property needs to be qualified with a label. This label will also be used to
qualify the utility functions specified in the model property. In this way,
different model specifications can have different numbers of alternatives.

requirements:

incompatibilities
:

The alternative names cannot be reserved words.

example(s): ;alts = car, train, bus

;alts(model1) = car, train, bus
;alts(model2) = train, bus

216 Ngene User Manual

© 2012 ChoiceMetrics

relevant manual
sections:

4.2: An example design syntax: Full factorial designs

11.3.3 bdraws

description: Specifies the type and number of draws for Bayesian prior parameters.

values: ;bdraws = [random(<integer(R)>)
 | halton(<integer(H)>)
 | sobol(<integer(S)>)
 | mlhs(<integer(M)>)
 | gauss(<integer(A)> , ...)
]

default: ;bdraws = halton(200) unless changed in the options dialog box.
If the property is not specified, the presence of Bayesian priors in the utility
expressions will determine whether Bayesian draws are drawn.

comments: ;bdraws = random
R pseudo-random draws.

;bdraws = halton
H quasi-random Halton draws.

;bdraws = sobol
S quasi-random Sobol draws.

;bdraws = mlhs
M draws using modified latin hypercube sampling.

;bdraws = gauss
Gaussian quadrature draws with A abscissas. One can specify a single
number of abscissas which will be used for all prior parameters, or provide the
number of abscissas for each prior parameter. In this case, the number of
abscissas per prior parameter are specified in a comma separated list in the
same order as the priors are introduced in the models.

The number of Gaussian quadrature draws is equal to the product of each
prior parameter's numbers of abscissas. Thus, Gaussian quadrature might
need a large number of rows when there are many prior parameters.

requirements: Lack of specification of any Bayesian priors will result in a warning.

incompatibilities
:

example(s): ;bdraws = halton(100)
;bdraws = gauss(5)
;bdraws = gauss(1,3,2,3)

relevant manual 7.3: Bayesian efficient designs

217Syntax Reference

© 2012 ChoiceMetrics

sections:

11.3.4 block

description: Specifies the number of blocks in the design.

values: ;block = <integer(number of blocks)>,
 [minsum | minmax],
 [total([<integer> mins | <integer> secs])
 | noimprov([<integer> mins | <integer> secs])
]

default: ;block = minsum, total(3 secs)
The <integer(number of blocks)> property value is mandatory.
If the property is not specified, no blocking column is generated.

comments: <integer(numBlocks)> (compulsory)
Simultaneous orthogonal or efficient designs can be blocked, i.e. a design
with S choice situations is divided into smaller designs with S/<integer(
number of blocks)> choice situations, where <integer(number of blocks)> is
the number of blocks.

For a simultaneously efficient design, the blocking column is orthogonal with
all other attributes.

For other designs, the correlations between the blocking column and all other
attributes will be minimized using a search procedure. The blocking column
will only be assigned for these designs when the design window is first open,
to prevent this calculation slowing down the efficiency optimization.

minsum (optional)
When assigning the blocking column using a search, minimizes the total
correlation values between the blocking column and all of the attributes.

minmax (optional)
When assigning the blocking column using a search, minimizes the
maximum correlation value between the blocking column and each of the
attributes.

total (optional)
When assigning the blocking column using a search, spend the specified
number of seconds or minutes to find the best blocking column.

noimprov (optional)
When assigning the blocking column using a search, accept the current
blocking column when no improvement has been found for the specified
number of seconds or minutes.

requirements:

incompatibilities

218 Ngene User Manual

© 2012 ChoiceMetrics

:

example(s): ;block = 3

;block = 2, minmax, noimprov(10 secs)

;block = 4, minsum, total(1 mins)

relevant manual
sections:

6.2.4: Orthogonal fractional factorial designs

11.3.5 bseed

description: Specifies the random seed for the 'bdraws=random' and 'bdraws=mlhs'
directives.

values: ;bseed = <integer>

default: ;bseed = random

comments: If bseed is not specified, the bdraws for random and mlhs will be completely
random each time the syntax is run. Otherwise, it uses the same seed each
time and therefore reproduces the same output each time.

requirements:

incompatibilities
:

example(s): ;bseed = 12345

relevant manual
sections:

7.3: Bayesian efficient designs

11.3.6 con

description: Specifies whether constants are to be considered when determining the
efficiency of a design.

values: ;con

default: If the property is not specified, constants are not considered in determining
the design efficiency.

comments: Only included whenever constants are to be considered in determining the
design efficiency.

requirements:

incompatibilities
:

example(s): ;con

219Syntax Reference

© 2012 ChoiceMetrics

relevant manual
sections:

7.2.2: Designs for estimating MNL models

11.3.7 cond

description: Specifies conditional expressions for attribute levels.

values: ;cond:
 [if (<LOGICAL EXPRESSION> , <LOGICAL EXPRESSION>)
 | fractional=<decimal(fractionalSize)%
]
, ...

where
<LOGICAL EXPRESSION> is
 [<VALUE>
 [< | <= | > | >= | = | <>]
 <VALUE>
 | <VALUE>
 =
 [<decimal(constant)> ,...]
]
 [AND | OR] ...

and
<VALUE> is
[<string(alternative)>.<string(attribute)>
| <decimal(constant)>
| <VALUE> [+ | -] <VALUE>
]

and
<VALUE> = [<decimal(constant)> , ...]

is equivalent to
<VALUE> = <decimal(constant)> OR ...

default:

comments: This property can be used for attribute levels that are conditional on other
attribute levels.
If many attributes are related through the conditional expressions, memory
problems may result. The solution is to specify a suitably low value of
fractionalSize. See 8.2.2: Constrained designs in Ngene for more details.

requirements: New attribute levels cannot be specified in the cond property. Instead, all
possible levels must be declared when the attribute is specified in the
model property, and these can then be constrained by the cond property.
Be careful, there is currently no check that the attribute levels you specify
in the cond property were specified in the model property, and levels that
are not in the later will be ignored in the former.

220 Ngene User Manual

© 2012 ChoiceMetrics

incompatibilities
:

Factorial designs (;fact).
Orthogonal designs (;orth).
Modified Federov algorithm (;alg=mfederov).
Multiple designs (i.e. use of the ;fisher property)
Attributes with a continuous specification

example(s): ;cond:
if(alt1.A = 10, alt2.B = [15,20,25])

relevant manual
sections:

8.2.2: Constrained designs in Ngene

11.3.8 eff

description: Generates an efficient design, and specifies the efficiency measure to
optimize on.

values: ;eff =
 <decimal(weight)> * <string(model name)>
 ([mnl | rp | rppanel | ec | ecpanel | rpec | rpecpanel
| ood],
 [d | a | b | s(<decimal(t threshold)>) | wtp(<string
(wtp label)>) | dw | aw | bw | sw(<decimal(t threshold)>
) | none],
 [fixed | mean | median | dev | min | max])
+ ...

default: ;eff = 1 * (mnl, d, fixed)

weight: 1
t threshold: 1.96
model name: blank (corresponding to a single ;model property that has not
been qualified with a label)
wtp label: blank (corresponding to a single ;wtp property that has not been
qualified with a label)

comments: This property directs Ngene to search for the most efficient design, where the
desired efficiency measure is specified through the property values.

The following efficiency measures are available:
d: d-error (based on the determinant of the AVC), minimized.
a: a-error (based on the trace of the AVC), minimized.
b: utility balance, maximized. Reported as a percentage, with higher
percentages representing greater utility balance.
s: s-efficiency measure (sample size based), minimized. Optionally
calculated with the user specified t threshold.
wtp: willingness to pay efficiency, minimised. Optimizes on a willingness to
pay measure specified with the ;wtp property. If "wtp label" is not specified,
the single unqualified ;wtp property is used to define the willingness to pay
measure. If "wtp label" is specified, the ;wtp property qualified with "wtp
label" is used to define the willingness to pay measure.

221Syntax Reference

© 2012 ChoiceMetrics

dw: d-error, maximized.
aw: a-error, maximized.
bw: attribute level balance, minimized.
sw: willingness to pay efficiency, maximised.
none: no comparison is made between two designs, and so all designs
considered during the search are reported. It is strongly recommended that
stopping criteria are specified for the search algorithm through the ;alg
property, as the sheer number of designs that are found will quickly
overwhelm Ngene.

For Bayesian designs, one efficiency measure is calculated per Bayesian
draw, resulting in a set of efficiency measures E. These measures can be
aggregated in a variety of ways:
mean: the mean E.
median: the median of E.
dev: the standard deviation of E.
min: the minimum value in E.
max: the maximum value in E.
fixed: the efficiency measure using a fixed prior. The mean prior is used for
normally distributed Bayesian priors, and the midpoint of the upper and lower
bounds is used for uniformly distributed Bayesian priors.

The efficiency measures will vary according to the type of model assumed.
The following model types are available:
mnl: multinomial logit model.
rp: MMNL model. Random parameters need to be specified in the utility
expressions. Any error components specified will be ignored.
rppanel: MMNL model accounting for panel nature. Random parameters
need to be specified in the utility expressions. Any error components
specified will be ignored.
ec: EC model. Error components need to be specified in the utility
expressions. Any random parameters specified will be treated as non-
random.
ecpanel: EC model accounting for panel nature. Error components need to
be specified in the utility expressions. Any random parameters specified will
be treated as non-random.
rpec: MMNL model with error components. Random parameters and/or error
components can be specified in the utility expressions, and all will be
considered.
rpecpanel: MMNL model with error components, accounting for panel nature.
Random parameters and/or error components can be specified in the utility
expressions, and all will be considered.
ood: optimal orthogonal designs. Only the d error can be optimised on.

Ngene allows multiple sets of utility expressions to be specified via the model
property, with each set being labeled. For example:
;model(short): ...
;model(medium): ...
If this is done, the eff property must reference the correct set of utility
expressions, with "model name" matching the label in the desired model
property. For example:
;eff = short(d)

222 Ngene User Manual

© 2012 ChoiceMetrics

If only a single set of utility expressions is specified, the model property does
not need to be qualified. For example:
;model: ...
If this is done, the eff property should not contain any value for "model name
". For example:
;eff = (d)

The specification of an efficiency measure, a Bayesian moment, a model
type, and a reference to a specific set of utility expressions will result in a
single efficiency value for any given design. However, multiple efficiency
values can be additively combined in the ;eff property using the + operator.
Prior to summation, each efficiency value added can be multiplied by "weight
", to place greater or lesser importance on each efficiency value. Any number
of individual efficiency measures can be added, although be warned that this
may slow down the search considerably, especially if panel model types are
specified.

requirements:

incompatibilities
:

Factorial designs (;fact).
Orthogonal designs (;orth).
Design evaluation (;eval).

example(s): ;eff = (mnl, s(3), fixed)
;eff = 1.5 * short(rp, d, mean) + 2 * medium(rp, d,
mean) + long(rp, d, mean)
;eff = (ec, wtp(wtp_all), median)

relevant manual
sections:

7.2.1 Efficiency measures

11.3.9 eval

description: Evaluates the specified data file.

values: ;eval = <string(name or path)>

default: The property value is mandatory.

comments: "name or path" can be the full path of an Excel or .CSV data file.
Alternatively, if the workspace is managed, "name or path" can refer to the
name of a data file in the current project.

A design will be created using the information specified in the entire syntax
(utility expressions, priors etc), with the levels as specified in the data file.

The data file should not contain a header row. Each row represents a single
choice situation. The first column must contain a number representing the
design number. If there is only one design, this must be a column of 1's. The
second column must contain increasing choice situation numbers (1, 2, ...).
All subsequent columns must contain the design levels, with a single column

223Syntax Reference

© 2012 ChoiceMetrics

representing an attribute within an alternative. Columns in the data file will be
assigned to attributes in the order that the attributes are specified in the
syntax.

requirements:

incompatibilities
:

When ';eval' is specified, the design is generated by reading in the design
levels from the specified data file. The following properties are an alternative
way for instructing Ngene how to generate a design, and hence are
incompatible with ';eval'.

Factorial designs (;fact).
Orthogonal designs (;orth).
User specified algorithms (;alg).

example(s): ;eval = RawDesign.xls
;eval = C:\Store\RawDesign.xls

relevant manual
sections:

8.7: Evaluating existing designs in Ngene

11.3.10 fact

description: Generates a full or fractional factorial design.

values: ;fact

default: N/A

comments: Full factorial designs
To generate a full factorial design, specify ';rows=all'. Care must be taken, as
large design dimensions will lead to a design with a huge number of rows in
the full factorial, and Ngene will crash when it runs out of memory.

Fractional factorial designs
To generate a fractional factorial design, specify the number of desired rows in
the fractional factorial with the ';rows' property. The design will be populated
with a random subset of the full factorial design.

Constraints
The factorial design can be constrained with ';reject' and ';require', but not
'cond'.

requirements:

incompatibilities
:

Orthogonal designs (;orth). Correlation values can still be interrogated in the
design window. The full factorial design will be orthogonal (using Pearson
Product Moment, CP Coefficient, Point Biserial and J Index correlation
measures). Use ';orth' in place of 'fact' to achieve orthogonality for fractional
factorial designs, as they are unlikely to be orthogonal using ';fact'.
Efficient designs (;eff). Efficient designs are merely an optimised fractional
factorial design, so the ';fact' property is superfluous when an efficient
design is desired. Nonetheless, all available efficiency results can be

224 Ngene User Manual

© 2012 ChoiceMetrics

interrogated in the design window.
User specified algorithms (;alg).
Design evaluation (;eval).
Blocking (;block).

example(s): ;fact

relevant manual
sections:

6.2.1 Full factorial designs
6.2.2 Fractional factorial designs

11.3.11 fisher

description: Specifies the design names, model names and weights that are used to
construct a Fisher matrix. Used with pivot designs and designs with
covariates.

values: ;fisher(<string(fisher label)>) =
 <string(design label)>(<string(model label)>[<decimal
(exact weight)> | <decimal(lower weight)>:<decimal(upper
weight)>] , ...)
+ ...

default:

comments: Specifying multiple model labels within a single design (as in example one
below) will cause a homogeneous design to be constructed. Specifying one
model label per design will generate heterogeneous designs.

Currently only one fisher property can be specified. This constraint is likely to
be relaxed in the future. Also, the formatted scenarios will only show the first
design. Again, this constraint will be relaxed in the future.

requirements:

incompatibilities
:

example(s): ;fisher(fish) = des1(small[0.33], medium[0.33], large
[0.34]) ? homogeneous design
;fisher(fish) = des1(small[0.33]) + des2(medium[0.33]) +
des3(large[0.34]) ? heterogeneous designs

relevant manual
sections:

8.3.2 Pivot designs in Ngene
8.4.1 Designs with covariates

11.3.12 foldover

description: Specifies whether a fold-over design will be generated.

values: ;foldover

225Syntax Reference

© 2012 ChoiceMetrics

default: N/A (by default no fold-over design is generated)

comments: A fold-over design doubles the number of choice situations, but removes all
correlation between two-way interactions.

requirements: Orthogonal designs (;orth).

incompatibilities
:

Factorial designs (;fact).
User specified algorithms (;alg).
Design evaluation (;eval).
Attribute level rejection (;reject).
Attribute level requirements (;require).

example(s): ;foldover

relevant manual
sections:

6.2.5 Orthogonal fractional factorial designs with two-way interactions

11.3.13 Formatting properties

A range of properties are appended to the syntax when design matrices are formatted using the
Scenario formatting system. It is strongly recommended that these properties are only modified
through this system, and not directly from the syntax. Directly editing these properties may cause
Ngene to crash when opening the design. Consequently, the syntax structure is not documented,
and the properties are only listed for your reference.

11.3.13.1 formatattributes

11.3.13.2 formatchoices

11.3.13.3 formatstylesheet

11.3.13.4 formattable

11.3.13.5 formattabledimensions

11.3.13.6 formattablefooter

226 Ngene User Manual

© 2012 ChoiceMetrics

11.3.13.7 formattableheader

11.3.13.8 formattablestyle

11.3.13.9 formattitle

11.3.14 model

description: Specifies the model structure.

values: ;model(<string(label)>):
 U(<string(alternative)>) =
 [<string(parameter)>[<PRIOR>]
 | <string(parameter)>.d[<PRIOR> |...]
 | <string(parameter)>.e[<PRIOR> |...]
]
 *
 <string(attribute name)>[.ref | .piv | .covar]<LEVELS>
 * ...
 + ...
/ ...

where
<PRIOR> is
[<decimal(fixed prior)>
| (n, <decimal(Bayesian mean)>, <decimal(Bayesian
std dev.)>)
| (u, <decimal(Bayesian lower bound)>, <decimal(Bayesian
upper bound)>)
| n, [<decimal(rp mean)> | __ | __] , [<decimal
(rp std dev.)> | __ | __]
| u, [<decimal(rp lower bound)> | __ | __] , [<decimal
(rp upper bound) | __ | __]
| ec, [<decimal(ec std dev.)> | __ | __]
]

and
<LEVELS> is
[[<decimal(level)> , ...] ([<integer(exact frequency)> |
<integer(low frequency)> - [<integer(high frequency)> |
inf]] , ...)
| [<string(attribute name to mimic)>]
| [fcn([<decimal(constant)>|<string(alternative name)>.
<string(attribute name)>] [+|-] ...)]
| [<decimal(lower continuous limit)> : <decimal(upper
continuous limit)>]
| [<decimal(lower limit)> : <decimal(upper limit)> :

227Syntax Reference

© 2012 ChoiceMetrics

<decimal(step size)>]
| [<decimal(pivot percentage)>% , ...]
]

default:

comments: This is the most elaborate property to be specified in the Design command. It
expresses the utility functions of each alternative (if one utility function is left out,
then this alternative is considered to be a no-choice option).

Each utility function is a linear combination of parameters and attributes.
Parameter names and attribute names are user-defined and may not include
spaces. If for different alternatives the same parameter name is used, then this
parameter is considered generic over these alternatives. Using the same attribute
name in different alternatives does not have an impact (although this can be used
as a shortcut: attributes in subsequent alternatives with the same name and no
levels specified will assume the levels of the first attribute instance).

Parameters and their priors
parameter[x] specifies that x is the prior value of parameter, where x can be a
single value for a fixed parameter, or can denote a random parameter distribution,
or may denote a Bayesian prior distribution (or a combination). For some designs
(such as orthogonal designs) x need not be specified and can therefore be
omitted. For generic parameters, the prior value x can only be specified the first
time and should be omitted in all other utility functions.

Fixed parameters with fixed priors:
parameter [x]

Random parameters with fixed priors:
parameter [n,x,y] for normal distribution with mean x and standard deviation y
(requirements: y>=0),
parameter [u,x,y] for uniform distribution with lower bound x and upper bound y
(requirements: y>x).

Error component with fixed prior:
parameter[ec,y] for normal distribution with mean 0 and standard deviation y
(requirements: y>=0).

Fixed parameters with Bayesian priors:
parameter [(n,x,y)] for Bayesian normal distribution with mean x and standard
deviation y (requirements: y>=0),
parameter [(u,x,y)] for Bayesian uniform distribution with lower bound x and upper
bound y (requirements: y>x).

Random parameters with Bayesian priors:
parameter [n,(u,x1,y1),(n,x2,y2)] for normal distribution with Bayesian mean
distributed with a uniform distribution (with parameters x1 and y1) and a Bayesian
standard deviation distribution with a normal distribution (with parameters x2 and
y2). Other combinations of distributions can be made.

Fixed parameters with fixed priors for a dummy or effects coded attribute:

228 Ngene User Manual

© 2012 ChoiceMetrics

parameter.d[x|y|z] for specification of priors for the first three dummy coded levels
of the associated four level attribute.
parameter.e[x|y|z] for specification of priors for the first three effects coded levels
of the associated four level attribute.
The associated attribute does not need to have levels specified. If levels are
specified, there must be one more than the number of priors, and the levels will
internally be dummy or effects coded for calculations in the current model
specification. Note however that in other model specifications that use the same
attribute, the specified levels may be used if the parameter associated with the
attribute is not dummy or effects coded. In this way, the dummy or effects coding
is associated more closely with the parameter specification than the attribute
specification.

Attributes and their levels
attribute [x] specifies that x is the range of attribute levels, where x denotes a
discrete or continuous range of attribute levels, or may be relative attribute levels
pivoted around a reference level.

Discrete attribute levels:
attribute [x1,x2,…]. Each level can only be specified once.

Non-balanced discrete attribute levels:
attribute [x1,x2,…](y1–z1,y2,…) is to be used in case attribute level balance is not
required; then attribute level x1 is required to appear between y1 and z1 times, x2
is required to appear exactly y2 times etc. To specify a maximum that equals the
number of rows, specify "inf" for the maximum.

Continuous attribute levels:
attribute [x1:x2]. Specific algorithms, such as Nelder-Mead, are required to take
advantage of continuous attribute levels. For other algorithms, the number of
levels generated will be equal to the number of rows in the design, and the levels
will be equally spaced.

Discrete attribute levels with bounds and a step size:
attribute [xLower:xUpper:stepSize] allows a large number of attribute levels to be
quickly specified. The levels xLower, xLower+stepSize, xLower+2*stepSize, ... are
utilised, until the upper bound xUpper is exceeded. If too few rows are specified,
not all levels may be used in the design.

Attributes that maintain the same levels as another attribute:
attribute[other attribute] not only specifies that the levels of the other attribute be
used for attribute, but also that the levels of the two attributes will be the same for
any given row of any given design. This is useful for including scenarios in the
experimental design.

Attribute level functions:
attribute[fcn(...)] will generate the attribute level by evaluating the function, which
can include constants, attributes, and plus and minus operators. This is useful for
specifying probabilities. Refer to Section 8.9 for more details.

Reference and pivot attributes

229Syntax Reference

© 2012 ChoiceMetrics

attribute.ref[<one level>] indicates that the attribute is a reference attribute with a
single level. attribute.piv[x1,x2,...] is a pivot attribute, where the levels can be
specified as positive or negative absolute values, or positive or negative
percentages.

Covariate attributes
attrib.covar[<one level>] indicates that the attribute is a covariate.

Interactions
The above specification does not adequately cover interactions, especially when
the interactions involve dummy coded attributes. For precise information on
interactions, refer to Section 7.2.9, and Section 6.2.4.

requirements
:

incompatibili
ties:

example(s): ;model:
U(alt1) = b1 + b2 * A[0,1,2] + b3 * B[0,1] /
U(alt2) = b2 * A + b4 * C[0,1,2,3]
? b2 is generic
? b3 and b4 are alternative-specific

;model:
U(alt1) = b1[-1] + b2[2] * A[0:2] + b3[0.5]
* B[0,1] /
U(alt2) = b2 * C[1,2,3](1-3,1-3,2) + b4[0.3] *
D[0,1,2,3]
? all parameters have fixed priors,
? levels of attribute A are continuous,
? levels of C need not be balanced
? (level 1 should appear 1 to 3 times, level 3 should
appear exactly twice)

;model:
U(alt1) = b1[-1] + b2[n,1,(u,0,0.2)] * A[0,1,2] + b3
[(n,0.5,0.1)] * B[0,1] /
U(alt2) = b2 * A[1,2,3] + b4
[n,0.3,0.1] * C[0,1,2,3]
? b1 is a fixed parameter with a fixed prior,
? b2 is a random parameter with a Bayesian standard
deviation,
? b3 is fixed parameter with a Bayesian prior,
? b4 is a random parameter with fixed priors.

relevant
manual
sections:

4.2: An example design syntax: Full factorial designs

230 Ngene User Manual

© 2012 ChoiceMetrics

11.3.15 orth

description: Generates an orthogonal design.

values: ;orth = [sim
 | seq
 | seq2
 | ood]

default: ;orth = sim

comments: Generates a fully orthogonal design, with no Pearson Product Moment
correlations between the levels of the attributes. The actual attribute pairs for
which no correlations will exist depends on the type of orthogonality specified.
 There may not exist an orthogonal design with the number of rows specified
with ';rows'. Hence, the user-defined number of rows will be used as a lower
bound.

Orthogonal designs may be blocked using ';block', and a foldover column may
be added using ';foldover'.

;orth = sim
Maintains orthogonality within and across all alternatives. This may require
many rows to be generated in the design.

;orth = seq
Maintains orthogonality only within each alternative. Each alternative must
have the same attributes with the same levels.

;orth = seq2
Maintains orthogonality only within each alternative. Each alternative may
have different attributes with different numbers of levels.

;orth = ood
Generates a design using the OOD efficiency measure and the OOD
algorithm.

For greater detail on the various types of orthogonal design, including their
generation within Ngene, refer to Chapter 6.

Efficient orthogonal designs
Specify ';eff' in addition to ';orth' to generate efficient orthogonal designs. A
custom algorithm will be implemented that spans all possible orthogonal
designs.

requirements:

incompatibilities
:

Factorial designs (;fact). Orthogonal designs are fractional factorial designs,
and full factorial designs are orthogonal, so ';fact' is superfluous when ';orth'
is specified.
User specified algorithms (;alg).
Design evaluation (;eval).
Attribute level rejection (;reject).
Attribute level requirements (;require).

231Syntax Reference

© 2012 ChoiceMetrics

example(s): ;orth = seq

relevant manual
sections:

6.2.4 Orthogonal fractional factorial designs

11.3.16 prec

description: Specifies the precision of all numbers reported in Ngene.

values: ;prec = <integer>

default: ;prec = 6 unless changed in the options dialog box.

comments: Naturally, all calculations are made with maximum precision, and outputs are
only rounded immediately prior to being reported.

requirements:

incompatibilities
:

example(s): ;prec = 8

relevant manual
sections:

11.3.17 rdraws

description: Specifies the type and number of draws for random prior parameters.

values: ;rdraws = [random(<integer(R)>)
 | halton(<integer(H)>)
 | sobol(<integer(S)>)
 | mlhs(<integer(M)>)
 | gauss(<integer(A)> , ...)
]

default: ;rdraws = halton(200) unless changed in the options dialog box.
If the property is not specified, the presence of random priors in the utility
expressions will determine whether random draws are drawn.

comments: ;rdraws = random
R pseudo-random draws.

;rdraws = halton
H quasi-random Halton draws.

;rdraws = sobol
S quasi-random Sobol draws.

232 Ngene User Manual

© 2012 ChoiceMetrics

;rdraws = mlhs
M draws using modified latin hypercube sampling.

;rdraws = gauss
Gaussian quadrature draws with A abscissas. One can specify a single
number of abscissas which will be used for all prior parameters, or provide the
number of abscissas for each prior parameter. In this case, the number of
abscissas per prior parameter are specified in a comma separated list in the
same order as the priors are introduced in the models.

The number of Gaussian quadrature draws is equal to the product of each
prior parameter's numbers of abscissas. Thus, Gaussian quadrature might
need a large number of rows when there are many prior parameters.

requirements: Lack of specification of any random priors will result in a warning.

incompatibilities
:

example(s): ;rdraws = halton(100)
;rdraws = gauss(5)
;rdraws = gauss(1,3,2,3)

relevant manual
sections:

7.2.3: Designs for estimating random parameters models

11.3.18 reject

description: Specifies which combinations of attribute levels in choice situations should be
rejected.

values: ;reject:
 <VALUE>
 [< | <= | > | >= | = | <>]
 <VALUE>
 [AND | OR] ...
, ...

<VALUE> is
[<string(alternative)>.<string(attribute)>
| <decimal(constant)>
| <VALUE> [+ | -] <VALUE>
]

default: When the property is specified, a value is mandatory.

comments: This property will prevent certain combinations of attribute levels from
appearing in the same row of the design. Logical expressions are specified in
this property, and if they evaluate to true for any potential row, the row is
rejected and cannot be placed in the design. In this way, it is possible to find
a constrained design. (An alternative approach is to use the ;require property,

233Syntax Reference

© 2012 ChoiceMetrics

where all logical expressions must evaluate to true when applied to all rows of
the design.) The ;reject property will only work on design search strategies
that modify designs by changing an entire row: factorial designs and the
modified Federov algorithm. To specify constraints with the swapping
algorithm, use the ;cond property instead.

Any number of independent logical expressions can be specified, although
care must be taken. A large number of constraints will reduce the number of
rows available to populate the design with (i.e. the candidate set size). The
number of rows that do not violate the constraints should be at least equal to
the number of rows for a factorial design, and greater than the number of rows
for the modified Federov algorithm (to allow some row exchange to take
place).

requirements: Factorial designs (;fact) or a row based search algorithm (;alg=mfederov).

incompatibilities
:

Orthogonal designs (;orth).
Non row based search algorithms (all except ;alg=mfederov).

example(s): ;reject:
alt1.A + 1 > alt2.B ,
alt1.B = alt1.C and alt1.D <> 0

relevant manual
sections:

8.2.2: Constrained designs in Ngene

11.3.19 rep

description: The number of draws to use in the sample of a panel based model.

values: ;rep = <integer>

default: When the property is specified, a value is mandatory.
When the property is not specified, the default is 200.

comments:

requirements:

incompatibilities
:

example(s): ;rep = 500

relevant manual
sections:

7.2.3: Designs for estimating random parameters models

234 Ngene User Manual

© 2012 ChoiceMetrics

11.3.20 require

description: Specifies attribute level conditions that must be met for a choice situation to
be acceptable in the design.

values: ;require:
 <VALUE>
 [< | <= | > | >= | = | <>]
 <VALUE>
 [AND | OR] ...
, ...

<VALUE> is
[<string(alternative)>.<string(attribute)>
| <decimal(constant)>
| <VALUE> [+ | -] <VALUE>
]

default: When the property is specified, a value is mandatory.

comments: This property will require that certain attribute level conditions be met for a
choice situation to be acceptable in the design. Logical expressions are
specified in this property, and all expressions must evaluate to true for a row
to be placed in the design. (An alternative approach is to use the ;reject
property, where if any logical expression evaluates to true for any potential
row, the row is rejected and cannot be placed in the design.) The ;require
property will only work on design search strategies that modify designs by
changing an entire row: factorial designs and the modified Federov algorithm.
To specify constraints with the swapping algorithm, use the ;cond property
instead.

Any number of independent logical expressions can be specified, although
care must be taken. A large number of constraints will reduce the number of
rows available to populate the design with (i.e. the candidate set size). The
number of rows that meet the conditions specified in the ;require property
should be at least equal to the number of rows for a factorial design, and
greater than the number of rows for the modified Federov algorithm (to allow
some row exchange to take place).

requirements: Factorial designs (;fact) or a row based search algorithm (;alg=mfederov).

incompatibilities
:

Orthogonal designs (;orth).
Non row based search algorithms (all except ;alg=mfederov).

example(s): ;require:
alt1.A + 1 > alt2.B ,
alt1.B < alt1.C

relevant manual
sections:

8.2.2: Constrained designs in Ngene

235Syntax Reference

© 2012 ChoiceMetrics

11.3.21 rows

description: Specifies the number of choice situations.

values: ;rows = [<integer>
 | all
]

default: This property and its property value are mandatory.

comments: ;rows = <integer>
Specifies the exact number of choice situations to be generated. There may
not exist an orthogonal design with the specified number of rows. Hence, if
orthogonal designs are specified with ';orth', the user-defined number of rows
will be used as a lower bound.

;rows = all
This option is only available when a factorial design is specified with ';fact'.
The maximum number of choice situations will be generated (i.e., the full
factorial). Care must be taken, as large design dimensions will lead to a
design with a huge number of rows in the full factorial, and Ngene will crash
when it runs out of memory.

Specification of the ';foldover' property will double the number of choice
situations specified with ';rows'.

requirements: ';rows = all' requires that ';fact' be specified.
<integer> cannot exceed the size of the full factorial if the ';fact' property is
specified.

incompatibilities
:

example(s): ;rows = 12

relevant manual
sections:

4.2: An example design syntax: Full factorial designs

11.3.22 rseed

description: Specifies the random seed for the 'rdraws=random' and 'rdraws=mlhs'
directives.

values: ;rseed = <integer>

default: random

comments: If rseed is not specified, the rdraws for random and mlhs will be completely
random each time the syntax is run. Otherwise, it uses the same seed each
time and therefore reproduces the same output each time.

requirements:

236 Ngene User Manual

© 2012 ChoiceMetrics

incompatibilities
:

example(s): ;rseed = 12345

relevant manual
sections:

7.2.3: Designs for estimating random parameters models

11.3.23 start

description: Uses the specified design as the starting design for an efficient design
search.

values: ;start = <string(name or path)>

default: When the property is specified, a value is mandatory.

comments: When performing an efficient design search, the seed design will be loaded
from the data file specified by the ;eval property.

"name or path" can be the full path of an Excel or .CSV data file.
Alternatively, if the workspace is managed, "name or path" can refer to the
name of a data file in the current project.

The starting design will be created using the information specified in the entire
syntax (utility expressions, priors etc), with the levels as specified in the data
file.

The data file should not contain a header row. Each row represents a single
choice situation. The first column must contain a number representing the
design number. If there is only one design, this must be a column of 1's. The
second column must contain increasing choice situation numbers (1, 2, ...).
All subsequent columns must contain the design levels, with a single column
representing an attribute within an alternative. Columns in the data file will be
assigned to attributes in the order that the attributes are specified in the
syntax.

requirements: Efficient design search must be specified (;eff).

incompatibilities
:

example(s): ;start = RawDesign.xls

;start = C:\Store\RawDesign.xls

relevant manual
sections:

8.6: Algorithms for generating designs in Ngene

237Syntax Reference

© 2012 ChoiceMetrics

11.3.24 store

description: Specifies how many designs to store in memory during a search.

values: ;store = [<integer>
 | all
]

default: 10

comments: ;store = <integer>
Retains the most recent <integer> designs in memory during a search, plus
the first design.

;store = all
Retains all designs in memory during a search, but the user must accept the
risk of memory issues.

Refer to the Options dialog box for more information.

requirements:

incompatibilities
:

example(s): ;store = 15

relevant manual
sections:

3.4: Output window

11.3.25 trimdist

description: Additionally reports Bayesian efficiency measures using a subset of all
Bayesian draws.

values: ;trimdist = <decimal number(low)>, <decimal number(high)
>

default: The two property values are mandatory.
If the property is not specified, the additional Bayesian efficiency measure
outputs are not reported.

comments: This allows a second set of Bayesian efficiency measures to be reported
using a subset of all available Bayesian draws.

For each efficiency measure, L draws with the lowest efficiency measures are
removed, as are H draws with the highest efficiency measures,
where:
L = Round(<decimal number(low)> / <total number of draws>)
H = Round(<decimal number(high)> / <total number of draws>).
Only the remaining draws are used to calculate the various Bayesian
efficiency moments (mean, minimum, maximum, standard deviation, median).
The draws discarded may vary from one efficiency measure (e.g. d, a) to

238 Ngene User Manual

© 2012 ChoiceMetrics

another.

requirements: Bayesian priors must be specified in the utility expressions for this to be
useful.

incompatibilities
:

example(s): ;trimdist = 10, 10

relevant manual
sections:

11.3.26 wtp

description: Specifies a willingness to pay expression that is used to generate a
willingness to pay efficiency measure.

values: ;wtp(<string(model label)>) =
<string(wtp label)>([* | <decimal(weight)> * <string
(parameter)> , ...] / <string(cost parameter)>)

default: When the property is specified, a value is mandatory.

comments: Multiple wtp efficiency measures can be generated, so long as each is
labelled with a unique "wtp label". All specified parameters must exist in the
associated model (either the model specification labeled with "model label",
or otherwise the default unlabeled model if the wtp property is unqualified).

If a star is specified in the numerator, all non-cost parameters will be included
in the wtp efficiency calculation. Alternatively, individual parameters can be
specified and weighted with "weight".

requirements:

incompatibilities
:

example(s): ;wtp(m1) = wtp1(0.4*G1, 0.6*B1 / G2), ? weighted
 wtp2(* / G2) ? all non-cost
parameters in the numerator

relevant manual
sections:

7.2.1 Efficiency measures

239Syntax Reference

© 2012 ChoiceMetrics

11.4 Reserved words

There are a number of words that are reserved by Ngene, and may not be used for user defined
variables such as the names of alternatives, attributes, priors. These words are listed below.

Any of the property names listed in this chapter (alg, rows, model, etc)
Design
Any word that contains the following symbols: ? ; $: = , . | () [] * + -
Any word that contains only numbers

It is recommended that user defined variable names consist only of alpha-numeric characters, and
that all other symbols be left out of the names. Failure to observe this might lead to unexpected error
messages or software crashes.

Chapter 12

Endnotes

241Endnotes

© 2012 ChoiceMetrics

12 Endnotes

1: Labeled choice experiments involve studies where the names of the alternatives on offer convey
meaning to the respondents beyond the order in which they are shown to respondents (e.g., the
alternatives may be labeled as car, bus and train). In unlabeled choice experiments, the names of
the alternatives are only meaningful in so far as they relate the order of the alternative as shown to
the respondent (e.g., Option A, Option B, etc.). In the later case, each alternative may actually
represent a car or a bus or a train in terms of the attribute levels shown to the respondent, but the
fact that the alternative resembles one of these modes is not explicitly stated to the respondent. An
exception to this rule exists where the different alternatives are treated as an attribute in the
experiment. Also, in many SC experiments, a type or brand of alternative is often mentioned in the
scenario descriptor of the task. In such cases, all the alternatives represent different versions of the
same type or brand (e.g., Option A, Option B, etc., represent different alternative buses).

2: A degree of freedom is defined here as the total number of parameters (excluding the constants),
plus 1. All constants are accounted for in the “plus 1”.

3: For example, the authors once constructed a survey where the two alternatives represented
different potential dates. One attribute in the experiment was that the potential date either had
children or did not. Because the design required that one potential date always had children whilst
the other did not, problems arose, particularly with younger respondents, who always selected the
date without children. This occurred to the point where no information could be gained on the other
attributes of the design.

4: The term asymptotic refers to the fact that it is consistent in large samples, or it is representative
as an average for small samples when the survey would be repeated many times.

5: The assumption of single respondent is just for convenience and comparison reasons and does
not have any further implications. Any other sample size could have been used, but it is common in
the literature to base it on a single respondent.

6: The theoretical lowest rate of convergence for quasi-random MC simulation is O((lnK R) / R), which
depends on the number of dimensions, K, such that in theory quasi-random MC simulation can
become quite slow for higher dimensions. The fastest theoretical rate of convergence is O(1/R). In
practice, the rate of convergence seems to be much closer to this faster rate, even for higher
dimensions.

7: As an example, consider the 5th draw using 2 (the first prime number) as base. Then r = 5 can be

expressed using three digits as 101 in base 2, because 5 = 1.20 + 0.21 + 1.22. The 5th draw is then

given by 1.2-0-0 + 0.2-1-1 + 1.2-2-1 = 0.5 + 0 + 0.125 = 0.625.

8: For example, suppose that the first parameter has two abscissas and the second parameter has

three. Let
1
(1) and

1
(2) denote the abscissas for the first parameter and

2
(1),

2
(2) and

2
(3) the

abscissas of the second parameter. Then the draws for will be (
1
(1),

2
(1)), (

1
(1),

2
(2)), (

1
(1),

2
(3)), (

1
(2),

2
(1)), (

1
(2),

2
(2)) and (

1
(2),

2
(3)), hence 6 draws in total.

9: The minimum number of abscissas is typically two, such that with 10 random parameters, the

minimum number of draws possible using Gaussian quadrature is 210 = 1,024. Using three

abscissas per random parameter increases this number to 310 = 59,049.

10: The assumption of single respondent is just for convenience and comparison reasons and does

242 Ngene User Manual

© 2012 ChoiceMetrics

not have any further implications. Any other sample size could have been used, but it is common in
the literature to normalize it to a single respondent.

11: If Monte Carlo simulations are used rather than the true analytical second derivatives to calculate
the AVC matrix for each design matrix, the amount of computing time required may be such that at
most only a few hundred or so possible designs may be explored, particularly for more advanced
models such as the MMNL model using Bayesian prior parameter distributions. For this reason,
using the true analytical second derivatives for the specified model is preferred, yet even so, it is still
unlikely that for designs of even a moderate size, all possible designs can be evaluated.

Chapter 13

References

244 Ngene User Manual

© 2012 ChoiceMetrics

13 References

Adamowicz, W. and P. Boxall (2001) Future Directions of Stated Choice Methods for Environment
Valuation, paper prepared for: Choice Experiments: A New Approach to Environmental Valuation,
April, London, England.

Anderson, D.A. and J.B. Wiley (1192) Efficient Choice Set Designs for Estimating Available Cross-
Effects Models, Marketing Letters, 3(4), 357-370.

Ben-Akiva, M. and S.R. Lerman (1985) Discrete Choice Analysis: Theory and Application to Travel
Demand, MIT Press, USA.

Bateman, I., Carson, R.T., Day, B., Hanemann, M., Hanley, N., Hett, T., Jones-Lee, M., Loomes,
G., Mourato, S., Ozdemiroglu, E., Pearce, D.W.,
Sugden, R., and Swanson, J. (2003) Economic Valuation with Stated Preference Techniques: A
Manual (in association with the DTLR and DEFRA), Edward Elgar.

Batsell, R. and Louviere, J.J. (1991) Experimental Analysis of Choice, Marketing Letters, 2(3), 199-
214.

Bennett, J. and Blamey, R. (2001) The Choice Modelling Approach to Environmental Valuation,
Edward Elgar.

Bhat, C.R. (2001), “Quasi-random maximum simulated likelihood estimation of the mixed
multinomial logit model,” Transportation Research B, 35(7), 677-693.

Bhat, C.R. (2003), “Simulation estimation of mixed discrete choice models using randomized and
scrambled Halton sequences,” Transportation Research B, 37(9), 837-855.

Bliemer, M.C. and Rose, J.M. (2009) Efficiency And Sample Size Requirements For Stated Choice
Experiments, Transportation Research Board Annual Meeting, Washington DC January.

Bliemer, M.C.J, Rose, J.M. and Hensher, D.A. (2009) Constructing efficient stated choice
experiments allowing for differences in error variances across subsets of alternatives, Transportation
Research Part B, 43(1), 19-35.

Bliemer, M.C.J., Rose, J.M. & Hess, S. (2008) Approximation of Bayesian Efficiency in
Experimental Choice Designs, Journal of Choice Modelling, 1(1), 98-127.

Bliemer, M.C.J. and Rose, J.M. (2006) Designing Stated Choice Experiments: State-of-the-art, paper
presented at the 11th International Conference on Travel Behaviour Research, Kyoto, Japan, August.

Bliemer, M.C.J. and J.M. Rose (2005a) Efficiency and Sample Size Requirements for Stated Choice
Studies. Report ITLS-WP-05-08, Institute of Transport and Logistics Studies, University of Sydney.

Bliemer, M.C.J., and J.M. Rose (2005b) Efficient Designs for Alternative Specific Choice
Experiments. Report ITLS-WP-05-05, Institute of Transport and Logistics Studies, University of
Sydney.

Burgess, L. and Street, D.J. (2005) Optimal designs for choice experiments with asymmetric
attributes, Journal of Statistical Planning and Inference, 134, 288-301.

245References

© 2012 ChoiceMetrics

Carlsson, F. and P. Martinsson (2002) Design Techniques for Stated Preference Methods in Health
Economics. Health Economics 12, 281-294.

Carson, R., Louviere, J.J., Anderson, D., Arabie, P., Bunch, D., Hensher, D.A, Johnson, R., Kuhfeld,
W., Steinberg, D., Swait, J., Timmermans, H., and Wiley, J. (1994) Experimental Analysis of
Choice. Marketing Letters, 5 (October), pp351-367.

Chaloner, K. and Verdinelli, I. (1995) Bayesian Experimental Design: A Review, Statistical Science,
10(3), 273-304.

Cook, R.D., and Nachtsheim, C.J. (1980) A comparison of algorithms for constructing exact D-
optimal designs. Techometrics 22, 315-324.

Dhar, R. (1997) Consumer Preference for a No-Choice Option, Journal of Consumer Research, 24,
215-231.

Dhar, R. and Simonson, I. (2003) The effect of forced choice on choice, Journal of Marketing
Research, May, 146-160.

El Helbawy, A.T. and Bradley, R.A. (1978) Treatment Contrasts in Paired Comparisons: Large-
Sample Results, Applications and Some Optimal Designs, Journal of the American Statistical
Association 73, 831-839.

Fang, K.-T.,, Wang, Y. (1994) Number-Theoretic Methods in Statistics, Chapman and Hall, London.

Ferrini, S. and Scarpa, R. (2007) Designs with a-priori information for nonmarket valuation with
choice-experiments: a Monte Carlo study, Journal of Environmental Economics and Management,
53, 342-363.

Fowkes, A.S. (2000) Recent developments in state preference techniques in transport research, in
Ortuzar, J de D. (ed.), Stated Preference Modelling Techniques, PTRC Education and Research
Services Ltd, 37-52.

Garrido, R.A. (2003) Estimation performance of low discrepancy sequences in stated preferences,
paper presented at the 10th International Conference on Travel Behaviour Research, Lucerne,
Switzerland.

Grasshoff, U. and Schwabe, R. (2007) Optimal design for the Bradley–Terry paired comparison
model, Statistical Methods and Applications, 17(3) 275-289.

Johnson, F.R., Kanninen, B.J. and Bingham, M. (2006) Experimental Design For Stated Choice
Studies, in Kanninen, B.J. (Ed.) Valuing Environmental Amenities Using Stated Choice Studies: A
Common Sense Approach to Theory and Practice, Springer, the Netherlands, p159-202.

Kontoleon, A. and Yabe M. (2003) Assessing the Impacts of Alternative ‘Opt Out’ Formats in Choice
Experiment Studies: Consumer Preferences for Genetically Modified Content and Production
Information in Food, Journal of Agriculture Policy and Research, 5, 1-43.

Halton, J. (1960) On the efficiency of certain quasi-random sequences of points in evaluating multi-
dimensional integrals, Numerische Mathematik , 2, 84-90.

Hahn, G.J., and S.S. Shapiro (1966) A catalog and computer program for the design and analysis of
orthogonal symmetric and asymmetric fractional factorial experiments. General Electric Research

246 Ngene User Manual

© 2012 ChoiceMetrics

and Development Center, Schenectady, NY, USA.

Hensher, D.A. and Barnard, P.O. (1990) The Orthogonality Issue in Stated Choice Designs, in
Fischer, M., Nijkamp, P. and Papageorgiou, Y. (Eds.), Spatial Choices and Processes, North-
Holland, Amsterdam; 265-278.

Hensher, D.A., and Smith, N.A. (1984) Automobile classification and demand modelling, Transport
Reviews, 4(3), 245-271.

Hensher, D.A., Rose, J.M. and Greene, W.H. (2005) Applied Choice Analysis: A Primer, Cambridge
University Press, UK.

Hess, S., Train, K.E. and Polak, J.W. (2005), “On the use of a Modified Latin Hypercube Sampling
(MLHS) approach in the estimation of a Mixed Logit model for vehicle choice,” Transportation
Research B, 40(2), 147-163.

Huber, J. and K. Zwerina (1996) The Importance of Utility Balance in Efficient Choice Designs.
Journal of Marketing Research 33, 307-317.

Kanninen, B.J. (1993a). Optimal experimental design for double bounded dichotomous choice
contingent valuation, Land Economics, 69, 138–146.

Kanninen, B.J. (1993b). Design of sequential experiments for CV studies, Journal of Environmental
Economics and Management, 25, 1–11

Kanninen, B.J. (2002) Optimal Design for Multinomial Choice Experiments. Journal of Marketing
Research 39, 214-217.

Kessels, R., Goos, P. and Vandebroek, M. (2006) A comparison of criteria to design efficient choice
experiments, Journal of Marketing Research, 43(3), 409-419.

Khuel, R.O., (1994), Statistical Principles of Research Design and Analysis 2nd Ed., Duxbury
Press.

Lanscar, E. and Louviere J.J. (2006) Deleting ‘irrational’ responses from discrete choice
experiments: a case of investigating or imposing preferences?, Health Economics, 15, 797–811.

Lanscar, E., Louviere, J.J. and Flynn, T. (2006) Several methods to investigate relative attribute
impact in stated preference experiments, Social Science and Medicine, 64(8), 1738-1753.

Louviere, J.J. and D.A. Hensher (1983) Using Discrete Choice Models with Experimental Design
Data to Forecast Consumer Demand for a Unique Cultural Event. Journal of Consumer Research 10,
348-361.

Louviere, J.J., D.A. Hensher, and J.D. Swait (2000) Stated Choice Methods—Analysis and
Application. Cambridge University Press, UK.

Louviere, J.J., and G. Woodworth (1983) Design and analysis of simulated consumer choice or
allocation experiments: an approach based on aggregated data. Journal of Marketing Research 20,
350-367.

McFadden, D. (1974) Conditional logit analysis of qualitative choice behaviour. In: P. Zarembka (ed.)
Frontiers of Econometrics. Academic Press, New York, 105-142.

247References

© 2012 ChoiceMetrics

Niederreiter, H. (1992) Random number generation and quasi-Monte Carlo methods, CBMS-NFS
Regional Conference Series in Applied Mathematics, 63, SIAM, Philadelphia, PA.

Ortúzar, J. de D. and Willumsen, L.G. (2001), Modelling Transport, 3rd ed., John Wiley and Sons,
Chichester.

Revelt, D. and Train, K. (1998) Mixed logit with repeated choices: households’ choices of appliance
efficiency level, The Review of Economics and Statistics, 647-657.

Rose, J.M. and Bleimer, M.C.J. (2008) Stated Preference Experimental Design Strategies, in
Hensher, D.A. and Button, K.J. (eds) Handbook of Transport Modelling, Elsevier, Oxford, Ch 8, 151-
180.

Rose, J.M. and Bliemer, M.C. (2006) Designing Efficient Data for Stated Choice Experiments,
accepted for presentation at 11th International Conference on Travel Behaviour Research - Kyoto,
August 16-20, 2006, Japan.

Rose, J.M., and M.C.J. Bliemer (2005a) Constructing efficient choice experiments. Report ITLS-WP-
05-07, Institute of Transport and Logistics Studies, University of Sydney.

Rose, J.M. and M.C.J. Bliemer (2005b) Sample optimality in the design of stated choice
experiments. Report ITLS-WP-05-09, Institute of Transport and Logistics Studies, University of
Sydney.

Rose, J.M., Bliemer, M.C.J, Hensher, D.A., and Collins, A.C. (2008) Designing Efficient Stated
Choice Experiments Involving Respondent Based Reference Alternatives, Transportation Research
Part B, 42(4), 395-406.

Rose, J.M., Scarpa, R. and Bliemer, M.C.J (2009) Incorporating model uncertainty into the
generation of efficient stated choice experiments: A model averaging approach, International Choice
Modelling Conference, March 30-April 1, Yorkshire U.K.

Sándor, Z. and Train, K. (2004), “Quasi-random simulation of discrete choice models,”
Transportation Research B, 38 (November), 313-327.

Sándor, Z., and M. Wedel (2001) Designing Conjoint Choice Experiments Using Managers’ Prior
Beliefs. Journal of Marketing Research 38, 430-444.

Sándor, Z., and M. Wedel (2002) Profile Construction in Experimental Choice Designs for Mixed
Logit Models, Marketing Science 21(4), 455-475.

Sándor, Z., and M. Wedel (2005) Heterogeneous conjoint choice designs. Journal of Marketing
Research 42, 210-218.

Scarpa, R., S. Ferrini, and K.G. Willis (2005) Performance of error component models for status-quo
effects in choice experiments. In: Applications of simulation methods in environmental and resource
economics, Springer, 247–274.

Scarpa, R. and Rose, J.M. (2008) Designs efficiency for non-market valuation with choice modelling:
how to measure it, what to report and why, submitted to Australian Journal of Agricultural and
Resource Economics, 52(3), 253-282.

248 Ngene User Manual

© 2012 ChoiceMetrics

Starmer, C. (2000) Development in non-expected utility theory: the hunt for a descriptive theory of
choice under risk. Journal of Economic Literature 18, 332-382.

Stoer, J. and Bulirsch, R. (2002) Introduction to Numerical Analysis. Springer-Verlag, New York, 3rd
edition

Street, D.J., D.S. Bunch, and B.J. Moore (2001) Optimal designs for 2k paired comparison
experiments. Communications in Statistics, Theory, and Methods 30(10), 2149-2171.

Street, D.J., and L. Burgess (2004) Optimal and near-optimal pairs for the estimation of effects in 2-
level choice experiments. Journal of Statistical Planning and Inference 118, 185-199.

Street, D.J., L. Burgess, and J.J. Louviere (2005) Quick and easy choice sets: Contructing optimal
and nearly optimal stated choice experiments. International Journal of Research in Marketing 22,
459-470.

Toner, J.P., Clark, S.D., Grant-Muller, S.M. and Fowkes, A.S. (1999) Anything you can do, we can
do better: a provocative introduction to a new approach to stated preference design, WCTR
Proceedings, 3, Antwerp, 107-120.

Train, K. (2003) Discrete Choice Methods with Simulation. Cambridge University Press, UK.

Tuffin, B. (1996) On the use of low-discrepancy sequences in Monte Carlo methods, Monte Carlo
Methods and Applications, 2(4), 295-320.

Tversky, A. and E. Shafir (1992) Choice Under Conflict: The Dynamics of Deferred Decision,
Psychological Science, 6, 358-361.

Yu, J., Goos, P. and Vandebroek, M. (2008). Comparing different approaches for approximating the
integrals involved in the Bayesian optimal design of choice experiments. Technical Report.

Yu, J., Goos, P. and Vandebroek, M. (2009) Efficient conjoint choice designs in the presence of
respondent heterogeneity, Marketing Science, 28(1), 122-135.

Van der Corput, J.G. (1935) Verteilungsfunktionen. Nederl. Akad. Wetensch., Proc. Ser. B
(Amsterdam), 38, 813-821.

Winiarski, M., (2003) Quasi-Monte Carlo Derivative Valuation & Reduction of Simulation Bias, M.Sc.
Thesis, Royal Institute of Technology (KTH), Sweden.

	Introduction
	What is Ngene?
	About Version 1
	Feature overview
	Overview of this manual

	Installation and Setup
	Installing Ngene
	Evaluation version
	Purchasing Ngene
	License activation and management
	Uninstalling Ngene

	The Ngene Workspace
	Workspace overview
	Syntax windows and files
	Data windows and files
	Output window
	Design windows and files
	The unmanaged workspace
	Projects: the managed workspace
	Menus
	File menu
	Edit menu
	Run menu
	Tools menu
	Window menu
	Help menu
	Options dialog box

	Ngene Syntax
	Syntax command format
	An example design syntax: Full factorial designs

	Introduction to Experimental Design Theory
	Introduction to experimental designs for stated choice experiments
	Overview of general steps for creating stated choice experiments
	Step 1 - Model specification
	Step 2 - Generation of experimental design
	Step 3 - Construction of questionnaire

	Notation

	Orthogonal Designs
	Theory of full and fractional factorial designs
	Full factorial designs
	Orthogonal designs
	Definition of orthogonality
	Generating orthogonal designs
	Reasons for using orthogonal designs
	Discussion of orthogonal designs

	Generating orthogonal designs in Ngene
	Full factorial designs
	Fractional factorial designs
	Orthogonal fractional factorial designs
	Orthogonal fractional factorial designs with two-way interactions

	Orthogonal optimal in the difference fractional factorial designs
	Appendix 6A Correlation measures
	Appendix 6B Optimal orthogonal in the differences designs

	Efficient Designs
	Theory of efficient designs
	Efficient designs
	Definition of efficiency
	Deriving the asymptotic variance-covariance matrix
	Efficiency measures
	Drawing from parameter distributions
	Pseudo-random Monte Carlo (PMC) simulation
	Quasi-random Monte Carlo simulation
	Modified Latin Hypercube Sampling (MLHS)
	Halton sequences
	Sobol sequences
	Gaussian quadrature

	Orthogonal versus efficient designs
	Importance of prior parameter values
	Utility balance
	Generating efficient designs
	Discussion of efficient designs

	Generating efficient designs in Ngene
	Efficiency measures
	Designs for estimating multinomial logit models
	Designs for estimating random parameters models
	Designs for estimating error components models
	Designs for estimating combined random parameters and error components
	Reporting efficiency measures for different model types
	Designs with no choice alternatives
	Designs with dummy and effects coded attributes
	Efficient designs with interactions

	Bayesian efficient designs
	Model averaging of efficient designs
	Appendix 7A Discrete choice models
	Utility specification
	Model probabilities
	Model log-likelihood functions
	Model variance-covariance matrices

	Appendix 7B Steps in generating efficient stated choice designs

	Advanced Features in Generating Efficient Designs
	Attribute level balance and fractional factorial designs
	Constraints and fractional factorial designs
	Constrained designs
	Constrained designs in Ngene

	Reference or pivot (customized) designs
	Pivot designs
	Pivot designs in Ngene

	Including covariates in generating efficient designs
	Designs with covariates

	Designs within designs: Designs with scenarios in Ngene
	Algorithms for generating designs in Ngene
	Evaluating existing designs in Ngene
	Handling unlabeled alternatives
	Handling probabilities and other attributes that must sum to a number

	Designs With Continuous Attribute Levels
	Theory of designs with continuous levels
	Designs with continuous levels in Ngene
	Appendix 9A Steps in generating choice designs with continuous attribute levels
	Appendix 9B The Nelder Mead algorithm

	Formatting experiments
	Syntax Reference
	Definitions of syntax components
	How this manual specifies syntax
	Design
	alg
	alts
	bdraws
	block
	bseed
	con
	cond
	eff
	eval
	fact
	fisher
	foldover
	Formatting properties
	formatattributes
	formatchoices
	formatstylesheet
	formattable
	formattabledimensions
	formattablefooter
	formattableheader
	formattablestyle
	formattitle

	model
	orth
	prec
	rdraws
	reject
	rep
	require
	rows
	rseed
	start
	store
	trimdist
	wtp

	Reserved words

	Endnotes
	References

